
Topics in Public Utility Economics
Chapter 7

COST ALLOCATIONS AND

GAME THEORY

by Sanford V. Berg

with the assistance of
Ell iot Ng and Marti n Grace

May 16, 1984
Public Utility Research Center

University of Florida

•



4/24/84 Revised

7. COST ALLOCATIONS AND GAME THEORY*

The presence of sunk cos ts ra i ses the issue of how to all oca te

revenue requ i rements . From the s tandpoi nt of .economi c effi ci ency,

setting marginal price equal to marginal cost yields the optimal output;

however, determi ni ng who bears the burden of cover; ng overhead cos ts

ra i ses tough regu 1atory issues. The issues ari se whether cons i deri ng

single or multiple-product firms; the latter topic is taken up in

greater detail in the next chapter as implications for entry are

developed.. Here we examine several cost (revenue requirement) alloca­

tion schemes; we then turn to game theoretic concepts - to assist in

evaluating alternative cost allocation formulae ..

7.1 COST ALLOCATION SCHEMES

Several rules may be establ ished for distributing common costs

among multiple services provided by a ,single regulated firm. Which cost

allocation scheme is used by a utility influences the structure of

pri ces and the economi c effi ci ency assoc i ated wi th those pri ces . An

example is the use of fully distributed cost (FOC) pricing which re-

quires that the price for each service generates revenues equal to or in

excess of the sum of the directly attri butab1e va ri ab1e cos ts of the

servi ce and the share of common or fixed costs associ ated wi th the

service. This section summarizes several rules for allocating fixed

costs among the services and examines their efficiency implications.

*The assistance of Elliot Ng and Martin Grace is gratefully acknow­
ledged.
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7.1.1. Fully Distributed Costs

techniques:

1) gross revenues,

2) directly attributable costs, and

3) relative output levels.

In determining fully distributed cost tariffs for regulated firms, the

relatlVe output method allocates shared costs in proportion to the

number of units of output of each service~ The attributable cost method

allocates shared costs in proportion to the costs that can be directly

attributed to the various services. The ~ross revenue approach allo­

cates shared costs in proportion to the gross revenues generated by each

service. Let us consider the efficiency implications of the three

methods.

Let C.(X.) = the directly attributable variable costs to the ith
1 1 N

service. Then C(X) = F +.21Ci(Xi) where C(X) = total costs and F =
1=

fixed (shared) costs. Assume an inverse demand for each service,

Pi(X i ), and the revenue for the ith service, Ri(Xi )'. Let the revenue

contribution above attributable costs for the ith service be Qi(X i )

where:

Q.{X.) = R.(X.) - C.(X.).
1 . 1 1 1 1 1

FDC pricing requires prices that satisfy:

R.(X.) > f.F + C.(X.),
1 1 - 1 1 1

at any given level of profits, where f. is the fraction of the common
1

(1)

(2)
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costs allocated to service i. If common costs are fully distributed
N

then If,. = 1. Thus f. can be defined for each cost allocation
. 1 ',=

method:

1) gross revenue: f i = Ri/~ Ri,
2) directly attributable costs: f. = C./L C., 1.'

1

3) relative output levels: f i = Xi/~ Xi·,
First examine the case of FDC with zero profits for the regulated firm.

Rewrite R.(X.) > f.F + C.(X.) in the form,Q,'(X,') >_ f,.F.
, , - 1 "

Then with TI = 0,

L Q. ( X.) = L f. F ='- F•
l' ,

These imply that Qi(Xi ) = fiFo It follows that for i and j services,

R.(X.) - C.(X.)
- Qi(Xi)/Qj(X j ) = fi/f j = R~(X~) C~(X~)· (3)

J J J . J

Recall that Qi(X i ) is the revenue contribution above attributable

variable costs for the ith service. Thus for the relative output level

rul e,
Q.(X.) f. X. -:- LX,., 1 _ , _ .,..,..,_--,-,,--

Q.(X.) - r - X. .;. LX.·
, J J J J

Therefore,

(4)

[Q.(x.)/X.], , , [Q.(X.)/X.] = (P.-C./X.) ~ (P.-C./X.) _ LXj _ 1 (5)
J J J ", J J J - -X- - .L .

1

That is, FDC pricing requires that the difference between price and

average attributable cost be equal for every service.

Next, consider the gross revenue and directly attributable cost

rules. These are equivalent under the zero profit constraint. By the

results above:

Q.(X.)/Q.(X,) = f./f. = (C./L C.)/{C./L C.),
" J J 1 J 'i 1 Jj J

(6a)
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or

(P.X.-C.)/(P.X.-c.) = (C./E C.)/(C./E C.).
111 JJ J 1 i 1 J j J

Dividing the numerator by Xi and the denominator by Xj '

(P.-C./X.)/(P.-C./X.) = (C./X. I C.)/(C.!I C.),
111 J J J 1 1 i 1 J j J

or

(6b)

(7a)

(P.-C./X.)/(P.-C./X.) = (C./X.) + (C./X.). (7b)
111 J J J 11 J J

After cross multiplying and rearranging terms:

P./(C./X.) = P./(C./X.). (8)
1 1 lJ J J

A zero profit FOe tarif~ requires that the ratio of price to average

attributable cost be equal for all services 'under the gross revenue and

directly attributable costs methods.

7.1.2. Testing for Ramsey Optimality

Now that the pricing implications of the three cost allocation

schemes have been worked out, we can ~xamine whether the prices are

Ramsey optimal. To do this, we must relate the attributable variable

costs used by the FDC rules to marginal costs in order to determine

efficient prices. Recall the definition of elasticity of scale e(X),

(the inverse of the cost elasticity):

e(X) = AC/NC.

