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I Introduction 

 A growing human population and its increasing consumption of natural resources threaten 

the earth’s ecosystems, and the loss of ecosystems threatens the growing human population and its 

increasing consumption. (E.g., see Daily, 1997) These mutual threats exist because human 

economies and natural ecosystems are inextricably linked: common economic variables such as 

incomes and prices affect and are affected by common ecosystem variables such as resiliency and 

species populations. In spite of the linkages between the two systems, models of economies and 

ecosystems largely disregard one another. Bioeconomic models that do merge economic and 

ecosystem concepts tend to address isolated markets and very few species. They do not address the 

myriad ways in which changes in an economy influence ecosystem functions, and in turn how 

changes in ecosystem functions feedback to the economy.   

 At all government levels, numerous policies are formulated and implemented based on 

economic models which range from simplistic to sophisticated. The latter assume certain behavior 

on the part of human consumers and firms, and they describe outcomes in terms of prices, wages 

and incomes. If policy makers give any thought at all to the impact their policies will have on 

surrounding ecosystems, typically it is qualitative and addresses neither how the impacted 

ecosystems will alter the outcomes from the economic model, nor how humans will respond to 

these new outcomes, alter their behavior, and further impact the ecosystems. For example, Arrow et 

al. (1995) state: 

"In areas where the environment is beginning to impinge on policy, as in the General 
Agreement on Tariffs and Trade (GATT) and the North American Free Trade 
Agreement (NAFTA), it remains a tangential concern, and the presumption is often 
made that economic growth and economic liberalization are, in some sense, good for 
the environment." (p. 520) 
 

 Developing policies with quantitative economic analysis and qualitative ecosystem analysis 

allows for considerable latitude in interpretation, and may result in discounting the impacts on the 

ecosystem because of their subjective nature. However, if the ecosystems can be integrated with the 

economic models, the mutual dependencies and the human responses can be taken into account, and 
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the impacts on the ecosystems can be quantified in terms of ecosystem variables such as species 

populations, and in terms of economic variables such as prices and incomes. i 

 In this paper, quantifying impacts on ecosystems is assumed to be desirable: improved 

policies will follow from models that incorporate both economies and ecosystems.ii  Because 

models of economies already exist and are widely used, a fruitful approach is to develop an 

ecosystem model that is compatible with these economic models, yet captures the salient biological 

features. Extant economy models are referred to as general equilibrium models and they may 

include thousands of consumers and firms whose decisions are manifested in demands for and 

supplies of consumer goods. Ecosystems comprise thousands of organisms, and the goal here is to 

develop a general equilibrium ecosystem model that yields organisms' demands for and supplies of 

biomass, and to design the model in a way that allows it to be integrated with a general equilibrium 

model of an economy.  

 Besides the benefit of improved policymaking, a general equilibrium ecosystem model also 

can prove useful in addressing purely biological issues. For examples, economic models are used to 

investigate substitutability between inputs: If a tax on capital is increased, how will this effect the 

capital/labor ratio employed by firms? Similarly, with a general equilibrium ecosystem model: If an 

ecosystem incurs habitat destruction, how will predator-prey populations be altered? Other authors 

have used metapopulation models to address the same question (Bascompte and Sole, 1998). 

Economic models are used to investigate economic stability: If a policy causes a change in the 

number of firms in a market, how will this impact economic performance? Similarly, with a general 

equilibrium ecosystem model: If the functional diversity of an ecosystem is changed through habitat 

modification, how will this impact ecosystem processes? Because all species are not equal, the loss 

of certain species may impact ecosystem process significantly more than other species (Tilman, et 

al., 1997). An ecosystem model could be used to help identify and value “keystone” species. With 
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respect to preserving endangered species, the importance of saving entire ecosystems as opposed to 

individual species has become apparent (Leader-Williams, 1990; Derrickson & Snyder, 1992; and 

Snyder et al., 1996; Beissinger and Perrine, 2000). With a combined ecosystem/economic model, 

the cost savings and effectiveness of multi-species recovery programs can be identified.  

II  General Equilibrium Models 

 In general equilibrium models of economies there are two types of agents: consumers and 

firms. The consumers are assumed to maximize their well being, or utility, where utility derives 

from goods purchased from firms. Consumers can purchase these goods using their income received 

from selling their endowments of resources (labor, capital and natural resources) to the firms. The 

firms combine the consumers’ resources, or inputs, in production processes that yield goods. Firms 

are assumed to maximize their profits, or the difference between revenues from the goods they sell 

and expenditures on the resources they purchase. Thus, there is a flow of inputs from consumers to 

firms, and a flow of goods from firms to consumers. Money flows circularly in the reverse 

direction, consumers spend their income providing revenue to the firms, and the firms purchase 

inputs providing income to consumers.  

 Every good and every input is traded in a market characterized by demand and supply. In a 

market for a good, demand is the sum of all individual consumer demands, where the individual 

demands are derived from the consumer utility maximization behavior. Supply is the sum of all 

firms’ supplies, where the supplies are derived from the firms’ profit maximization behavior. A 

market for inputs is similar, with the consumers and firms in reverse positions. A general 

equilibrium is defined as a state where all consumers are maximizing their utilities, all firms are 

maximizing their profits, and demand equals supply in every market.  

 Prices of both goods and inputs play a central role in the general equilibrium model. Market-

clearing prices are those that equate demands and supplies. Individual consumers and firms have no 
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control over prices as each is only one agent among many and, therefore, has an imperceptible 

influence on the market. When maximizing their utility (profit), consumers (firms) take prices as 

signals of the relative scarcity of goods (inputs). The mathematical problem is to find a set of 

market-clearing prices that will support a general equilibrium.  

 In recent years, theoretical general equilibrium models have moved from abstract 

representations of economies to realistic applied general equilibrium (AGE) models that employ 

data on consumer and firm characteristics to evaluate policy options (Shoven and Whalley, 1984). 

Computers allow much detail and complexity so that geographic regions with millions of consumers 

and hundreds of firms from many different industries are included. Important questions about how 

the feedback effects of tax, trade or environmental policies on prices, wages and employment are 

addressed.  

 Unfortunately, AGE models of economies fall woefully short of addressing many 

environmental issues, particularly where ecosystems are concerned. AGE models address neither 

the feedback effects of economic activity on ecosystems, nor the feedback effects that disturbed 

ecosystems have on economies. What is needed is to link AGE models of economies with general 

equilibrium models of ecosystems so that the critical interactions of the two systems are accounted 

for when developing policies. The first step in such a linkage is to develop a general equilibrium 

ecosystem model that is both biologically sound and flexible enough to be combined with its 

economic counterpart.  

