III. Market Factors and Demand Analysis

Public Transport Planning and Regulation: An Introduction

Planning and Analysis Building Blocks

Schedule Building

Cost Analysis and Financial Planning

Performance Analysis

Measures & Standards

Service Monitoring and Data Collection

Network and Route Design

Analysis, and Collection

Focus of Discussion Market Factors and Demand Analysis Terminology and Basic Relationships

Market Factors

- The market for public transport (PT) is affected by a variety of factors
- No two cities or even neighborhoods are the same in terms of these factors
- Different combinations of factors generate the need for different types and levels of PT service

Factors Affecting Market for Public Transport

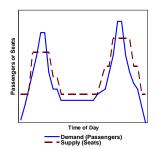
- Travel needs
- Land use
- Trip maker numbers and demographics
- PT service parameters

Why is It Important to Understand Market Factors?

- Helps in estimating PT ridership
 - Ridership is linked to public transport performance, revenue, financial sustainability
 - Ridership is a measure of benefits
- Essential for planning and design
- Facilitates performance analysis through peer comparisons

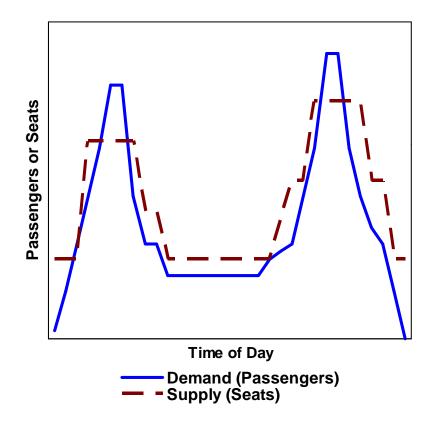
Travel Needs

- Purpose
- Time-of-Day
- Nature of origin/destination

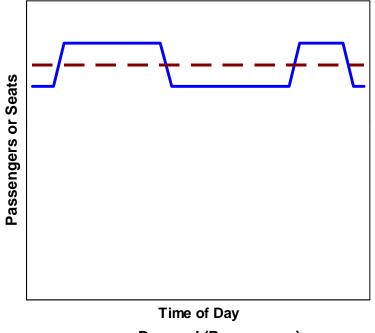

Purpose Impacts PT Use

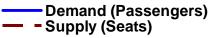
Non-Work

- Shopping, personal business, medical, recreational, religious
- Occasional trips 1-3 times/week
- Discretionary trips means users can forgo them, change timing or combine them
- People often travel as group, e.g., family
- Work/School trips
 - Recurring (e.g., 5 days/week)
 - Not-discretionary, more tightly scheduled
 - Workers/students travel as individuals


Time-of-Day

- Peak Morning/Afternoon Commuting Hours
 - Higher demand/unit time
 - High percentage of work trips
 - More individual travel
 - Choice and captive riders
- Off-Peak Midday, Evening, Weekend Hours
 - Lower demand
 - More non-work travel
 - More group travel
 - Captive riders


Time-of-Day Demand Affects Bus and Facility Utilization



- More peak, less off-peak service operated
- Inefficient use of buses and facilities
 - Low service hours/bus
 - Low passengers/bus
 - Unused capacity during off-peak periods
- There are strategies to address this problem

Some Areas Have "Flat" Demand



- Relatively constant service operated
 - e.g., Casablanca
- Efficient use of buses and facilities
 - High service hours/bus
 - High passengers/bus
 - Capacity efficiently used during all periods

Urumqi, China 2006 O/D Survey Results

Origin/Destination Volumes

- PT works best where there are large, concentrated travel volumes between high intensity areas
 - To/from large, dense housing estates
 - To/from large commercial centers, e.g. downtowns or central business districts (CBD's)
- PT works best when concentrations of origins and destinations are arranged linearly