In the present terminology, let:

(9)

e· = AC./MC. = C./X.C~, (10)
1 11 1 1 1

where ei is the elasticity of scale for product i and Ci is marginal

cost. Then,

(P.-C./X.)/(P.-C./X.) - (P.-e.C!)/(P.-e.C~) = 1,
1 1 1 J J J 1 1 1J J J

(11)
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from the relative output level rule. To express the gross revenue and

attributable cost rule in terms of e. recall,
1

P./(C./x.) = p./(e./x.),
1 1 1 J J J

or using ei ,

(12a)

(12b)

(13)

(14)

(15)

P./P. = e.C!/e.C~.
1 J 1 1 J J

The optimal departures from marginal cost prices were derived in the

previous chapter. Recall that the Baumol-Bradford condition can be

stated in terms of the Ramsey rule for optimality:

P.-C~ P.-C~

Ramsey Rulet k. = (~ 1)£. = (~ J)£. = k.,
1 ~- 1 . J J

1 J

where ki is sometimes called a Ramsey number for market i~ These are

second best prices. It can immediately be seen that FDC prices will.

deviate from second best prices since FDC prices are based on attribu-

table costs not marginal costs. To see this for the gross revenue and

attributable cost methods note that,

P./P. = e.C!/e.C~,
1 J 1 1 J J

was derived above. Thus, we can rewrite the first order condition in

terms of Ramsey numbers (see Appendix 7-A for the derivation):

k. = k.(s./s.) - s.C~/P.(l-e./e.).
1 J 1 J 111 1 J

The inefficiency of FDe pricing is observable since kirkj , while the

Ramsey rule requires equality. If service i has a more elastic demand

than service j, and i has a scale elasticity no less than jl s , then

ki<kj . If ei=ej , then ki/kj=si/Sj and the market with the higher elas­

ticity (higher £i) will have a higher Ramsey number. Suppose si>Sj'

then efficiency will be improved if Pi is reduced relative to Pj . Thus

the FDC price is inefficient from the point of view of Ramsey
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optimality. When e. > e., both the gross revenue and directly attribu­
1 - J

table cost methods exhibit an inefficient bias against products with

more elastic demands.

The inefficiency of FDC prices for the relative output method is

similarly derived and is contained in Braeutigam (1980). In addition,

Braeutigam works out the results for FDC tariffs with TI > 0, and

concludes that an infinite number of tariff vectors satisfy the FOC

requirement.

In general, FDC rules are Ramsey inefficient. The degree of the

"unnecessaryJl distortion depends on the elasticities of scale and

demand. Products with large sand e(X) will be priced relatively high,

encouraging entry or output expansion by firms producing substitutes.

Reference

R. Braeutigam, "An Analysis of Fully Distributed Costs Pricing in
Regulated Industries," Bell Journal of Economics, Spring 1980.

- Probl em

1. Suppose an entry by an unregulated competitor into market i makes
demand for i more elastic than for j. Also assume e. > e.. For
the gross revenue approach and attributable ~ost met~oas ~ill the
resulting FDC price be efficient? Should P. be raised or lowered
to achieve efficiency? Will entry be affected as a result?

7.1.3. Allocating Network Costs: Application to Transportation

To illustrate FOC pricing, and problems that arise, we will discuss

an example from transportation. Comparable "stories" from natural gas

pipelines, water systems, electric grids, or telecommunications could be

developed (see Sharkey, 1982, pp. 196-7).
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Anderson and Claus (1976) examine the economic desirability of

several FDe allocation methods for an optimal network. Take the fol-

lowing cost function between points i and j:

C•. = a· . + C..X..
lJ lJ lJ lJ

= $2jmile + $ljmile hauled.

(fixed cost) + (variable cost - per line per mile).

Let there be two II participants li or demanders, each requiring one unit of

service between the following nodes:

X: 1+2, 2+3

Y: 1-+3,

with distances as shown in Figure 7-1a.

X: 1

4.5 mi.

X: 1
1 uni t Y: 1

/-
(1)

/ (2) ""
1 unit
1 unit

'\..
(3)

Y: 1 unit

(a) Independent systems (b) Optimal system

Figure 7-1
Alternative Transportation Networks

If there is no cooperation, and the two demanders build separate

systems, as shown in Figure 7-1a, the total network cost is $31.5, which

is the sum of the stand alone costs for X($18) and Y($13.5):
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With cooperation, the optimal system (b) is built, for a total cost of

$24:

C12 = C22
= Fixed cost + Variable cost
= $2/mile(3 miles) + $l/line mile hauled(2lines)(3 miles) = $12.

The question is how X and Y should share costs. Several alternatives

are discussed below.

Allocate Costs By Actual Cost Along an Actual Path or in
Direct Proportion to Usage

Pricing by actual miles hauled would be analogous to FOC pricing by

relative output. Here total fixed cost is $12, and variable costs are

$12. X pays $6/2 units + $6/2 units for its share of fixed costs, as

does Y. Each pays actual variable costs.

Cx = $12 < $18 stand alone.

Cy = $12 < ~13.S stand alone.

The advantages are:

1) Simp1i city

2) TR=TC

3) In larger networks, the price for heavily used routes is lower
than for less used routes.

However, allocating cost by actual cost along an actual path is suscep-

tible to entry (creating instability): one shipper could have an

incentive to leave the network, even though total costs rise.
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Suppose X only goes from 1 to 2:

XI : 1+2

Y: 1+3

As is seen in Figure 7-2, the total cost of (a) is less than (b), but

the Y shipper has an incentive to drop out (by-pass) of (a) and develop

its own system, as shown in Figure (b).

~. (2)

x1////Y
(1) (3)

(2)

(1) -_-----"~~(3)

(a)
rc = $12 + $9 = $21a

(b)
rCb = $13.5 + $9 = $22.5

Figure 7-2
Transporta ti on Netwo'rks and Cos ts

From Figure 7-2a, the cost allocated to X is $6, and to Y is $15, but

YIS cost is greater than the stand alone cost of $13.5 for Y in (b).

Allocate Costs By Unit Miles of Service Required

In the initial example, the unit miles of service required are 6

for X and 4.0 for Y. The total cost for the optimal, or least cost,

network (b) is ~24. To obtain a unit price of $2.286 per mile, divide

$24 by 10.5 miles and allocate costs as follows:

X: 6 x $2.286 = $13.7 < $IB stand alone.

Y: 4.5 x $2.286 = 10.3 < $13.5 stand alone.
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This method is simple and satisfies revenue requirements, but now heavy

users have an incentive to form coalitions or subgroups outside the

network because no discount is given for heavy users. If V's require-

ments were 3 instead of 1 from node 1 to 3, the network in Figure 7-2{b)

would still be optimal, but V would rather develop its own system.

Problem

1. What if V': 1+3 with three units? The unit price would be $1.85.
What is the cost of staying in versus going it alone for V?

Allocate by MC to Adding a User

An alternative to FDC (by some formula) is marginal cost pricing.

The-optimal network cost, CN' is $24 (for. the initial demands) from

Figure 7-1(b). Harginal cost for a particular network demand is defined

as being the difference between total costin the optimal network with

the demand and the total cost in the optimal network without the demand.