 The more similar are our interpretations of the economic and ecosystems, the easier their 

integration will be. In economies, the agents are consumers and firms both of whom demand 

material from and supply material to other consumers and firms. In ecosystems the agents are 

members of species who demand biomass from and supply biomass to members of other species. In 

the economy, money is the unit of exchange; in the ecosystem, energy can be used as a unit of 
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exchange. In the economy, consumers and firms are assumed to optimize: consumers maximize 

utility, firms maximize profit. In the ecosystem, optimization will be assumed: individual organisms 

maximize their net energy intake as discussed below. 

 Yet, there are key differences between economies and ecosystems that will require 

significant alterations to existing economic models. For examples, in a marketplace trade, material 

and money flow in opposite directions, but in an ecosystem trade, biomass and energy flow in the 

same direction. In the economy overall, material flows one way from consumers as owners of 

natural resources, to firms, who transform the natural resources into goods, to consumers who 

eventually dispose of the material (although some of the material is recycled back to firms). At the 

same time, money flows circularly in the opposite direction of the materials. In the ecosystem, both 

biomass and energy flow one way from species in lower trophic levels to species in higher trophic 

levels. Some elements such as nitrogen do flow circularly in the ecosystem, although these cycles 

are not modeled here.iii   In an economy, consumers or firms typically pay the same money price to 

other firms for the latter’s goods, but in an ecosystem organisms from different predator species pay 

different energy prices to capture biomass from a prey species. Other differences will become 

evident as the ecosystem AGE model is developed below.  

 In the ecosystem modeled here, each organism maximizes net energy intake given the 

energy prices it must “pay” to obtain biomass from other organisms. Whether energy is an 

appropriate objective is subject to debate, and other objectives such as exergy (Jorgensen, 1982, 

1986) or ascendancy (Ulanowicz, 1980) have been proposed.iv  However, energy maximization has 

its roots in Lotka (1922), was formalized in a manner similar to that used here by Hannon (1973, 

1976, 1979), and according to Herendeen (1991) has been the most frequently chosen maximand.  

Hannon refers to the net energy intake as stored energy; however, to emphasize that this energy 

intake is a flow, the term used herein is net energy.  Net energy maximization yields each 
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organism’s demands for biomass from other organisms, and the demands are aggregated over all 

organisms within each species to build the biomass market demands and  market supplies.  An 

equilibrium occurs when market demands for each species’ biomass are equated to the supply of 

that species biomass at some set of energy prices. Although no one organism has any control over 

these prices, the total number of organisms and their demands and supplies determine the prices 

through exchanges of biomass.  In this paper there is no human intervention and the total energy 

available in the system is from the sun.  

 The importance of incorporating optimizing behavior needs to be stressed. v 

 From the optimization problem comes an organism’s biomass demands for other species. These 

demands are functions of the energy prices that must be paid to capture biomass. As energy prices 

change, demands will change; generally, lower (higher) prices will mean higher (lower) demands. 

Thus, the model captures the key concept that organisms switch or substitute among prey as their 

environment changes.vi  If the ecosystem in not in equilibrium because demands and supplies are 

not equated in all biomass markets, energy prices adjust until an equilibrium is reached. The 

mechanism driving the system to equilibrium is substitution. As prices adjust, organisms make 

substitutions and, thereby, change their demands and supplies. 

 Early AGE economic models used input/output techniques which, while useful and still in 

use, have important limitations.  Besides using only linear relationships, there is no consumer or 

firm optimization: consumer demands are given, and on the supply side firms are not able to change 

input ratios through substitution in response to price changes. Similarly, energy based input/output 

ecosystem models (e.g., Hannon, 1973) have the same limitations. Although they account for 

energy flows, the organisms in the system do not substitute in response to energy price changes.vii,viii  

A few authors have brought environmental issues into general equilibrium models to highlight the 
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importance of conservation of mass and the time behavior of the system, although ecosystems are 

not explicitly considered. (For an example and references, see Perrings (1989).) 

 By allowing for individual demands and substitution, the AGE model below essentially 

combines optimal foraging strategy models of individual organisms into an ecosystem wide model 

wherein the interplay of numerous foraging strategies are combined. The foraging strategies adjust 

with changing energy prices moving the system toward equilibrium.  

 Before developing the model, the concept of equilibrium warrants further comment. That a 

complex system may attain an equilibrium is disputed, perhaps more so in biology than in 

economics. As already indicated, in the latter field work on AGE models continues and many recent 

contributions are explained theoretically and demonstrated with applications in Ginsburgh and 

Keyzer (1997). Analysts who employ equilibrium models presumably do not harbor the illusion that 

they have grasped reality or that an equilibrium actually is attained. At best, equilibrium is a moving 

target, constantly being perturbed,  that an economy or an ecosystem may be groping toward. The 

unreal assumptions made in economic models, chiefly the construct of perfectly competitive 

markets, is often attacked as unrealistic, and much work has been done to relax the competitive 

assumption by adding institutional richness, some of which is described by Landa (1999). However, 

to argue that an economic or ecosystem general equilibrium model is unrealistic misses the point. 

The model is a tool for gaining insight into the system, and if the model predicts reasonably well it 

is a useful tool.ix 

III The Individual Organism 

 The model is nonstochastic and time is omitted. Omitting time eliminates interesting 

dynamic aspects such as age structure issues, but it is necessary for tractability and to be consistent 

with AGE models. The ecosystem comprises m species in a food web. The species, indexed 1,…, 

m, are arranged such that members of higher numbered species may prey on members of a lower 
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numbered species, but not vice versa. If members of species i prey on members of species j, i > j, 

species i is said to demand biomass from species j, which supplies biomass. The transfer of biomass 

is said to take place in an ecosystem market, and if there are m species in total, there are at most  

                 i
i

m
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−
∑

1

1
      (1) 

active markets. Because all energy in the system originates with the sun which is indexed by 0, and 

all species can potentially “prey” on the sun, this increases the maximum possible number of 

markets to 
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 Assumption 1: Each organism behaves as if it is a net energy maximizer where  
     net energy is the difference between energy inflows and outflows.  
 