Urumqi, China

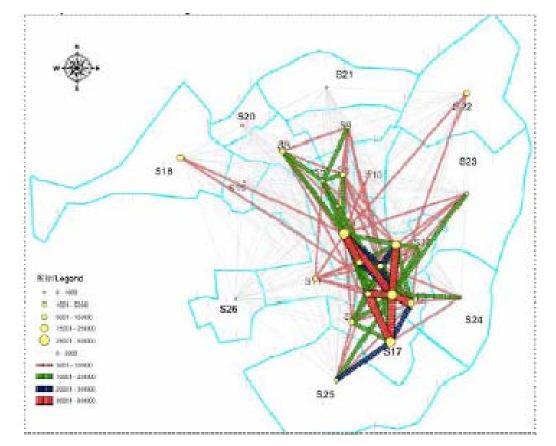
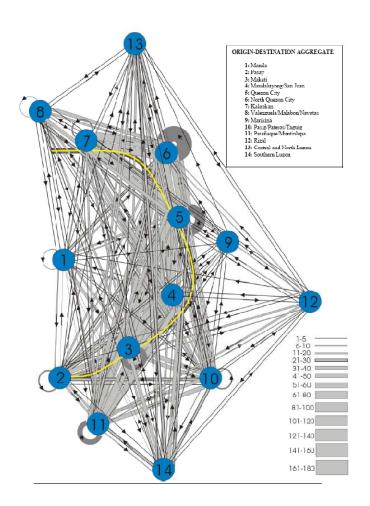



Figure 3.1 Desire lines of public transport in Urumqi (2006)

Manila EDSA Bus Users

III-14 WORLD BANK

Distance from Origin to Destination

- Extremely short trips (2 km) mostly made by walking
- Bicycles viable option up to 8-10 km
- Conventional bus trip lengths generally 5-10 km in developing cities
- Suburban rail trip length average over 10 km

Urumqi, China Trip Times 2006 O/D Survey

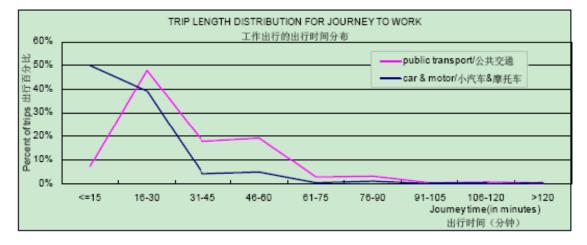
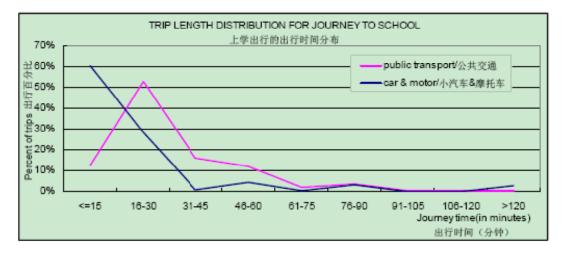
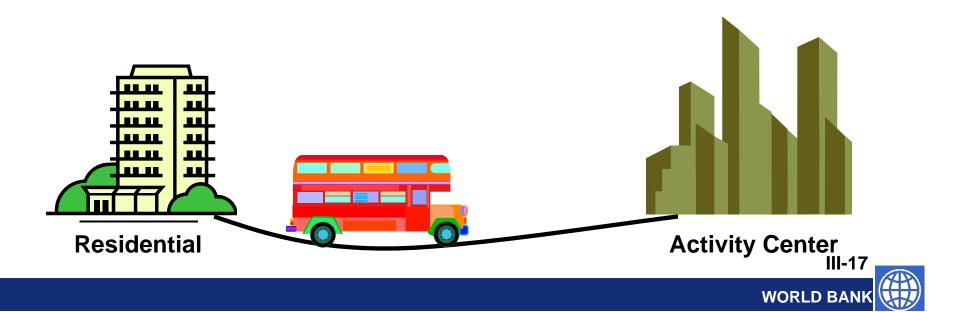