C = $24
c~ = 18 (w/o V)

$ 6 = r~cv

eN = ~24
Cv = 13.5 (w/o X)

$10.:5 = HCx

Now, total revenue ($16.5) is less than total cost. The revenue defi-

ciency raises the problem of subsidies or it requires the development of

more complicated pricing schemes--like multipart pricing. Furthermore,

there are now incentives to create artificial users.

Figure 7-3 shows the optimal networks that lead X to pay less than

$10.:5 by creating an artificial demander Z with a demand for one unit of
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service from node 1 to 2. The marginal cost of X will be the difference

in cost between the optimal networks with (a) and without (b)X. A

similar calculation is made for the marginal cost of demander Z by using

the optimal networks with (a) and without (c)Z. X must also pay the

marginal cost for the artificial demander Z, so XiS cost allocation is

$4.5 + $3.0 = $7.5. Notice X has a savings gain of $3 by creating an

artificial demander.

(2)

(1) (3 ) 1 unit (3) (1) (3 )

(a) (b) (el
Optimal network for X, Y, Z Optimal network for Y, Z Optimal network for X, Y

3

Figure 7-3
Networks with an Artificial Demand

The calculations are straightforward.

Ci - Cii = $27 - $22.5 = MCX = ~4.5

C. - C... = $27 - $24 = MeZ = $3
1 111

MC X+ MCz = $7.5 < $10.5 = MC Xwlo Z.

Thus, problems in strategic gaming begin to emerge.

Another scheme is to allocate by lowest available alternative cost

to any user or coalition of users. Under this scheme, the price for

each user, or coalition of users, is below its lowest available cost so

there would be no incentive for any user to abandon the network. This
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approach considers alternatives and indicates the necessity to take into

account the net benefits available to a user or coalition of users, as

opposed to just characterizing the situation on the basis of cost. This

approach is described in the next section.

References

Robert C. Anderson and Armin Claus, IICost Allocation in Transportation
Systems,1I SEJ July 1976.

7.2 COST ALLOCATION AND GAME THEORY

Cost allocation using game theory concepts has some regulatory

promise, although implementation of the ideas reviewed here would be a

non-trivial task. The basic theme of the approach is that by properly

characterizing the alternatives available to all participants, the range

of debate can be narrowed. Furthermore, if no unique solution exists,

ways to further limit disputes can be established--reducing the costs of

regulation. Of course, the issue off~irness arises when establishing

"ru l es ll for allocating costs (Schotter and Schwodiauer (1980)).

Within the context of a IIcooperative game," players of the game are

free to communicate with each other and have full trust that their

agreements with each other will be binding. The solution concepts for

cooperative games involve three general axioms of fairness and effi-

ciency which define what is known in the literature as the IItheory of

the core. 1I The theory of the core will provide insights for defining

stable cost allocation solutions whereby no participants or group of

participants will have any incentive not to cooperate.
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7.2.1. Overview of Game Theoretic Concepts

Let us use the following notations and definitions. Cooperative

games can be of several types depending on how the game is defined. Let

there be a set of N = {I, ... n} participants or players. A characteris-

tic function is associated with each subset of 5 participants or players

in N. For a cost game, the characteristic function, C(S), S s N is

defined as the least cost solution for the 5 coalition; whereas, for the

saving game, the characteristic function, V(S), S s N is defined as the

maximum savings associated with the 5 coalition. Notice the least cost

definition of C(S) implies the cost game is naturally subadditive, that

is:

C(5) + C(T) ~ C(S lJ T), S () T = 0, S, T, . N.

By similar reasoning, the saving game is naturally superadditive, that

is:

V(S) + V(T) < V(S lJ T), 5 () T = 0, S, T, N.

Axioms of Fairness and Efficiency

According to the three general axioms of fairness and efficiency

from cooperative game theory, for i to remain in the grand coalition,

C(N), of a cost game, we must have:

1. Individual rationality: X. < C(i), Vi s N, where the share, or
1 -

2.

payoff, to a member i for cooperation is denoted by Xi. This axiom

simply states that no player i should pay more than player ils

go-it-alone cost.

Group rationality: E X. = C(N). This simply means that total
. N 11£

cost must be completely distributed among the cooperating members.

Notice that satisfaction of this axiom gives a pareto optimum
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condition whereby no new player's share of the cost can be reduced

without increasing another player1s share.

3. Subgroup rationality: I X. < C(S) V SEN. This axiom extends
i ES 1 -

the notion of individual rationality to include subgroups, or

subcoalitions.

Payoffs which satisfy the first two axioms are called imputations,

while solutions which also satisfy the third axiom are said to be lIin

the core. 1I A similar set of axioms exist for a saving game, given the

relationship between a saving game and a cost game is:

V(S) = IC(i) - ~IX.
iES iES 1

VS E N.

The three axioms of fairness and efficiency for a saving game are as

follows:

1.

2.

3.

Individual rationality: Xi ~ V(i) Vi E N.

Group rationality: I X. = V(N).
. N 1lE

Subgroup rationality: I X. > V(S) VS E N.
iES 1 - -

To illustrate the notion of the core, consider a two-person cost

game defined as follows:

C(I) = 2 C(2) = 4 C(12) = 5.

Notice this game is subadditive; that is, C(l) + C(2) > C(12). The core

conditions are as follows:

Xl S 2

X2 S 4

Xl + X2 = 5.

From Figure 7-4, the core associated with the two-person cost game is

simply a line. Furthermore, if C(12) = 6, the core is uniquely defined

as the point Xl = 2, X2 = 4; and if C(12) > 6, the core is empty.
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As an additional illustration of the core, a three-person saving

game is defined as follows:

V(l) = V(2) = V(3) = 0

V(12) = V(13) = V(23) = 1.0

V(123) = 2.0.