 A general expression for the net energy of a representative organism from species i be given 

by: 
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where the e terms are in energy units (e.g., kilocalories) per biomass units and the x and y are in 

biomass units (e.g., kilograms). The first term on the right side of (3) is the incoming energy from 

the sun. The e0 is the solar energy fixed for each unit of biomass, xi0, that the member of species i 

produces in photosynthesis, and the ei0 is the energy spent to fix e0.  The energies will vary across 

species, as, for example, with variations in plants' abilities to open their stomata in low light 

intensities (Chazdon and Pearcy, 1986). The second term on the right side of (3) is the inflow of 

energy from organisms of other species to species i. The ej is the energy embodied in a unit of 

biomass from a member of species j, eij is the energy the member of species i must spend to locate 

and capture a unit of biomass of species j, and xij is the biomass transferred from the member of 
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species j to the member of species i. The third term is the outflow of energy to members of species 

that prey on i. The ei is the embodied energy in a unit of biomass from a member of species i, and yij 

is the biomass supplied by i to k.  The fourth and fifth terms represent respiration which is energy 

lost by the ecosystem to the atmosphere. Respiration is divided into two parts, the fi(•) which 

depend on energy intake and includes feces, reproduction, defending territory, etc.x  Assuming 

differentiability,  

                                    
∂
∂
f

x
for i j m j i

i

ij
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, , , ... ,

⋅
> = >0 1                                                (4) 

The second part of respiration, βi, is basal metabolism and it is independent of energy intake.

 The embodied energy terms, ei, are constants and assumed to be invariant. The energies 

spent in predation, the eij, are the energy prices referred to in Section II. These energy prices play a 

central role in the maximization process, because an organism’s choice of prey will depend on the 

relative energy prices it pays. Prey preference has been examined elsewhere (See Gutierrez (1996) 

for a summary.) and predators are assumed to prefer one prey over another according to indices 

based on relative densities of the prey species.  The model presented here is behaviorally more 

fundamental in that a predator's choices do not depend on its taking an inventory of available prey 

species to determine densities; instead, a predator’s choices depend on how much energy will be 

lost in locating and capturing one prey versus another. Of course, the energy prices the predator 

must pay likely depends on densities, but densities are accounted for in the AGE model through the 

equilibrium conditions involving many species, and not in the organisms’ individual maximization 

problems. Thus, to each organism the energy prices are exogenous: the organism has no control 

over the price paid to capture prey, because it is only one among many members of the predator 

species capturing only one of many members of the prey species. However, within the ecosystem 
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the prices are endogenous, being determined in the biomass markets by demand and supply 

interactions.  

 In maximizing (3), the organism would prefer to supply zero biomass (yij = 0) to other 

organisms since outflows reduce net energy. However, an organism can supply zero biomass only if 

it demands zero biomass in the sense that to capture prey biomass the organism exposes itself to 

capture by other predator organisms, and the more biomass an organism captures the more it is 

exposed and the more biomass it supplies to predators. Owing to this predation risk the organism 

faces a tradeoff between foraging gains and losses (Lima and Dik, 1990). 

Assumption 2: Organisms are subject to predation risk and the biomass they supply 
depends on the biomass they demand: 
 

                                      y y x for i mik ik ij
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 and assuming differentiability, 
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 A problem of interpretation arises in the maximization problem, because once a member of 

species i is successfully preyed upon, it is gone. No further maximization takes place for this 

member. To avoid this discrete, zero/one problem, the maximization problem is assumed to 

represent the ‘average’ member of species i. Thus, when the organism is captured it does not lose its 

entire biomass, but rather it loses biomass equal to the mean loss over all members of its species.xi 

 Not all organisms' maximization problems will contain all the terms in (3). For examples, 

autotrophs typically will prey only on the sun so the second term on the right side of (3) would 

vanish. Top predators typically do not prey on the sun, and the first term in (3) would vanish. A 

complete ecosystem also will contain microflora decomposers which prey on virtually all species, 
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including top predators. The size of the food web will determine the values of i, j and k and the 

number of biomass markets.  

 The representative member of species i, i = 1,…,m, behaves as if it maximizes expression 

(3) over all its demands, xij, j = 0,…, i-1.  The necessary first-order conditions for a maximum 

include: 
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Conditions (7) and (8) state that a maximum is achieved when the marginal benefits of predation 

equal the marginal costs of predation. More specifically, the organism maximizes net energy by 

setting the marginal energy received from predation (the first terms in (7) and (8)) equal to the 

marginal energy lost through predation, where the loss is a result of predation risk (second terms) 

and respiration activities (third terms).  

 Expressions (7) and (8) also lay out the conditions for predator substitution between prey 

species. For example, let i = 6 and j = 4 and 5 which implies two type (8) equations in which a 

predator from species 6 preys on members of species 4 and 5 and is preyed upon by members of 

species 7.  Dividing one of the equations by the other and rearranging yields: 
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The left side of (9) is the ratio of marginal net energy gains from preying on species 4 and 5, and the 

right side is the ratio of marginal energy losses from being preyed upon and from respiration. At the 

maximum, the representative organism in species 6 equates the ratio of marginal gains to the ratio 
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of marginal losses. If these ratios are unequal, say after an external shock to the ecosystem leaves 

the left side of (9) greater than the right side of (9), then members of species 6 will substitute by 

preying more on species 4 and less on species 5, because the marginal return from 4 becomes 

greater than the marginal return from 5. More detail on interpreting these conditions appears in 

Hannon (1976), Tschirhart and Crocker (1987) or Crocker and Tschirhart (1992).  

 Assuming the second-order conditions for a maximum are satisfied,xii the first-order 

conditions can be solved for the xij as functions of the energy prices to yield i’s demands: 

                                      xij(ei) ≡ xij(ei0,…, ei,i-1),  for j = 0,…, i-1                                      (10) 

where the boldface ei = (ei0,…, ei,i-1) is a vector of energy prices. The demands are also functions of  

the ei, but these energy terms are constants and are suppressed in (10) for brevity.  Substituting 

these demands into the yik yields the representative member i’s supplies: 

              yik(xi(ei)) ≡ yik(xi0(ei0,…, ei,i-1),…, xi,i-1(ei0,…, ei,i-1)),  for k = i+1,…m                  (11) 

where the boldface xi = (xi0,…, xi,i-1) is a vector of demands.  

 Using standard comparative static analysis, the effect of price changes on the organism’s 

optimum demands can be determined.xiii  Of particular importance is the “law of demand”, as the 

energy price the organism pays to capture prey increases (decreases), the demand for the prey 

decreases (increases): 

                                                       
∂

∂

x

e

ij

ij
% 0                                                                   (12) 

for all i = 1,…, m and j < i.  

IV Short-Run and Long-Run Equilibrium 

 The short run is defined as that time over which the populations of all species are constant. 

