EXPANDING THE REALM OF POSSIBILITY

Analysis & Optimization of Electricity Infrastructure Hardening Measures

Workshop for Research in Electricity Infrastructure Hardening Gainesville, FL June 9, 2006

Francis M. Lavelle, Ph.D., P.E. Applied Research Associates, Inc. 8540 Colonnade Center Dr., Suite 307 Raleigh, NC 27615 (919) 582-3350 flavelle@ara.com

Outline

- ARA Overview
- Stochastic Damage Modeling with Example Applications
- Tree Blowdown
- Coastal Flooding
- Research Recommendations

Applied Research Associates, Inc.

- Founded in 1979 Employee Owned
- 1,100 Employees
- FY05 Sales of \$149 Million

Wind Engineering Capabilities

- Over 80 person-years of wind engineering experience
- Over 200 wind engineering publications
- Validated wind hazard and vulnerability models for accurate risk assessment
- Over 20 wind engineering software tools

ARA's Wind Hazard Models

Extensive post-storm damage investigation experience

Significant Projects/Activities

- Transmission line risk studies in U.S., Canada, & Caribbean
- Tornado risk assessments for nuclear power plants
- FEMA hurricane loss evaluation methodology (HAZUS)
- ASCE 7 design wind speeds for Gulf & Atlantic coasts
- USACE risk-based levee design criteria development
- Florida Residential Construction Mitigation Program
- Building code studies in FL, NC, SC, and TX
- ASTM wind borne debris standards
- Worldwide hurricane climatology studies for wind tunnels

Stochastic Damage Modeling

- Transmission and distribution systems are highly vulnerable to hurricanes
- Regional response and recovery efforts are severely impacted by power outages
- Utilities must find the best balance between costs of hardening, maintenance costs, and outage impacts
- Historical data and lessons learned are necessary but not sufficient for optimal decisions
- Stochastic damage models are needed to optimize electricity infrastructure hardening measures

Hardening Measures

Strengthening

- Pole and tower designs
- Conductors and conductor connections
- Maintenance

- Invest additional resources in inspecting and repairing degraded system components
- Redundancy
 - Multiple paths

Optimal Transmission Line Design Decision Analysis

Modeling Components

*Hurricane, Thunderstorm, Tornado, Winter storm

Optimum Risk-Based Design

Minimize Total Lifetime Cost

Decision Threshold Analysis on Failure Cost Sensitivity

Tree Blowdown

- Load and resistance model based on research performed by the USFS in the 1950's and additional work performed by ARA in the 1980's
- Models probability of uprooting or stem failure as a function of
 - Tree characteristics and tree density
 - Peak gust wind speed
- Tree inventory database developed for contiguous U.S. and implemented in HAZUS-MH Hurricane Model for
 - Tree damage to property
 - Tree debris removal estimation

Tree Load and Response Model

Tree is modeled as a SDOF $m_e \ddot{\ddot{x}} + c\ddot{x} + kx = F_D(t)$

Stiffness:

$$K = \frac{3EI_{bh}}{H_{bh}^3} \overline{K} \psi \left(c_s, f_1 \right)$$

Period of vibration:

$$T = a_1 + b_1 \frac{H_{bh}^2}{d_{bh}} + \varepsilon$$

where the drag parameters k1 and k2 are modeled as lognormal random variables that depend on the modulus of rupture

Example Simulation Results

Model Flow in Tree Canopies

CdLAI=0.3, Zo/H=0.14, d/H=0.51 2.5 2 Von-Dimensional Height (z/H) 1.5 1 0.5 TurbueInce Intensity Mean Velocity 0 0.5 1.5 2 0 1 Mean Velocity (U(z)/U(H)) or Intensity

Simulation Approach

- 1. Sample tree parameters
- 2. Choose value of C_d LAI for "forest"
- 3. Compute effective velocity parameters
- 4. Generate time series of wind speeds (10 minutes)
- 5. Compute value of C_dA for sampled tree
- 6. Compute minimum failure wind speed and convert to open terrain equivalent
- 7. Repeat 100 times
- 8. Compute effective number of stems/Hectare

Example Probability of Blowdown

70 Foot Deciduous Tree

Example Probability of Blowdown

1 CdLAI=0.30 0.9 □ CdLAI=0.20 $\times \times \times$ 0.8 ∧ CdLAI=0.15 $\Delta \Delta^{\overline{\Delta}}$ $\times \times \Delta$ Probability of Blowdown × CdLAI=0.10 0.7 o CdLAI=0.05 $\times \times$ ΔΔ × 0.6 пп • CdLAI=0.01 $\wedge \wedge$ п ΔΔ 0.5 0 пп х o $\times \times \Delta \Delta \Delta$ 0.4 хх A A 0.3 ΔΔ 0.2 0.1 0 150 0 50 100 200 250 Peak Gust Wind Speed (mph)

70 Foot Coniferous Tree

Validation of Tree Blowdown

Data collected following Hurricane Isabel (2003)

- Eight randomly selected areas in Northeastern North Carolina
- Number of trees on each lot
 - By height class
 - +By tree type (deciduous or coniferous)
 - + By performance (uproot, stem failure, no failure)

Summary of Data Collected

	Peak Gust Wind	Number of Lots	Total Number of	% of Trees
Location	Speed (mph)	Surveyed	Trees	Blown Down
Ahoski 1	86	20	54	3.7%
Ahoski 2	86	28	113	5.3%
Elizabeth City 1	95	34	171	5.8%
Elizabeth City 2	95	45	217	8.8%
Manteo 1	92	9	178	18%
Manteo 2	92	32	150	11%
South Mills	92	27	150	19.3%
Windsor	84	28	125	8.8%
Total		223	1158	10.8%

Deciduous Trees

Peak Gust Wind Speed (mph)

Coniferous Trees

35 Foot Coniferous Tree -- Shifted 30 mph

Coastal Flooding Risk Analysis

- Model components
 - Storm surge
 - Astronomical tide
 - Wave set-up and run-up
- Applications
 - Planning, design, & mitigation
 - Emergency response
 - Insurance

Coastal Flooding Model Overview

Hurricane Katrina Storm Surge

EXPANDING THE REALM OF POSSIBILITY

26

Katrina Storm Surge Prediction

8760922 Pilots Station, LA

Katrina Wave Height Prediction

Time UTC, 8/28/2005-8/30/2005

Research Recommendations

- Transmission line optimization studies
 - Optimization of new construction and maintenance
 - Impacts of response and recovery costs and indirect economic losses on design and maintenance decisions
 - Distribution line optimization studies
 - Regional analysis via statistical analysis at block level
 - Analysis of above ground vs. below ground installation
 - Develop and validate models for tree damage to distribution lines
- Coastal flooding impacts on power plants, substations, and T&D systems