Figure 2.11 Trip length distribution for journey to work



Land Use

- Intensity/Density
 - Residential (Origin)
 - Activity Center (Destination)
- Availability of safe, secure walking environment

Origin/Destination

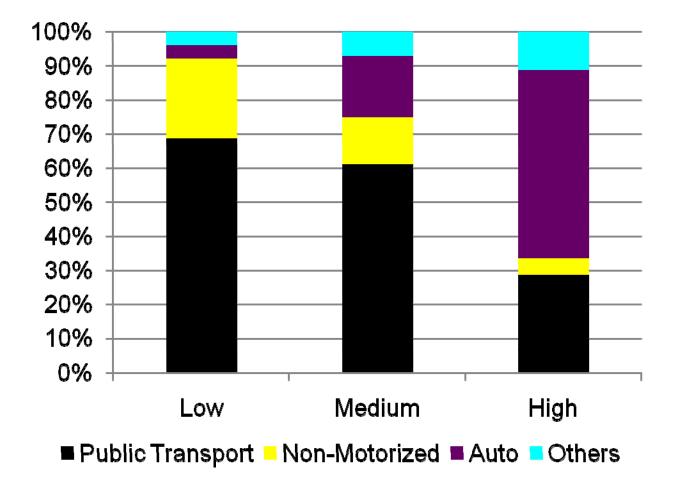
- Public transport works best for trips between:
 - High density, "walkable" residential and
 - High density "walkable" non-residential areas (e.g., traditional central business districts)
- Traditional public transport does not serve well trips between:
 - Low density residential areas and
 - Low density employment areas

Land Use Variations in Manila

Land Use Variations Beijing

Important Demographic Characteristics

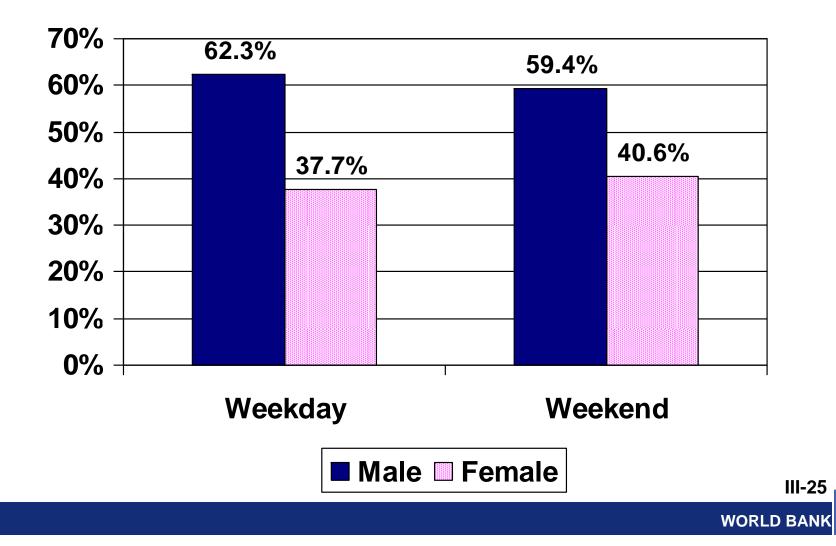
- Income
- Gender
- Age
- Labor force/student population


Income Is Most Important Demographic Factor

- Low Income
 - Affordability
 - A problem when fares > 10% to 20% of income
 - Concessionary fares sometimes help
 - Alternatives are walking, bicycling
- Medium Income
 - Affordability is 3% to 5% of income
 - Taxis, two-wheelers and sometimes autos are alternatives
- High Income