In a short-run equilibrium, demand equals supply in every biomass market and a representative 

organism and its species may have negative, zero or positive net energy at the maximum. Nonzero 
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net energy is not stable over the long run, however. Positive (negative) net energy is associated with 

greater (lesser) fitness and an increasing (decreasing) population. In the long run, populations of 

species are variable; they adjust to move toward a long-run equilibrium in which all organisms have 

zero net energy and the short-run equilibrium conditions hold. Although he does not model it 

explicitly, Hannon (1976) refers to this long-run equilibrium as a system steady state.xiv  

 Consider first the short run. The maximum number of biomass markets is given by (2). Each 

representative member’s maximization problem yields, at most, i first-order conditions, i demands, 

and m – i supplies. In addition, there are m supplies from the sun so overall there is a demand and 

supply for each market. But these demands and supplies are for given energy prices, and there is no 

guarantee that at these prices demand equals supply in every market. 

 To find a set of prices that equates each demand with its associated supply, equilibrium 

equations are needed, one for each price to be determined. The equilibrium condition in a (non 

solar) market is constructed by equating the sum of all the predator organisms' demands with the 

sum of all the prey organisms' supplies.  Because each organism in (3) is assumed to be a 

representative organism from that species, all organisms in each species are identical; therefore, to 

obtain the demand and supply sums multiply the representative organism’s demands and supplies 

by the population of the species. Let Ni be the population of species i, then the equilibrium 

conditions are: 

                                           Nixij(ei) = Njyji(xj(ej))                                                 (13) 

for i = 2,…, m as j = 1,…, i-1. There is one condition for each market, and the number of markets is 

given in (1). The left side of (13) is the total demand of species i for species j, and the right side is 

the total supply of species j to species i.  

 The solar markets wherein primary producers prey on the sun are treated differently, 

because the sun as prey does not supply energy in response to prices. The sun's supply is assumed to 
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be limitless which is consistent with instances when primary producers only fix a small fraction of 

the solar energy striking the earth's surface. Despite this availability of limitless energy, primary 

producers do not increase their demand for solar energy beyond some finite amount owing to both 

increasing respiration losses and the price, ei0, they pay for energy. Moreover, primary producers 

usually are stationary and the price they pay for solar energy may depend on their species 

population in its vicinity owing to competition for sunlight. Given these considerations, the solar 

market prices are determined in accordance with Assumption 3: 

Assumption 3: The energy price paid by an organism in primary producer species i, 
   given by ei0, is a function of the population of the primary producer; 
that    is, ei0 = ei0(Ni). 
 

If inter-species or intra-species competition or abiotic factors limit the sun’s energy, this could be 

appended to the model by making the prices in Assumption 3 a function of other species’ 

populations or the abiotic factors. 

  The equilibrium condition for any single market can be used to investigate how changes in 

populations will effect energy prices in a partial equilibrium setting. Let 

F(ei) ≡ Nixij(ei) - Njyji(xj(ej)) = 0 

and using the implicit function theorem: 
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Figure 1 depicts these results for equilibrium in a single biomass market. Species i’s demand for 

biomass of species j is the negatively sloped curve, and species j’s supply is the vertical curve. 

Equilibrium price and quantity are eij* and Nixij* respectively. The curves indicate that an increase 

in the population of species i shifts the demand curve to the right and the new equilibrium price 
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would be greater than eij* because of the greater predator competition.  Alternatively, an increase in 

the population of species j shifts the supply curve to the right and the new equilibrium price would 

be lower than eij* because of the greater prey density.  

 Finding a set of energy prices that yields a short-run equilibrium is a matter of 

simultaneously solving the first-order conditions from (3) and the equilibrium conditions from (13) 

for the demands and the energy prices. The number of demands and first-order conditions is given 

by (2), and the number of energy prices and equilibrium conditions is given by (1), so the number of 

equations equals the number of variables. Theoretical conditions on the functional forms of the net 

energy functions that guarantee a solution exists are not explored here, although in the simulations 

below solutions are provided for specific cases.  

 A system in short-run equilibrium moves toward long-run equilibrium through adjustments 

in the populations.   

Assumption 4: The population of a species exhibiting positive (negative, zero) net  
  energy  increases (decreases, remains the same). 
 

Population changes will set into motion forces that will move the species toward zero net energy. 

For instance, suppose a species has positive net energy and its population increases. This increase 

lowers the energy price predators must pay to capture species’ members, because the species is 

more plentiful. Predators’ demands for the species will increase by (12), the species’ supply to 

predators will increase, and net energy will decrease. In addition, the price the species must pay for 

its prey will increase as there is more intra-species competition when the species’ population grows. 

This price movement will also reduce the species’ net energy as the species demands less prey, a 

result that follows by applying the envelope theorem to (3).xv For a species with negative net energy 

in short-run equilibrium, the prices move in the opposite directions, and again the species moves 

toward zero net energy.  
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 Many methods for adjusting the populations could be introduced at this point, and different 

methods might be employed for different species. If abiotic environmental factors, threshold 

densities, clumping of populations or other factors are important, they could be introduced as well. 

Population adjustments are made using the well-known Verhulst-Pearl logistic equation: 

                                          dN/dt = r N [1 - N/K]                                                   (17) 

where r is a growth rate and K is carrying capacity or the upper limit on growth. Consider the ith 

species with maximum net energy function given by Ri(xij(ei); Nt) = Ri ( )⋅ which is obtained by 

substituting the optimum demands as functions of energy prices into the objective function in (3).  

Nt is a vector of all species' populations and it appears in Ri ( )⋅ to indicate that net energies in time 

period t depend on populations in time period t. According to (17), the population will increase 

(decrease) if Ni < (>) Ki; therefore, using Assumption 4: 

                          Ri ( )⋅ > 0 ⇒  Ni
t  < Ki

t         and       Ri ( )⋅ < 0 ⇒  Ni
t  > Ki

t                           (18)         

 Expression (18) implies that carrying capacity depends on biotic factors including net 

energies, biomass demands, energy prices and populations. The procedure is to adjust the carrying 

capacity in period t to be greater than or less than the period t population according to (18). In 

particular,  

                                                 K N z R Ni
t

i
t

i
t

i
t= ± ⋅( ( ))                                                           (19) 

where z is the carrying capacity adjustment as an increasing function of the net energy. In practice, 

z will be species dependent and bounded from above. Finally, the new population in period t+1 is 

obtained using (17) and (19): 

                                          N N r N N Ki
t

i
t

i i
t

i
t

i
t+ = + −1 1[ / ]                                                      (20) 

