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Applied Research Associates, Inc.Applied Research Associates, Inc.
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Wind Engineering CapabilitiesWind Engineering Capabilities
Over 80 person-years of 
wind engineering experience
Over 200 wind engineering 
publications
Validated wind hazard and 
vulnerability models for 
accurate risk assessment
Over 20 wind engineering 
software tools
Extensive post-storm damage investigation experience

ThunderstormsThunderstorms
TornadoesTornadoes

HurricanesHurricanes
Extratropical CyclonesExtratropical Cyclones

ARAARA’’s Wind Hazard Modelss Wind Hazard Models
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Significant Projects/ActivitiesSignificant Projects/Activities
Transmission line risk studies in U.S., Canada, & Caribbean 
Tornado risk assessments for nuclear power plants
FEMA hurricane loss evaluation methodology (HAZUS)
ASCE 7 design wind speeds for Gulf & Atlantic coasts
USACE risk-based levee design criteria development
Florida Residential Construction Mitigation Program
Building code studies in FL, NC, SC, and TX
ASTM wind borne debris standards
Worldwide hurricane climatology studies for wind tunnels
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Stochastic Damage ModelingStochastic Damage Modeling
Transmission and distribution systems are highly 
vulnerable to hurricanes
Regional response and recovery efforts are severely 
impacted by power outages
Utilities must find the best balance between costs of 
hardening, maintenance costs, and outage impacts
Historical data and lessons learned are necessary but 
not sufficient for optimal decisions
Stochastic damage models are needed to optimize 
electricity infrastructure hardening measures
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Hardening MeasuresHardening Measures
Strengthening

Pole and tower designs
Conductors and 
conductor connections

Maintenance
Invest additional resources in inspecting and 
repairing degraded system components

Redundancy
Multiple paths
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Optimal Transmission Line Optimal Transmission Line 
Design Decision AnalysisDesign Decision Analysis
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Modeling ComponentsModeling Components
Event Risk* Wind Fields*        Terrain               Trees Topography

Line Locations Structures Wind Loads Failure Probabilities    Economics
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Optimum RiskOptimum Risk--Based DesignBased Design
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Minimize Total Lifetime CostMinimize Total Lifetime Cost
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Decision Threshold Analysis Decision Threshold Analysis 
on Failure Cost Sensitivityon Failure Cost Sensitivity
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Tree BlowdownTree Blowdown
Load and resistance model based on research 
performed by the USFS in the 1950’s and additional 
work performed by ARA in the 1980’s
Models probability of uprooting or stem failure as a 
function of 

Tree characteristics and tree density
Peak gust wind speed

Tree inventory database developed for contiguous U.S. 
and implemented in HAZUS-MH Hurricane Model for

Tree damage to property
Tree debris removal estimation
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Tree Load and Response Tree Load and Response 
ModelModel
Tree is modeled as a SDOF 

system:
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Example Simulation ResultsExample Simulation Results
Base Bending Moments (kN-m)

Mean                                       RMS                  Peak
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Model Flow in Tree CanopiesModel Flow in Tree Canopies
CdLAI=0.3, Zo/H=0.14, d/H=0.51
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Simulation ApproachSimulation Approach
1. Sample tree parameters
2. Choose value of CdLAI for “forest”
3. Compute effective velocity parameters
4. Generate time series of wind speeds (10 minutes)
5. Compute value of CdA for sampled tree
6. Compute minimum failure wind speed and convert to 

open terrain equivalent
7. Repeat 100 times
8. Compute effective number of stems/Hectare
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Example Probability of Example Probability of 
BlowdownBlowdown

70 Foot Deciduous Tree
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Example Probability of Example Probability of 
BlowdownBlowdown

70 Foot Coniferous Tree
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Validation of Tree BlowdownValidation of Tree Blowdown
Data collected following Hurricane Isabel (2003)

Eight randomly selected areas in Northeastern 
North Carolina
Number of trees on each lot 

By height class
By tree type (deciduous or coniferous)
By performance (uproot, stem failure, no failure)
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Summary of Data CollectedSummary of Data Collected

Location 
Peak Gust Wind 

Speed (mph) 
Number of Lots 

Surveyed 
Total Number of 

Trees 
% of Trees  

Blown Down 
Ahoski 1 86 20 54 3.7% 
Ahoski 2 86 28 113 5.3% 
Elizabeth City 1 95 34 171 5.8% 
Elizabeth City 2 95 45 217 8.8% 
Manteo 1 92 9 178 18% 
Manteo 2 92 32 150 11% 
South Mills 92 27 150 19.3% 
Windsor 84 28 125 8.8% 
Total  223 1158 10.8% 
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Deciduous TreesDeciduous Trees
 70 Foot Deciduous Tree
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 50 Foot Deciduous Tree
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 35 Foot Deciduous Tree
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Coniferous TreesConiferous Trees
70 Foot Coniferous Tree -- Shifted 10 mph
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50 Foot Coniferous Tree -- Shifted 15 mph
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35 Foot Coniferous Tree -- Shifted 30 mph
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Coastal Flooding Risk AnalysisCoastal Flooding Risk Analysis
Model components

Storm surge
Astronomical tide
Wave set-up and run-up

Applications
Planning, design, & mitigation
Emergency response
Insurance
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Coastal Flooding Model OverviewCoastal Flooding Model Overview
Storm Track, ΔP, Rmax, B

HURRICANE WIND 
FIELD MODEL

Ten-meter Winds
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MODEL MODEL (WAVEWATCH III)(WAVEWATCH III)
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SETUP/BREAKING

DAMAGE POTENTIAL TO 
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Hurricane Katrina Storm SurgeHurricane Katrina Storm Surge
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Katrina Storm Surge PredictionKatrina Storm Surge Prediction
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Katrina Wave Height PredictionKatrina Wave Height Prediction
Buoy 42040, Hurricane Katrina
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Research RecommendationsResearch Recommendations
Transmission line optimization studies

Optimization of new construction and maintenance
Impacts of response and recovery costs and indirect 
economic losses on design and maintenance decisions

Distribution line optimization studies
Regional analysis via statistical analysis at block level
Analysis of above ground vs. below ground installation
Develop and validate models for tree damage to 
distribution lines

Coastal flooding impacts on power plants, substations, and 
T&D systems
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