1

Core

X2

f', :6 ,:
"­
:'. .. . ..~ .
- "

"- , , ,
" for C( 12) = 7

Xl
Xl + X2 : 6 for C(12) = 6
Xl + X2 S 5 for C(12) = 5

Figure 7-4
Two-Person Cost Game

V(i) = 0 for i = 1, 2, 3, simply means that there are no savings

associated with independent action. For this three-person saving game,

each player is assigned a payoff axis, as shown in Figure 7-5. The

plane of the triangle abc represents the set of imputations whereby

individual rationality and group rationality are satisfied. For

example, point C represents the payoff: Xl = X2 = 0, X3 = 2.0; however,

this payoff vector does not represent the best allocation of savings for

players 1 and 2, since they can realize a saving of 1 as a two-person

coalition. Obviously, subgroup rationality has not been taken into

account for point C.
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c

Fi gure 7-5 :
The Core for V(123) = 2.0

. By inclusion of subgroup rationality, a more restrictive set of

imputations representing the core of this game is defined by triangle

ABC. Line AC represents the upper bound for Xi' or the set of payoffs

whereby V(12) is divided between 1 and 2, with the remainder, V(123) ­

V(12), going to player 3. For example', V(123) = 2.0 and Xl + X2 ::: V(12)

= 1 imply X3 S 1; thus, along AC, X3 receives 1 while Xl and X2 divide

the remainder; that is, V(123) - V(12) = 1.0. A similar explanation can

be given for lines AB and BC. Clearly, any payoff outside the core is

unstable, since one player will receive a larger saving than its upper

bound while the other two players will receive less than what they can

get by forming a two-person coalition.

Notice for V(123) = 2.0, there are an infinite number of solutions

in the core, for example:

Xl = X2 = X3 = 2/3

X2 + X3 = 1 , Xl = 1, along AS

Xl = X2 = 1 , X3 = 0, at B.
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Whereas for V(123) =1.5, in Figure 7-6(a), the core is a unique point,

R; that is, Xl = X2 = X3 = 0.5, and for V(123) < 1.5, the core does not

exist (see Figure 7-6(b)).

Shapley (1971) has shown the core to exist for. convex games. A

cost game has a convex core if:

C(S u i) - C(S) > C(T u i) C(T) seT C N - {i}, is N,

and a saving game has a convex core if:

V(Sui) - V(S) < V(T u i) - V(T) seT c N- {i}, i sN .

Convexity simply means that the incremental cost (saving) for a player i

to joint coalition T is'1ess than (greater than) or equal to the incre­

mental cost (saving) for player i to join 'a subcoalition of T. This

notion of convexity is analogous to economies of scale for a single

product firm; it implies the game has a particular form of increasing

returns to scale in coalition size. In general, the more attractive the

game, i.e., lower costs or greater savings, the greater the chance that

the game is convex; whereas, if the game is less attractive, i.e.,

higher cost or less savings, the potential of a non-convex game or an

empty core is greater.

The possibility of non-convexity is illustrated in Fi.gure 7-7,

using the core geometry for a normalized three-person saving game. For

the case where the game is convex, the core is a hexagon. As the

savings to the two-person coalitions progressively increase, i.e., there

being less savings or less incentive for forming the grand coalition,

the core progressively becomes smaller and non-convex.. When the sum of

the savings to all possible two-person coalitions equals two (for this

particular example), the core reduces to a unique point and for further
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X1~--..s.------"B----

(a) V(123) = 1.5

(b) V(123) = 1.4

Figure 7-6
Non-existent and Unique Cores
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~HARACTERISTIC FUNCTION
vel) = v(2) a v(3)- 0

1: v( lJ) GEOMETRY

v(12)

.3

.35

.40

.45

.so

.55

v(13)

.11

.47

.53

.60

.6'(

. ~I J

v(23)

.58

.67

.75

.83

.92

1.2

1.4

1.6

1.8·

2.0

2.2

,HEXAGON

1 '-__~ -:' 2

TRAPEZOID

1~ ,...&2

1 6o...- -.1o----l 2

1 '--.J--__--A.-1. 2

Figure 7-7
Core Geometries for 3:4:5 Normalized Three-Person Savings Game
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increases in savings available to the two-person coalitions, the core

becomes empty.

Given the core conditions of a game, the set of admissible solu­

tions is significantly reduced. However, two limitations to this

approach to cost allocation are immediately apparent:

1. The core may not exist, and

2. Unless the core is a unique point, an infinite number of possible
stable payoff vectors exist and additional criteria are needed to
select a unique payoff.

Non-convexity and Non-unlqueness

Several solution concepts have been proposed for dealing with games

wi th an empty core (Young, 1982). An empty core resul ts from games

whereby a subgroup, or subgroups, have alternatives which are too

attractive relative to the grand coalition. Therefore, proposed solu-

tion concepts have sought to maintain the integrity of group rationality

while relaxing individual or subgroup ,rationality until a lI quas i core"

is created. The "least core method" (also known as the beta core)

relaxes the core conditions by seeking to impose the smallest uniform

tax on all coalitions other than the grand coalition until a compromise

core solution exists. Mathematically, for a savings game~ this concept

can be stated as requiring the least E such that there exists an

imputation, X, satisfying:

2:X. > V(S) - E '4S E N.
S 1

2:X. = V(N).
N 1

E > O.
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Similarly, the weak least core method (also known as the alpha core)

relaxes the core conditions by seeking to impose the smallest uniform

per capital tax on all coalitions other than the grand coalition.

Again, for a saving game, we can state this mathematically, as requiring

the least s for which there exists an imputation, X, satisfying:

EX. > V(S) - s(S) VSeN
S 1

EX. = V(N)
N 1

s > o.
.-

With reference to these and other proposed methods to handle the empty

core, further research is need. Given the modest amount of economic

gai~ in these situations, it may possibly be mor~ advantageous to forego

the grand coalition in favor of smaller coalition formation. That is,

transactions and bargaining costs could wipe out the gains to achieving

the grand coalition.

If the core exists for a particular game, there may be no unique

solution. Numerous methods have been proposed for selecting a unique

core solution. In fact, both the least core and the weak least core

methods can be applied to reduce the core of a game to find a unique

solution. These methods would reduce the core by tightening the core

conditions by imposing the smallest uniform subsidy per coalition or the

smallest uniform per capita subsidy on all coalitions other than the

grand coalition, i.e., this amounts to finding the least s such that

s > o. The two most popular methods to select a unique payoff vector

take other approaches to the problem. They are the Shapley value

(Shapley, 1971) and the nucleolus method (Schmiedler, 1969).

•
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Shapley Value

The Shapley value for player i is defined as the change equal to

the expected incremental (or marginal) cost incurred when player i

enters a coalition. Since the order in whi·ch the various players will

join the grand coalition is uncertain, the Shapley value assu-mes an

equal probability of coalition formation, i.e., the probability of each

player being first to join, is equal, as are the probabilities of

joining second, third, etc.