Note that the period t+1 population is smaller than the period t population if Ni
t  > Ki

t  in (20). 
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 Unlike other familiar models of predator-prey interactions, the interactions in this model are 

not based on aggregate differential equations from the so-called Lotka-Volterra model or its many 

refinements; instead,  the interactions are based on the behavior of individual organisms choosing 

optimum foraging strategies. Basically, rather than the usual approach where one entire population 

responds to another entire population through differential equations which mask any organism 

behavior, the population adjustments take place because each species’ carrying capacity is a 

function of the populations and behaviors of the members of all other species. As Anholt (1997) 

points out: “It seems likely that population dynamics is affected by variation in the behavior of 

individuals.” (p. 633), and the general equilibrium approach employed here demonstrates how this 

may occur. Organisms optimize given the energy prices, predation risk and their own respiration 

and maintenance conditions (and abiotic factors which could be incorporated). At the same time, the 

energy prices are determined in the biomass markets; thus, the populations of all species are taken 

into account in each predator-prey interaction. The importance of individual behavior is consistent 

with game formulations of predator-prey systems: “…responses by individual predators or prey 

may vary as a function of the frequency and form of responses by other predator and prey of the 

association” (Bouskila, 1998, p. 703), as well as the notion that foraging strategy can be a cause of 

predator-prey cycles (Abrams, 1992). 

V Energy Balance 

 Kooijman, et al. (1999) indicate that population theories can benefit by making explicit use 

of mass and energy conservation laws. At an aggregate level in this model, conservation of energy 

is straightforward. Energy balance requires:  

                            N e x N R f e xi i
i

m

i i
i

i ij ij
j

i

i

m

0 0
1 1

1

1= =

−

=
∑ = + ⋅ + + ∑













∑ ( ) β                              (21) 
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The left side of (21) is solar energy taken by each representative organism times the population of 

the organism’s species, yielding the total solar energy flowing into the ecosystem. The right side 

also accounts for the entire populations of each species. The first term in brackets is the total net 

energy, the second and third terms are the activity and metabolic energy lost to the atmosphere, and 

the last term is the energy expended in preying, also lost to the atmosphere. Substituting for the Ri 

from (3) and canceling terms yields: 

                                         N e x N e yi
i

m

j ij
j

i

i
i

m

i ik
k i

m

= =

−

=

−

= +
∑ =∑ ∑ ∑

2 1

1

1

1

1
                                      (22) 

 If the equilibrium conditions in (13) are satisfied, then (22) must hold: an ecosystem in 

equilibrium satisfies energy balance. Equilibrium is more stringent than energy balance in the sense 

that in equilibrium energy demand and energy supply are equal in each market, whereas energy 

balance only require total demand and total supplies of energy be equal. However, energy balance 

must hold regardless of whether the ecosystem is in equilibrium. Therefore, a system out of 

equilibrium exhibits excess demand in some markets and excess supply in other markets, and the 

excesses must balance.  

VI Numerical Simulations 

 A marine ecosystem in Alaska's Aleutian Islands is used to numerically investigate the 

model. Some detail of this ecosystem is available in Estes and Palmisano (1974) and Estes et al. 

(1998), only a broad and aggregated picture is used in the simulations. The ecosystem is a food web 

with four trophic levels illustrated in Figure 2. A kelp forest comprises the primary producers which 

may include various species of brown and red algae. All primary producer species will be 

aggregated into a single species called kelp. Similarly, all fish species which utilize the kelp forest 

are aggregated into a single species called fish. Stellar sea lions (Eumetopias jubatus) and harbor 

seals (Phoca vitulina) prey on the fish and are combined into one species called pinnepeds. Sea 



 19 

urchins (Strongylocentrotus sp.) also prey on the kelp and in turn are preyed upon by sea otters 

(Enhydra lutris). The killer whale (Orcinus orca) is the top predator and preys on both pinnepeds 

and otters.  

 Although the following simulation consists of only six species and the parameters and 

functional forms are not realistic, the point of the exercise is to explore the operational possibilities 

and insights offered by the general equilibrium approach. From (3), the net energies of a 

representative organism of kelp, fish, urchin, pinneped, otter and whale, indexed by 1-6, 

respectively,  are given by (23)-(28), respectively: 

                                      R e e x e x e x r x1 0 10 10 1 12 10 1 13 10 1 10 1
12 13 1= − − − − −[ ] δ δ βα α γ

                                                     (23) 

                        R e e x e x r x2 1 21 21 2 24 21
24

2 21
2

2= − − − −[ ] δ βα γ
                                                                  (24) 

                                                    R e e x e x r x3 1 32 31 3 35 31 3 31 3
35 3= − − − −[ ] δ βα γ

                                                                    (25) 

                                                    R e e x e x r x4 2 42 42 4 46 42 4 42 4
46 4= − − − −[ ] δ βα γ

                                                                   (26) 

                                                      R e e x e x r x5 3 53 53 5 56 53 5 53 5
56 5= − − − −[ ] δ βα γ

                                                                    

(27) 

                    R e e x e e x r x r x x xp
6 4 64 64 5 65 65 6p 64 6o 65 64 65 6

6 60 6= − + − − − + + −[ ] [ ] [ ]
γ γ γ β                     (28) 

The terms in (23)- (28) containing δ and α parameters are the supply functions: y xik ik ij
ik= δ α

in 

which the ith species is supplying biomass to the kth species, and demanding biomass from the jth 

species. The terms containing the r and γ parameters are the variable portions of respiration in (3): 

f r xi
i ij

i( )⋅ = γ . For the whales, variable respiration is divided into three parts which allows for 

differences in the prices whales must pay in equilibrium for otters and pinnepeds. 
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 A short-run equilibrium is obtained by solving fourteen equations for fourteen variables: the 

seven demands (xij ) and the seven prices (eij). Seven equations are obtained from setting the 

derivatives of (23) – (28) with respect to the demands equal to zero, and the other seven are the 

equilibrium conditions:  

                 N x N x2 21 1 12 10
12= δ α

              (29)            N x N x3 31 1 13 10
13= δ α

             (30)               

  N x N x4 42 2 24 21
24= δ α

             (31)            N x N x5 53 3 35 31
35= δ α

           (32) 

  N x N x6 64 4 46 42
46= δ α

               (33)            N x N x6 65 5 56 53
56= δ α

              (34) 

             e pNq10 1=                  (35) 

Conditions (29)-(34) are from (13), and condition (35) is from Assumption (3) with p and q as 

parameters.  

 The procedure for making the long-run population adjustments can be understood by 

examining any one of the species, say otters. Recall that otter populations will increase (decrease) if 

net energy is positive (negative). Let R5( )⋅ be the maximum net energy for otters in short-run 

equilibrium and set Ra =  R5( )⋅ . Next let  

                                                      zo = b (2/π) arctan Ra                                                      (36) 

where parameter b > 0, and zo ∈ [0, b) will be used to adjust the otter carrying capacity. By (19), 

period t carrying capacity becomes: 

                                                         K N z Nt t o t
5 5 5= ±                                                         (37) 

where the plus (minus) obtains if R5( )⋅ > (<) 0. Finally, following (20), the new population in 

period t+1 is determined by (38). 

