Electric Power System Performance in Natural Hazards

Professor Rachel Davidson Cornell University

Workshop for Research in Electricity Infrastructure Hardening Gainesville, FL June 9, 2006

Research Overview

Q1.	How many outages will there be and where?	Dominion, Duke, Progress, Southern	Hurricanes Ice storms
Q2.	When will power be restored in each area?	Dominion, Duke, Progress, Southern	Hurricanes Ice storms
		LADWP	Earthquakes
Q3.	How fast is possible?		
	How would that be achieved?	LADWP	Earthquakes
Q4.	How much does tree trimming affect outage frequency?	Duke	Non-storm times

Q1. How many outages will there be and where?

Method

- Overlaid all data in GIS
- Found values in each grid cell
- Fit statistical models to relate number of outages to system, land, storm characteristics

Statistical Models

- 1. Poisson generalized linear model (GLM)
 - y ~ Poisson(μ) $\ln(\mu) = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$ Like regression but when Y is count data
- 2. Negative binomial model

Like (1), but different assumption about distribution of counts (Y)

- 3. Poisson generalized linear mixed model (GLMM) Like (1), but different assumption about errors
- 4. Spatial Poisson GLMM
 - Like (3) but include spatial correlation b/t outages 4

Q1. How many outages will there be and where?

As storm approaches, apply model to get for each area unit:

Potential Uses

- Estimate overall impact of storm
- Help determine how many tree and line crews to deploy and where

Expected number of outages by zip code

Q2. When will power be restored in each area?

Method

- GIS overlay to get data for each outage (instead of grid cell)
- Fit statistical survival analysis models to relate outage durations to system, land, storm characteristics
 - Accelerated failure time (AFT) $\ln(T) = \mathbf{x}\beta + \varepsilon$
 - Cox proportional hazard (CPH) h(t,x,β)=h(t)exp(xβ)
 Like regression but for time

 (nonnegative, possibly censored data)
- Simulate from outage duration to restoration time
 - Estimate covariate values for each outage
 - Apply model to get expected outage duration
 - Calculate outage finish time
 - Find time at which X% of customers in area are restored

Q2. When will power be restored in each area?

7

Q2. When will power be restored in each area?

Q3. How fast is possible? How can that be achieved?

Method

- Build optimization models (genetic algorithms) to minimize SAIDI_{eq} by changing:
 - Inspection, damage assessment, repair schedules
 - Number, locations of different crew types
- Compare current and optimization-generated restoration strategies using restoration simulation model

Q3. How fast is possible? How can that be achieved?

Q4. How much does tree trimming affect outage frequency?

Method

Statistical modeling like for outage counts but by circuit

Output

- Estimate change in number of outages given change in tree trimming frequency
- Identify which circuits would result in greatest outage reduction

Potential uses

- Determine best tree trimming frequency
- Prioritize circuits for trimming

Possible Future Research

- Build on work related to same 4 questions, especially outage count and restoration
- Move from outage to damage estimation
- Merge tree and outage modeling
- Use discrete event simulation for storms
- Do long-term analysis of outages and outage durations

Acknowledgements

- Power companies

 Dominion Virginia Power
 Duke Energy
 LADWP Power Services Organization
 Progress Energy Carolinas
 Southern Company
- Hurricane and ice storm collaborators and students:
 A. DeGaetano, S. Guikema, H. Liu, D. Rosowsky
- Earthquake collaborators and students:
 Z. Çağnan , S. Guikema, L. Nozick, N. Xu
- Funding agencies
 National Science Foundation
 Multidisciplinary Center for Earthquake Engineering Research
 President's Council of Cornell Women
 ¹³

Relevant Publications

- Çağnan, Z., and Davidson, R. Discrete event simulation of the post-earthquake restoration process for electric power systems. *International Journal of Risk Assessment and Management*, in press.
- Çağnan, Z., Davidson, R., and Guikema, S. Post-earthquake restoration planning for Los Angeles electric power. *Earthquake Spectra*, in press.
- Davidson, R., Liu, H. Sarpong, I. Sparks, P., and Rosowsky, D. 2003. Electric power distribution system performance in Carolina hurricanes. *Natural Hazards Review* 4(1), 36-45.
- Guikema, S.D. and R.A. Davidson. 2006. "Modeling Critical Infrastructure Reliability with Generalized Linear Mixed Models," *Probabilistic Safety Assessment and Management (PSAM) 8*, New Orleans, May 2006.
- Guikema, S.D., R.A. Davidson, and Z. Cagnan. 2005. "Efficient Simulation-Based Discrete Optimization," *Winter Simulation 2004*, Washington, D.C., December 2004.
- Guikema, S.D., R.A. Davidson, and H. Liu. 2006. "Statistical Models of the Effects of Tree Trimming on Power System Outages," accepted for publication in *IEEE Transactions on Power Delivery*, July 2005.
- Guikema, S.D., N. Xu, R. Davidson, L.K. Nozick, and Z. Çağnan. 2006. "Optimization of Crews in Post-Earthquake Electric Power Restoration," 8th National Conference on Earthquake Engineering.
- Liu, H., and Davidson, R. Statistical estimation of electric power restoration times in hurricanes and ice storms, in preparation.
- Liu, H., Davidson, R. Rosowsky, D. and Stedinger, J. 2005. Negative binomial regression of electric power outages in hurricanes. *Journal of Infrastructure Systems* 11(4), 258-267.
- Liu, H., Davidson, R., and Apanasovich, T. Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms. *Reliability Engineering and System Safety*, in review.
- Xu, N., S.D. Guikema, R.A. Davidson, L.K. Nozick, Z. Çağnan, and K. Vaziri. "Optimizing Scheduling of Post-Earthquake Electric Power Restoration Tasks," submitted to *Earthquake Engineering and Structural Dynamics*, under review for publication in the special issue on Electric Power Equipment and Lifeline Systems.