Heaney and Dickinson (1982) provide a numerical example of the
.-

Shapley value. Consider the three participant cost game:

C(l) = 2
C(12) = 5

C(2) = 4
C(13) = 6

C(123) = 7

C(3) = 6
C(23) = 6

Si-x coalition formation sequences are possible:

123
132

213
231

312
321

The Shapely Value for participant 1 is:

C1 = Shapley Value (1) =~C(l)] + ~C(12) - C(2)]

+ ~C(13) - C(3) + ~][C(123) - C(23)]

_ 1
- 1 6.

Notice the probability of 1 entering first and third is 1/3, and the

probability of 1 entering after either 2 or 3 is 1/6.

The general formula for the Shapley value for player i is:

Ci = Eai(S)[C(S) - C(S - i)J

where

= (S-I)!(n-S)!
n!
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Here, S is the number of players in coalition S, n! is the total number

of possible coalitions, (S-l)1 is the number of arrangements for those

players before S, and (n-S)1 is the number of arrangements for those

players after S. Notice that [C(S) - C(S-i)] is the incremental cost of

adding player i to the S coalition. Furthermore, it can easily be shown

that ZC i = C(N), i s N.

One of the advantages of using the Shapley value to achieve a

solution is that it is always in the center of the core for a convex

game. However, for non-convex games, the Shapley value may fall outside

the core. In addition,'lt can be computed even when the core does not

exist. Another serious drawback with the apPlication of the Shapley

value is its computational difficulty for large games.

Nucleolus Scheme

The other popular method for obtaining a unique payoff vector was

proposed by Schmeidler: the nucleolus method. Some have suggested the

nucleolus approach is analogous to the Rawl's welfare criterion (see

Chapter 14.1.1.): the utility function of the least well off

participant is maximized. The fairness criteria used by the nucleolus

can be simply stated as finding the payoff vector which minimizes the

maximum objection of any coalition for a savings game. Alternatively,

it involves the payoff vector which maximizes the minimum happiness of

any coalition for a cost game.

For each imputation in the core of a savings game, a vector in R2N

is defined whose components are:

C(S) = V(S) - Z x.
. S 1lS

seN,

arranged in decreasing order of magnitude. The imputation whose vector
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in R2N is lexicographically smallest is called the nucleolus of the

cooperative game, i.e., given two vectors, X = (Xl' . . Xn) and Y=

(Y I , ... Yn), X is lexicographically smaller than Y if there exists

some integer K, 1 < K < n, such that Xj = Yj for 1 S j < k and XK < YK
(Owen, 1982). Basically, e(S) represents the maximum excess or surplus

of coalition S with respect to payoff vector X, or the "attitude" of

coalition S to payoff vector X. Obviously, the coalition with the

greatest excess objects to payoff vector Xmost strongly, and the

nucleolus minimizes this maximum objection of any coalition. A similar

explanation can be given for a cost game, except e(S) now represents the

minimum savings to coalition S or the attftu~e of happines~ of the

coalition to payoff vector X:

e(S) = C(S) - E XeS).
isS

The nucleolus can be found by solving at most n - 1 linear programs

(Owen, 1982). For the example given for the Shapley value, the

nucleolus can be solved to yield [1 1/2, 2 1/4, 3 1/4J. The advantage

of the nucleolus is that it always exists and is unique for all

non-empty cores. However, a criticism of the nucleolus is the fairness

of using equal weights for each coalition regardless of the size of the

coalition, i.e., is the objection or happiness of a four-person

coalition equivalent to the objection or happiness of a two-person

coalition?

A more serious problem with the nucleolus method is that it does

not exhibit the property call monotonicity that the Shapley value

exhibits. Solution concepts which do not exhibit monotonicity may

actually end up having some player or players paying less when total

costs increase or having some player or players paying more when total
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costs decrease. Young (1982) discusses a water supply project in which

cost overrun would actually be advantageous for some participants if the

nucleolus method is used for allocating costs, since re-computing the

cost allocation with higher total costs would lower· their contributions.

This inconsistency exhibited by the nucleolus reminds us of earlier

discussions in section 7.1.3., whereby the use of an artificial, or

phantom, demander can create additional savings for certain partici-

pants. Unless regulatory agencies have means of monitoring actual

demands and costs, the nucleolus and other cost allocation methods that
.-

do not exhibit monotonicity may encourage abusive practices by

participants.

Propensity to Disrupt, or Alternative Cost Avoided (ACA)

Another solution concept frequently mentioned in the literature

because of its intuitive appeal is the concept of an individual playerls

IIpropensity to disrupt. 1I Gately (1974) defined a player i·s propensity

to disrupt as a ratio of what the other players would lose if player i

refused to cooperate, over how much player i would lose by not cooper­

ating. Mathematically, player i IS propensity to disrupt, d(i), an

imputation

d(i)

(Xl' .

E X.
= jii J

X.
1

. . X ) in
n

- V(N-i)

V( i )

the core is:

The higher a player's propensity to disrupt, the greater the player's

threat to the coalition; that is, d(i) = 10, implies player i could

impose a loss on the other players 10 times as great as i could lose by

not cooperating. Gately suggested equalizing each player's propensity

to disrupt as the criterion for obtaining a unique core solution. Thus,
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a player who has more to lose if the grand coalition breaks up is

assigned a higher proportion of the common cost. Recently, Staffin and

Heaney (1981) showed Gately's propensity to disrupt to correspond to'the

alternative cost avoided method first proposed in 1935.

The alternative cost avoided (ACA) method assigns each player in a

joint venture its separable cost and a share of the remaining costs in

proportion to the alternative cost avoided, i.e., the difference between

the alternative cost for a single player and the separable costs.

Separable costs for player i are defined as the difference between the

cost of the joint venture with and without player i. Separable costs

for player i includes both the direct costs attributed to the player i

and the incremental costs associated with a larger project due to the

inclusion of another player. Once separable costs have been allocated,

the remaining costs to be assigned are called non-separable or overhead

costs. For the ACA method, the non-separable cost is prorated based on

the alternative cost avoided, therefore the cost allocation formula is:

c. = C'(i) +
1

where

C(i) - C'(i)
L C(j) - CJ(j)

jsN

., OH,

c. = cost allocated to i,
1

C(i ) = stand alone (or alternative cost) for i ,

C(N) = total cost for all customers (proj ects) ,

C' (i ) = C(N) C(N - i ) = separable cost of i , and

OH == C(N) LC'(i) = overhead, or non-separable cost.

Notice the ACA method is similar to the FDC methods discussed earlier.