                                                 N N r N N Kt t t t t
5

1
5 5 5 5 51+ = + −[ / ]                                         (38) 
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 There is insufficient data for the Aleutian ecosystem, or any other ecosystem that I know of, 

to assign values to all parameter with confidence.  However, bounds on parameters can be set: 1) 

from observations about the relationships between population densities and predation, 2) based on 

necessary and sufficient conditions for a maximum to the net energy problem, and 3) using 

estimates of ecological efficiencies. Some exploration of setting bounds is in the Appendix. In 

practice, parameters within the bounds can be obtained through statistical estimation applied to 

sample data from well defined populations. For example, to estimate a supply function for an 

organism, data would include calories of energy and grams of biomass exchanged between predator 

and prey under varying climactic conditions and abiotic surroundings. Estimates of the α and δ 

supply parameters can be obtained using regression techniques applied to alternative supply 

functional forms, and the estimates would be examined for their statistical significance. In the 

simulations, parameter values were chosen so that the computed ecological efficiencies were within 

an order of magnitude of efficiencies observe in field work. Values of all parameters in the 

simulations are shown in Table 1. 

VII Results 

 Table 2 reports populations, demands, prices and net energies for the first five short-run 

equilibriums. For example, in column four, row two, the initial sea urchin population is 48000, and 

given all parameter values and  initial populations of the other five species, the representative urchin 

demands 71.4 kelp biomass units for which it pays an energy price of 96.4 per unit. This yields the 

urchin - 0.2 net energy after respiration. Moving down the column, because its net energy is 

negative the urchin population decreases, and based on the adjustment equations the period two 

population is 47482. The other species populations adjust as well according to their net energies, 

and for the urchin the new demand and energy price in period two are 73.7 and 93.3, respectively. 
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Because demand increased and price decreased the new net energy is greater in period two at 228.5. 

The positive implies an increase in population in period three to 50762. 

 Consider the predator/prey dynamics of the otter/urchin interaction illustrated in Table 2. 

Between periods two and three both populations increase. The increase in urchins makes preying on 

them less costly to the otter, but the increase in otters makes preying on urchins more costly owing 

to competition among otters. The net result is a slight increase in the price of capturing urchins 

(8.94 to 8.96) and a slight decrease in otter demand (586 to 578). Between periods three and four 

the population of urchins goes down and the population of otters goes up. Both population changes 

work to make urchins more difficult to capture, and the price of capturing urchins increases by a 

greater margin this time (8.96 to 9.07), while otter demand decreases substantially (578 to 513).  

Between periods four and five the population of urchins goes up and the population of otters goes 

down. Both changes reinforce each other again, but in the opposite direction of the previous 

period’s changes, and the price of capturing urchins decreases (9.07 to 8.93), while otter demand 

increases (513 to 595). 

 In Figure 3, the whale demands for otters and pinnepeds and the associated prices are shown 

for twenty periods; however, the energy prices were rescaled to make easy visual comparison with 

demands so only their relative and not absolute values are meaningful. The biomass demands for 

the first five periods in Figure 3 are from Table 2. The Figure clearly illustrates that the whales are 

obeying the “law of demand”; at higher (lower) prices the whales demand less (more) biomass.  In 

addition, the whale demand for pinnepeds is almost three times its demand for otters. This follows 

because the embodied energy in a unit of pinneped biomass, e4, is assigned a value that exceeds the 

embodied energy in a unit of otter biomass, e5, by a factor of ten, and δ46 > δ56 which means 

pinnepeds are more rewarding prey. (See Table 1.) To reiterate, while these parameters may not be 

realistic, their relative values lead to expected predator behavior.  
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 As expected, whales also substitute between their two prey species as relative energy prices 

change. To show this, return to equation (9) and note that because whales are the top predator they 

do not supply biomass to other species and the partial derivatives of the supply functions (∂y/∂x) are 

zero. Substitute from Table 1 and from period two in Table 2 into the remaining terms of equation 9 

to obtain 3.26 for both sides. This simply demonstrates that whales are behaving as if they are 

maximizing net energy. Now consider how prices and demands change from period two to period 

three. The ratio of net energy gains on the left side of (9) decreases from 3.26 to 2.85, because the 

energy price whales paid for otters decreased (0.033 to 0.020) relatively more than the energy price 

whales paid for pinnepeds (0.780 to 0.772). The relatively less expensive otters caused whales to 

substitute otters for pinnepeds which can be seen in the changed pinneped/otter biomass ratio 

(x64/x65) which went from 3.08 to 2.73 between the two periods. 

 Figure 4 shows the populations for all six species over twenty periods. The populations have 

been rescaled to fit on the same graph, so again only the relative values are meaningful. From its 

initial population of 5 million, kelp slowly increased and leveled off at about 5.4 million. The 

increased kelp population led to greater energy available to the food web, although most of the 

increase was accounted for by kelp. That is, in the first (twentieth) period the total incoming energy 

was N1e0x10 = 3275 × 106  (3524 × 106). The increase of 249 × 106 was allocated as follows: 41% 

went to increased variable respiration for the larger kelp population; 21% went to increased fixed 

respiration of the larger kelp population; 3% went to greater expenditure of kelp in obtaining solar 

energy; and the remaining 35% went to fluctuations in net energies and energy expenditures on 

preying and respiration for the remaining five species.  

 The fish and pinneped populations and the urchin and otter populations in Figure 4 conform 

to familiar predator-prey interactions with the peaks and valleys of the predator species lagging the 

peaks and valleys of the prey species. Running the model over more time periods repeats the same 
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patterns of fluctuating populations. Thus, none of the species achieve zero net energy and a stable 

population in this example, and long-run equilibrium is not attained. Because the populations are 

sensitive to the starting population values, long-run equilibrium will be as well.  The population 

patterns do exhibit neutral stability as discussed by Pielou (1977).   

 Finally, the fluctuations in the whale population in Figure 4 follow the fluctuations in the 

pinneped and otter populations in a less discernable manner, because the whales can switch between 

their prey species. Not surprisingly, because the whales feed much more heavily on pinnepeds than 

otters, the whale fluctuations conform more closely to the pinneped fluctuations. 