- Autos are an alternative

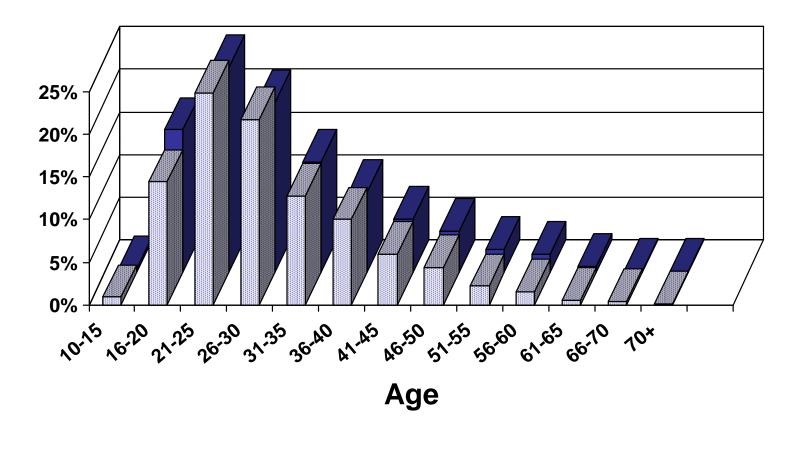
Bogota Travel by Income Group


III-23 WORLD BANK

Gender

- Men are a larger proportion of PT riders in developing (not developed) cities
 - Lower proportion of women working
 - Higher proportion of women on weekends when non-work trips increase
 - Religious rules
- Women's safety/security concerns
 - Lighting at stops
 - To stop/from stop

Gender Manila Edsa Bus Users



- Majority of PT users between 16-40
 - Workers
 - Students
- Fewer older workers, students
 - They may have money for taxis and other forms of private transport
- More younger travelers on weekends

Age Profile Manila Edsa Bus Users

Weekday Weekend

Public Transport System Factors

- Levels and quality of PT service
 - Travel times, reliability
 - Comfort, amenities
- PT Fares
- Availability of safe, secure non-motorized access
- If affordable, availability of other options
 - Shared ride taxis
 - Conventional 2-, 3- and 4-wheeled taxis
 - Private motor vehicles two and four wheelers

III-28 WORLD BANK

Levels and Quality of PT Service

- All travel time not the same
 - Waiting, transferring and walking time much more onerous
- Reliability may be more important than average travel time
- Crowding a key quality factor, particularly for:
 - Women
 - Older people
 - Higher income travelers with choices

Availability of Safe, Secure Non-Motorized Access

- Pedestrian access conditions
 - Sidewalk coverage and repair
 - Crossings
- Bicycle facilities
 - Bikeways
 - Bicycle parking

Safety and Traffic Management

- Availability <u>and management</u> of safe, secure access and waiting facilities are important determinant of PT use
- Why?
 - Pedestrians and bicycle users
 - Large % of traffic injuries and deaths
 - People going to/from or waiting for PT
 - Large % of non-motorized travel deaths

Passenger Information a Key Service Quality Parameter

- People need to be aware of options
 - Routing
 - Schedules
 - Fares
- Many trips are non-recurring, making PT use difficult
 - Non work
 - Visitors
 - Tourists
- A big issue in developing cities

Why is Demand Estimation Needed?

- Ridership critical planning and design parameter
 - Assess the passenger and revenue impacts of new services and facilities
 - Assess the passenger and revenue impacts of service changes

Demand Estimation Techniques for Short-Medium Term Service Changes

- Similar routes method
 - Apply existing service experience to a service change
- Statistical models
 - Develop formula relating existing demand to existing service parameters
- Elasticity models
 - Apply percent change to current ridership based on change in a fare or service parameter

≈ Similar Routes

Method Ridership on proposed service will reflect ridership on an existing service

Estimation

- 1. Select similar service based on (typical):
 - Population density
 - Generators served
 - Service design (e.g., intervals, span)
- 2. Adjust ridership for differences
 - Service levels
 - Rider potential

≈ Example of Similar Routes

Problem Estimate ridership for a new route that will provide bus service between La Source (an edge town) and Orleans.