In fact, the general charge formula for this class of allocation scheme

is:

C. == (Separable cost) + S{i)(Non-separable cost).
1
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James and Lee (1971) mention at least eighteen ways in which costs can

be apportioned depending on how the separable costs and the prorating

factor, S(i), are defined. Table 7-1 shows the eighteen ways; the

capital letters defined the prorating factor, S(i),; and the lower case

letters defined the separable cost; that is, if separable cost is

defined as unit of use, B, then BB corresponds to the relative output

method discussed earlier.

As an illustration of method BC' whereby non-separable cost is the

total cost less separable cost and the prorating factor is defined in
~

terms of use, consider the following cost allocation problem consisting

of three polluters, A, B, and C, who are trYlng to form a regional

treatment facility. let Pi represent a measure of pollution where PA =

10, PB = 20, and Pc = 50. If each pollut~r treated his waste alone the

cost is CA = 20, CB = 32, and Cc = 48; but, if they combined facilities

in various combinations to realize the economies of scale, the costs are

CAB = 45, CSC = 60, CAC = 60, and CABC ~ 78. Using method BC' the

separable costs are SCA = 18, SCB = 18, and seC = 33; the non-separable

cost is 9; the prorating factors are B(A) = 10/80, B(B) = 20/80, and

B(C) = 50/80; and the cost allocation is XA = 19.125, XB = 20.25, and Xc

= 38.625. Notice the cost allocation for this particular problem is

stable, i.e., it satisfies the core conditions.

The Separable Cost, Remaining Benefit (SCRB), and the Minimum Costs,
Remaining Savings Methods

The benefits to a participant are sometimes less than the

alternative cost awarded. The recommended and most widely used cost

allocation method in the water resources field is the SCRB method. This
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Table 7-1
Cost Allocation Matrix (James and Lee, 1971)

Non-separable Cost
A B

Direct
Total Cost
Cost Excluded

to be Allocated
C

Separable
Cost

Excluded

A: allocate the non-separable cost" equally,

B: allocate the non-separable costin proportion to use,

C: allocate the entire non-separable cost in terms of higher

priority within the limit of the benefit received,

D: allocate the non-separable cost in proportion to net benefits,

E: allocate the non-separable cost in proportion to the excess of

assigned separable cost of the least cost alternative,

F: allocated the non-separable cost by the smaller of D or E;

and non-separable cost is defined as:

Total cost: non-separable cost is the total cost,

Direct cost excluded: non-separable cost is the total cost less

di rect cos ts ,

Separable cost excluded: non-separable cost is the total cost less

separable costs.
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method is similar to the ACA method except it replaces the stand alone

cost, C(i) with

Minimum [B(i), C(i)],

where B(i) is the benefit to player i. The ACA method and the SCRB

method are identical when each player's benefits are greater than the

alternative costs. However, if benefits are less than alternative

costs, then the benefits should be used rather than the alternative

cost for prorating the non-separable cost. So the separable cost,

remaining benefit method charge formula is as follows:

c. = C'(i) + min[&(i), C(i)] - C1(ii . OH
1 ~ min[B(j), C(j)] - C' j) .

j~ .

Heaney and Dickinson (1982) calculate cost allocations by

identifying the minimum and maximum feasible costs for each participant

and each group of participants using linear programming. The minimum

feasible costs correspond to the separable cost and the non-separable

costs are prorated to each player, as ,in the SCRB method on the basis of

the difference between its maximum and minimum feasible costs relative

to the total the prorating factor is:

This technique, minimum costs, remaining savings, represents a

generalization of the SCRB approach. Using the three person example

presented earlier, the core conditions are:

X(l) < 2
X(2) < 4

X(3) < 6
X(l) + X(2) < 5
X(l) + X(3) < 6

X(2) + X(3) ~ 6
X(l) + X(2) + X(3) = 7
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This is equivalent to:

1 ~ X(l) ~ 2
1 S X(2) ; 4
2 $ X(3) $ 6
X(I) + X(2) + X(3) = 7.

The lower bounds are separable costs. From Figure 7-8, using the above

nominal bounds, the SCRB method yields [1 3/8, 2 1/8, 3 1/3], which is

in the core but slightly off-center. Notice from Figure 7-8 that the

SCRB method prorated the non-separable cost based on an upper bound

which is not in the core, i.e., X(3) ~ 6. This use of nominal bounds by

the SCRB method will not only cause the solution to be off-center, but

may cause the answer not to be in the core at all. In contrast, the

MCRS method first solves a series of linear programs using core condi­

tiohs such that feasible bounds are found before prorating the non-

separable cost. The MCRS uses the core bounds as shown in Figure 7-8:

1 S X(l) S 2
1 $ X(2) $ 4
2 S X(3) ; 5
X(I) + X(2) + X(3) = 7.

/

/~
/ "\;{f::.

·2..1
,I"?

'./
/

/

I

/ I
/ /

- - - r - - -'r----~I':_\

/ \ I \

/ 'I'I \ I \

I >\',
1 --~/- / ---'l'---__----" 2

"\L~
L'\-.\\. 1, ,

\, /', 3
,/ \

\ \

-------'----~

t '\
\.0 \
\/1

..-

Figure 7-8
Three Person Cost Game
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The solution to the MCRS is [1 3/7, 2 2/7, 3 2/7]. For the case when

the game is convex (the core is a hexagon), the nominal bounds and

actual bounds are the same. Notice that this game is subadditive if

C(123) < 8.0 and the core is convex if C(123) < 6.0"

The SCRB and MCRS methods have strong economic justification since

the methods integrate benefit (or demand) and cost into the cost

allocation framework. For example, if some players have different

alternative sources of supply, then it is necessary to consider the net

benefit or consumer surplus for each player rather than just the cost.

Sharkey (1982) has pointed out that demand must be included in the

analysis. For example, suppose there are -three markets, N-= 1, 2, 3:

C(S) = 4, if S is anyone market,
. C(S) = 6, if S is any pair of markets, and

C(S) = 7, if S = N. .

Assume demand is not asymmetric, so that some markets have lower cost

alternative supply sources:

B1 = 10
B = 3
B~ = 1~.

The analysis of the game requires the net benefit to be calculated as:

Y. = B. - r.,
111

where r i is the revenue collected from market i, and Bi is the total

benefit, or i·s willingness to pay.