VII Integration with Economic Models  

 Integrating the general equilibrium ecosystem model developed here with extant economic 

models entails identifying key variables that influence both systems and determining where to 

incorporate them. Humans interact with ecosystems in myriad ways that can be addressed by 

augmenting (3), the net energy expression. Perhaps the most important human influence is habitat 

modification or eradication through land use practices. Using ei0xi0, the incoming solar energy to 

organisms in species i, the amount of solar energy taken by primary producers will depend on how 

much land is available for habitat. The xi0 can be made a function of the available hectares for 

primary producers after land development. The effects of increased land development can then be 

traced through the ecosystem, most likely leading to a downsized ecosystem, although some species 

will be impacted more than others and the model can identify these differential impacts.  

 Besides primary producers, species are impacted through habitat modification when abiotic 

factors are altered. Acid deposition from human activities that reduce soil pH, or the mounting 

evidence of human induced climate change, or timber harvests that reduce nesting sites are 

examples. To the extent that these activities ultimately reduce the net energy of an organism 
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through added stress, their influence may be captured by having humans directly crop net energy in 

a manner similar to Hannon (1976).  

 Another interaction is direct human control of species populations. Humans cull species 

through fishing, hunting and “pest” control while at the same time increase populations of species 

through stocking and reintroductions. In the model, these human activities can be introduced by 

harvesting (or adding to) the adjustments to Ni in equation (20).  

 Agriculture impacts ecosystems through land development, pesticide use and runoff, 

supplying crops to pollinator species, etc. Pesticides may change the functional form of fi(•) if the 

organism’s physiological processes are affected, and pollinating species may be provided with 

alternative species to “prey” on with the introduction of crops.  

 Species populations, the Ni, are the most likely candidates for ecosystem variables that can 

be included in the economic models. Populations of harvested species will have direct influence on 

the economic benefits associated with these activities. Falling populations of pollinator species will 

impact agricultural production functions and decrease agricultural output. Habitat modification that 

reduces wetland biodiversity may diminish water quality and require increased tax revenues and 

government expenditures for water purification. In turn, the economy will respond to changes in 

agricultural output or diminished water quality in ways that further change species populations. For 

example, if farmers’ revenue losses from decreased crop output yield negative profits, they may sell 

their land to developers. 

 In the end, whether integrating a general equilibrium ecosystem model with an economic 

model is useful will depend both on the accuracy of the predictions of the ecosystem model in 

isolation, and on how well variables from one model can be effectively incorporated in the other. 

With respect to accuracy, estimating functional forms for the energy losses and supplies in (3) is 

primary, and this will require data collection and perhaps new field techniques that ultimately might 
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prove very costly. Nevertheless, the obvious interconnectedness of economies and ecosystems and 

the increasing mutual stresses the systems are experiencing call for opening inquiries into new 

methods of integration.  
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Appendix 

 As stated in the text, bounds on parameter values for the supply and respiration functions 

can be found: 1) from observations about the relationships between population densities and 

predation, 2) based on necessary and sufficient conditions for a maximum to the net energy 

problem, and 3) using estimates of ecological efficiencies. For 1), and using the functional forms 

from the Aleutian food web (noting that other functional forms can be applied as well), three of the 

equilibrium conditions are given by (29), (31) and (33). Using (10), rewrite them as: 

                F1(e21, e10) = N x e N x e2 21 21 1 12 10 10
12 0( ) ( )− =δ α

                                       (29’) 

              F2(e42, e21) = N x e N x e4 42 42 2 24 21 21
24 0( ) ( )− =δ α

                                       (31’) 

           F3(e64, e42) = N x e e N x e6 64 64 65 4 46 42 42
46 0( , ) ( )− =δ α

                                       (33’) 

The exercise is to determine how the energy prices (eij ’s) change with changes in populations (N’s). 

From the implicit function theorem, we obtain: 
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                         (A.1) 

where subscripts are partial derivatives. The second matrix on the left side of (A.1), denoted eN, is 

the matrix of the price changes. Substituting the partials from (29’), (31’) and (33’) into (A.1) 

yields: 
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 (A.2) 

The determinant of the left-most matrix is |Fi
e| = N N N
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< 0 from (12). Then 

using Cramer’s Rule to solve for the partials of the eij gives us             
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Assuming an increase (decrease) in the population of fish makes it easier for pinnepeds to prey on 

fish and, therefore, lowers (raises) the price pinnepeds pay for fish, e
N42 2

will be negative. This 

places bounds on a24: from (A.3) and (12) we have 0 < a24 < 1.  

 Continuing to use Cramer’s rule, the reader can verify that e
N42 1

< 0, e
N42 4

> 0, and e
N42 6

= 

0, indicating that an increase in the kelp population and a decrease in the pinneped population will 

both decrease the price pinnepeds must pay for fish, while a change in the whale population has no 

effect on the price paid by pinnepeds for fish. No further information on parameter bounds are 

forthcoming from these last results.  

 Second-order conditions for a maximum also can be used to set parameter bounds. For 

example, consider the net energy function for fish, (24). The second-order sufficient condition for a 

maximum requires that the second derivative of (24) with respect to x21 be negative; i.e., 
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∂

δ α α γ γα γ
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2 2 24 24 21

2
24 2 2 2 21

224 21 1 0
R

x
e x r x= − + −− −

%                              (A.4) 
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From (A.3) α24 < 1, therefore, it must be that γ2 > 1 to ensure a maximum.  

 Finally, if estimates of ecological efficiencies are available, they can shed light on the 

reasonableness of parameter values. There are a variety of efficiencies defined in the literature; 

employing a simple definition from Pimm (1982) consider the energy taken in one trophic level 

divided by the energy taken in the adjoining trophic level. Referring to period 5 in Table 2, the 

ecological efficiency between the trophic level comprised of urchins and fish and the trophic level 

comprised of kelp is: 

[(e1- e21)x21N1 + (e1- e31)x31N3]/ (e0- e10)x10N1 =  

[(200-116.7)(65.26)(46308) + (200-89.3)(76.6)(47343)]/(500-11.99)(1.306)(5289450) ≈ 19%. 
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Table 1 - Simulation Parameters 
 

 kelp fish urchins pinnepeds otters whales 
pinnepeds         otters 

Embodied 
Energy 

 

e0 = 500 
e1 = 200 

e2 = 10 e3 = 10 e4 = 1 e5= 0.1  

Supplies p = q =.25  
δ12= .5  δ13= .6 
α12= α13= .5 

δ24= 8 
α24= .5 

δ35= 6 
α35= .5 

δ46= 4 
α46= .5 

δ56= 1.5 
α56= .5 

 

Variable 
Respir. 

r1 = 150 
γ1 = 2 

r2 = 0.6 
γ2= 2 

r3 = 0.7 
γ3= 2 

r4 = 0.001 
γ4= 2 

r5 = 
0.0009 
γ5= 2 

r6p = 
0.00002 
γ6 = .5  
γ6p= 2 

r6o = 
0.00002 
γ6o= 2 

Fixed 
Respir. 