Solution

1. Collect data for a similar route

	New	
	Route	Route 12
Population/Square Kilometer	15000	17000
Daily Kilometers	1600	1800
Daily Passengers	?	3125

- 2. Calculate ridership rate for Route 12 Ridership rate = Daily passengers / Daily kilometers = 3125 / 1800 = 1.74 passengers/KM
- 3. Calculate potential users for new route as a percent of Route 12 population density

Potential (%) = Population density (New route)/ Population density (Route 12) = 15000/17000

= 88.2%

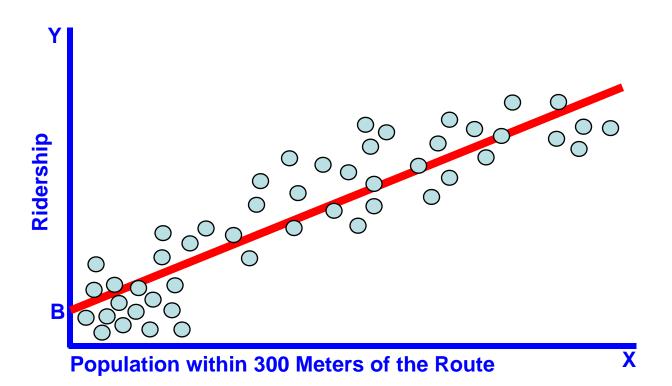
- 4. Estimate ridership rate for the new route
 - Ridership rate = Route 12 ridership rate x Potential %
 - = 1.74 passengers/KM x 88.2%
 - = 1.53 passengers/KM
- 5. Estimate daily ridership rate for the new route Ridership rate = New route ridership rate x daily kilometers
 - = 1.53 passengers/KM x 1600 KM
 - = 2448 passengers (or 2400)

- 1. Identification of key differences between existing and new route
- 2. Approach used to adjust for differences

Statistical Models

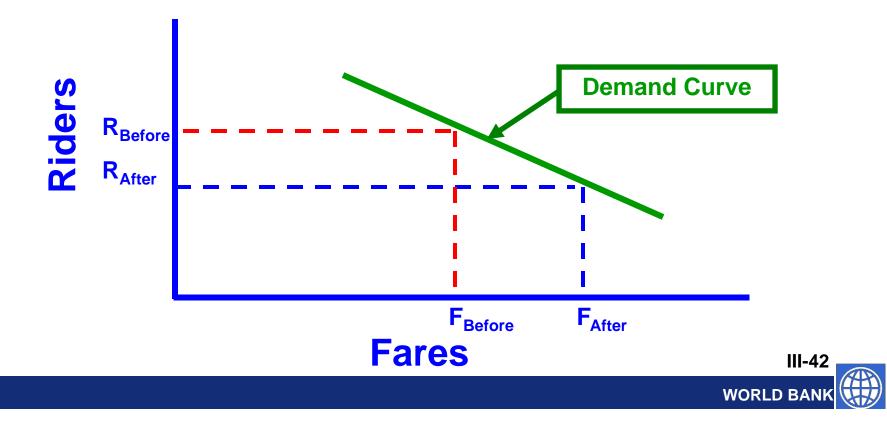
$$r^2 = 0.74$$

Method Based on ridership on existing routes and key service and demographic variables


Ridership = B + A_1X_1 + A_2X_2 + ... + A_3X_3

Estimation

- 1. Collect data on existing routes
 - Socioeconomic variables e.g., income
 - Land use variables e.g., population
 - Service variables e.g., headway
 - Daily ridership
- 2. Statistically "calibrate" model, develop mathematical parameters
- 3. Apply model


Example of Linear Regression

e Elasticity Models

Method Elasticity is the ratio of the percent change in ridership to the percent change in a transit service parameter (e.g., fares, service levels)

Summary

- Discussed factors that affect public transport demand
- Described simple demand estimation approaches.
- Remember, understanding the market factors that influence public transport use is critical to PT service planning