The characteristic function, V(S), for this game is the maximum net

benefit, and is defined as follows:

V(S) = max E B. - C(R) , for all S,
res i €R 1

where V(S) ~ O. Thus, this net benefit game can be defined as:

V(l) = 6
V(12) = 7

V(2)
V(13)
V(123)

= 1
= 5~
= 7~,

V(3) = 0
V(23) 7 a
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and the core conditions are:

L: y. > V(S)
. S 1 -
ls

L: Y. = V(N) .
. N 1ls

The properties of the cores of alternative cost-sharing games have

been investigated by economists. Faulhaber (1975) demonstrated that

Ramsey (second-best optimal) prices need not be subsidy-free (in the

core). Sorenson, Tschirhart, and Whinston (1976 and 1978) looked at

allocations in the co·ntext of public utility pricing and found that the

core cannot always be achieved by a two-part tariff pricing system:

Complicated allocation schemes (including side-payments) could be

required.

Problems

1. If the regulator in Sharkey's example above imposes a symmetric
cost allocation r = (2 1/3, 2 1/3, 2 1/3), what happens?

2. Consider the asymmetric subsidy-free allocation: r = (2 5/6,2­
5/6, 1 1/3). What are the resulting net benefits?

3. If a subsidy-free price structure depends on both cost and demand
conditions, is there an easy way to determine whether a given set
of prices is subsidy-free?

4. Assume a cost function C(q) = 20 + 3q. let there be three firms

with respective demands of ql = q2 = 1, q3 = 4. Calculate the
independent costs C(Q1) = C(Q2) = , and C(Q3) = _
The joint cost for the grand coalition would be, C(Ql+q2+q3) =

. Evaluate the alternative methodologies presented below
~f-or---a~l~locating costs (pricing) from four perspectives: (1) Do
revenues equal costs? (2) Possible formation of coalitions and
break-up of the minimum cost team, (3) Presence of subsidy free
prices, and (4) Possible lost consumer surplus (and/or overpro­
duction for (d) approach below).

a. Allocation by Shapley Value.
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b. Allocation by the IIMoriarity ll Joint Cost Allocation Scheme:
the joint cost allocated to the ith firm is equal to the
difference between its independent cost and a specific frac­
tion of the total value obtaining by forming the grand coali­
tion:

3 3
s(i) = C(qi) - [C(qi)/~ C(qi)] • [~ C(qi)' - C(Ql+q2+q3)]·

c. Allocation by Marginal Cost to the firm:

s(l) = C(Ql+Q2+Q3)

s(2) = C(Ql+Q2+Q3)

C(Q2+Q3)

C(Q 1+Q3)' etc.

d. Allocation by Marginal Cost for an additional unit of output:
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7.3 APPLICATION OF COST ALLOCATION -PROCEDURES

If regulators desire subsidized prices and there are economies of

scale in production, then entry may have to be restricted. However,

subsidy-free prices require no such entry barriers. Finding solutions

to an N-person cooperative game may lead to the determination of

subsidy-free prices. In determining whether a price structure is

subsidy free, a regulator need only know about the costs of alternative

supply arrangements given a price structure and demand levels.

7.3.1. Faulhaber's Example with Joint Costs

Faulhaber (1975) considers a water company which serves 4 neighbor­

hoods, with neighborhoods 1 and 2 east, and neighborhoods 3 and 4 west

of the well. Treat this enterprise as an N-person cooperative game,

where

neighborhoods are players (i),
R = p.q. = vector of revenues (payoffs), and
C = cas! function or characteristic function.
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Also the following conditions must hold for the cost function:

q., isS
q~ = {O}, 1 isN-S

1

i.e., the cost structure must be subadditive to insure incentive to

cooperate among the i neighborhoods:

(2) R(qN) - C(qN) = 7T ( qN) = 0; S,T C. N; SJ T = <p.

This condition (zero profit constraint) means that the gains from

cooperation have to be shared among the players; and

(3) R(qS) S C(qS); ¥S s N.

Condition (3) means that at the given demand levels, if each neighbor-

hood is to be induced to join coalition S~ tpen prices, Pi~ must satisfy

(3), i.e., cooperative prices should be cheaper than II go ing it alone ll

prices.

Consequently, conditions (2) and (3) constitute the core of the

game. Furthermore, define subsidy-free prices (Pi) as prices for which

the resulting revenue vector (Piqi; i=l, ... ,N) lies in the core of the

game. Another interpretation of subsfdy-free prices is that the

revenues contributed by the set of neighborhoods should be at least as

great as the added costs of supplying the coalition S. To see this:

(2) - (3) + R(qN) - R(qS) < C(qN) _ C(qS)
R(qN) _ R(qS) < C(qN-S) -
_R(qN) + R{qS)-> _C(qN-S)

+ R(qS) ~ R(qN)-_ C(qN-S), but R(qN) = C(qN);

therefore,
(3 1 )R(qS) ~ C(qN) _ C(qN-S),

where (3 1
) is the incremental cost test for a single product firm.

The cost of a well and storage tank is $100. Neighborhoods 1 and 2

are west of the well, 3 and 4 are east; the firm has an eastbound trunk

line and pumping station for q1 and q2' and a similar westbound facility

•



7-35

serving q3 and q4' each costing $100. The distribution cost for

delivery of Qi = 10,000 gallons to each neighborhood is $100, comprised

of $80 for local distribution mains and $20 pumping costs. Thus,

C(q1,q2,q3,Q4) = $700.

If any neighborhood went alone the costs would be the well, storage

tank, and distribution; that is:

C(q1'0,0,0) = C(0,Q2'0,0) = C(0,0,Q3'0) = C(0,0,0,Q4) = $300.

Any two adjacent neighborhoods need to build a well, tank, and 2 distri­

bution systems:

C(Q1' Q2'°,°) = C(°·,-0 ,Q3 ' Q4) = $40°·
Two (three) non-adjacent neighborhoods need to build a well, tank, two

(three) distribution systems and a trunk line and pumping station to the

nonadjacent neighborhood:

C(Q1,0,Q3'0) = C(Q1,0~O~q4)

= C(0,Q2,0,Q4) = $500,

and
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(3 1
) also, since the joint incremental cost of serving two adjacent

neighborhoods is $300(2($100) + $100).