β1 = 130 β2 = 
2100 

β3 = 
3319 

β4 = 355 β5 = 264 β6 = 765 

Growth 
Rates (b) 

0.3 0.3 0.3 0.3 0.3 0.3 
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Table 2 - Food Web Simulation 
 

period 1 kelp fish urchins pinnepeds otters whales 
pinnepeds         otters 

Populations 5000000 45000 48000 4500 4500 80 
Demands (xij) 1.31 63.5 71.4 638 541 5681 1962 

Prices (eij) 11.82 118.8 96.4 8.65 9.02 0.778481 0.0272233 
Net Energies 0.30 0.6 -0.2 0.9 -2.4 1.2 
 

period 2 kelp fish urchins pinnepeds otters whales 
pinnepeds         otters 

Populations 5105020 46324 47482 4639 4174 82.9 
Demands (xij) 1.31 63.0 73.7 634 586 5638 1829 

Prices (eij) 11.88 119.4 93.3 8.65 8.94 0.780268 0.0326184 
Net Energies 0.22 -37.9 228.5 -3.4 43.3 -19.1 
 

period 3 kelp fish urchins pinnepeds otters whales 
pinnepeds         otters 

Populations 5185490 40510 50762 4262 4412 74.4 
Demands (xij) 1.31 73.1 70.0 650 578 5843 2138 

Prices (eij) 11.93 107.6 98.4 8.62 8.96 0.77188 0.200716 
Net Energies 0.16 767.9 -135.6 17.0 34.6 53.9 
 

period 4 kelp fish urchins pinnepeds otters whales 
pinnepeds         otters 

Populations 5245520 43313 44279 4500 4663 78.7 
Demands (xij) 1.31 69.2 81.2 641 513 5792 2015 

Prices (eij) 11.96 112.1 83.0 8.64 9.07 0.773978 0.0250521 
Net Energies 0.11 440.4 1029.1 4.61 -28.4 31.3 
 

period 5 kelp fish urchins pinnepeds otters whales 
pinnepeds         otters 

Populations 5289450 46308 47343 4732 4180 83.1 
Demands (xij) 1.31 65.3 76.6 633 595 5727 1840 

Prices (eij) 11.99 116.7 89.3 8.66 8.93 0.776683 0.0321674 
Net Energies 0.08 132.4 526.1 -5.28 52.6 2.06 
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Figure 2
Food Web



 38 

Figure 3 - Whale Demands
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Endnotes 
 
i Odum (1988) has stressed the need for integrating ecological functions into economic theory. 
 
ii There are ecologists and environmentalists who take exception to quantifying monetarily the value of natural 
resources, because this may lead to trading these resources for material goods to the detriment of the environment. This 
is a legitimate concern; however, any integration of ecology and economics will inevitably lead to identifying 
opportunity costs of alternative policies which is tantamount to valuing natural resources in terms of alternative 
opportunities, if not monetarily. 
 
iii  Including cyclic flows would be an extension of this model. In economics, materials flow circularly so altering the 
ecosystem model to account for circular flows would be relatively straightforward. 
 
ivI am grateful to a referee for  pointing out that either exergy or ascendancy incorporate elements of the second law of 
thermodynamics, and, therefore, are more likely to perform better than net energy incorporating the first law. Second 
law considerations may be more analytically difficult, but are a promising avenue for future research.  
 
v Optimizing behavior or rational decision making is the fundamental postulate in microeconomic theory. The 
possibility that economic agents may not optimize has received attention, but has not been employed widely in analyses. 
And behavior that might appear nonoptimizing is sometimes dismissed as optimizing behavior under time or 
information constraints (Tirole, 1989). Krugman (1998) points out that economists do not truly believe that people are 
perfectly rational decision makers, yet economists continue to employ rationality as an analytical tool because of its 
explanatory power, often yielding predictions at odds with but more accurate than popular opinion. Tullock (1999) goes 
as far as to claim that in biology and economics “the basic problem (is) maximizing subject to constraints.” (p. 15) 
Alternatively, Landa and Ghiselen (1999) state that rational behavior “may be one tunnel vision that afflicts economics” 
(p. 7) and other biologists question the optimizing notion (E.g., Bossel, 1987). Nevertheless, Landa and Ghiselen also 
point out that biologists do take into account some rational behavior.   
 
vi For examples of substitution behavior in the field, see Menge (1972), Werner and Hall (1974) or Bartell (1982). 
 
vii Input/output type models that provide an accounting framework for ecosystem energy, nutrient and other flows would 
be useful in generating the data required for the model used here. For a general accounting ecosystem model see 
Hannon, Costanza and Ulanowicz (1991).  
 
viii  Ulanowicz (1991) employs an interesting general equilibrium ecosystem model to determine the value of various 
species based on their importance, or contribution, to other species. He does not employ optimizing behavior.  
 
ix Nobel Laureate Kenneth Arrow (1968) states: “Whatever the source of the (economic equilibrium) concept, the notion 
that through the workings of an entire system effects may be very different from, and even opposed to, intentions is 
surely the most important intellectual contribution that economic thought has made to the general understanding of 
social processes.” (p. 376) 
 
x If defending territory or other forms of intra-species competition are significant for a species, then the population of 
the species, which is introduced below, could be included in the respiration function. 
 
xi For example, if the species population consisted of 100 deer mice and 5 were captured by predators, then the biomass 
supplied from each representative ‘average’ mouse would be 0.05. 
 
xii Second-order sufficient conditions imply that the sum of the yik and fi functions is strictly convex. In the simulations 
parameters are chosen to ensure strict convexity. (See, e.g., Varian, 1992.) Strict convexity implies that the sum of the 
energy lost to predation risk and respiration increases at an increasing rate with demand.  
 
xiii  Details on the comparative statics is available from the author on request.  
 
xiv In economic models the short run refers to a fixed number of firms, while in the long run the number of firms adjusts 
to drive profits to zero. 
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xv If the demands from the organism’s maximization problem are substituted into (3), the result is a net energy function 
which will be labeled Ri*(ei). Thus, while Ri is an expression that gives the net energy for any xij, Ri* gives the net 

energy at the maximum xij. The envelope theorem states that ∂ ∂ ∂ ∂R e R e xi ij i ij ij= = −* . (See for example, Varian, 

1992.) 