All three of these core constraints are necessary for a price

structure to be subsidy free. To see this, suppose: the incremental cost

test applied singly to each neighborhood (r i ~ $100) was use~ to detect

subsidy. Would this test be sufficient? Suppose the price per gallon

Pi is 1.2¢ to neighborhoods 1 and 2, and Pi is 2.3¢ to 3 and 4. Then r1

= r2 = $120 and r 3 = r4 = $230. Total revenues just cover total costs,

i.e., 2($120) + 2($230) = $240+ $460 = $700, so (4) is satisfied. Each
~

neighborhood is paying more than incremental cost of $100 so (5) is

satisfied. However, 1 and 2 are not paying their joint incremental cost

of $300 which consists of 2 local distribution systems ($200) plus an

eastbound trunk line and pumping station costing $100. That is r 1 + r2

= 240 < 300 and constraint (6) is violated. Therefore, this price

structure does not lie in the core, since 3 and 4 would rather form

their own coalition at C(0,0,Q3,Q4) = ,$400 rather than subsidize 1 and 2;

the supply arrangement is unstable and globally inefficient.

Faulhaber points out that the problem arises because the trunk line

and pumping station costs (100) are joint among a subset of neighbor­

hoods [1 and 2 or 3 and 4J, larger than a single neighborhood and

smaller than the entire collection of neighborhoods. If all costs were

either directly attributable to a single neighborhood (i.e., could be

avoided were that neighborhood to drop out of the coalition) or were

joint among all neighborhoods, then an incremental cost test for each

service taken one at a time would suffice (p. 970).

One final note, Ramsey prices which maximize welfare subject to a

zero profit constraint may not be free of subsidy. Recall the Baumol-
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Bradford conditions derived earlier:

(Pi - MCi)/Pi/(Pj - MC)/Pj = Cj/ci·

Let the elasticity of demand for neighborhoods 1 and 2 be equal, i.e.,

c1 = c2' and 1et c3 = c4 for nei ghborhoods 3 and 4., Suppose tha t

neighborhoods 3 and 4 have more inelastic demand than 1 and 2. For

example, £:4/c2 = c3/c1 = .91. Pumping cost for all neighborhoods is

constant at .002¢ per gallon:

MC = $20/$10,000 = .002.

Applying the Baumol-Bradford conditions we obtain Ramsey prices PI = P2

= 0.012 and P4 = P3 = 0~023. But these prices were shown to involve a

subsidy. Ramsey prices are based upon demana elasticities -and costs,

whereas whether prices are subsidy free or not depends on the costs of

alternative supply arrangements (and associated benefits).
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7.3.2. "Public Inputs"

In the previous example, the possibility of trunk line and pumping

station costs which were joint among a subset of neighborhoods lead to

coalition formations so no core existed. Side payments could be used to

achieve global efficiency, but the instability of the arrangement is the

key point. If the four neighborhoods were part of a single water

district, the cost-minimizing system could be imposed on the
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neighborhoods, but the issue of obtaining revenue requirements is still

not resolved. For example, for a regulated multiproduct (or

multimarket) firm, some FOC Ramsey pricing rule will need to be adopted.

Game theory suggested several ways to narrow the debate, but the

customers clearly have stakes in alternative allocation procedures

adopted by firms (and presumably endorsed by regulators).

Cohen and Loeb (1981) address the issue of allocating costs within

a single entity, especially in the case where an input displays the

characteristics of a public good. In this sense, a "public input" can

be defined as an input ~hich is used in more than one production process

for a multiproduct firm and gives a "benefit" to 'each production process

the cost cannot be directly assignable to anyone process, nor can any

production process be excluded from using' the input. In addition, use

by one process does not diminish the amount available to the other

processes. Fixed (shared) inputs fall into this category.

An example of a public .(shared) i~put would be the track on which a

train runs. If there are two train services, passenger and freight, a

question arises as to which service should pay the costs of the track.

If one service is to pay more for the track, how can the costs be

assigned? Another example can be found in the telecommunications

industry. Certain equipment is necessary for the provision of both

local and toll (long distance) calls. How can these costs be allocated

so that users bear the cost-causing consequences of their consumption

choices? This issue will be addressed in the context of telecommuni­

cations, where the problem of jointness frequently arises.

Let us begin with a single entity serving several markets, where

one input is a II pu blic good." The actual purchase of the public input
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is done by headquarters, but the decentralized divisions have better

information on how the input will affect their performance. Further-

more, in a regulatory environment, the customers in the various markets

participate in hearings which determine the legitim?cy of cost alloca­

tions associated with the public input. Several issues arise:

1. How is the efficient amount of the public input to be
determined in a decentralized environment?

2. How does one identify the existence of subsidies in a
multiproduct (or multimarket) situation.

3. What kinds of sharing arrangements (payment schemes) will
prevent inefficient entry by potential users of the public input?

The resolution of these issues is at the center of current debates in

telecommunications .

. Cohen and Loeb suggest that it is possible to reach an efficient

allocation of a public input ~hrough a decentralized process; this

efficient outcome corresponds to a Lindahl equilibrium (where the sum of

the marginal revenue product equals the input1s wage rate (Lindahl,

1958). A Lindahl equilibrium exists when the individuals employing the

public input each pay their individual marginal benefit from the use

of the input. The sum of these marginal benefits equals the MC of

producing the input (i.e., EMS = fv1RT).

From the standpoint of cost allocation in a regulatory setting,

this framework implicitly assumes that the fixed cost involves an asset

that has a positive impact on the productivity of other inputs in the

production of a particular product (nonseparability in production).

Thus, the level of these initial (overhead) outlays has a differential

impact on the various products (for a multiproduct firm) or has an

impact on marginal cost (for a multimarket firm). The derivation of the
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optimal amount of the publi~ input is a potentially troublesome prob-

lem. The issue is how to get the demanders to reveal their valuations

of the input. For a multiproduct firm, a regulator will oversee the

allocation of costs. The demanders of the final good will prefer seeing

the collective input paid for by others. Fortunately, the demand for

the final good determines the value of the marginal product of the

collective input. Thus, the demand for the input can be derived even if

the customers themselves have to report their valuations.

Assume that the public input, K, can be supplied at constant costs,

C. Each consumer can be viewed as a division of the firm (for a

multiproduct firm) or as a customer group (for a multimarket firm).

Consumer i is first assigned a share of the costs, T.~ of the collective
. . 1

input ETi = C. The share for consumer i is shown in Figure 7-9. The

valuation of cfnsumer i for the input is reflected in his demand, Di .

C+-----=:.--------.-;:-..,.---------
C-T. -r-----~~~------

1

s.
1

T. +---;;:::"'~~b77lP1lT-------
1

Figure 7-9
Revealing Preferences for a Public Input

The aggregate demand is calculated as 0 by summing the self­

reported demand schedules. We then subtract D. from 0 and T. (the
1 1

pre-assigned tax share) from C, so consumption is at A without the ith

consumer. With i's preferences included, the group purchases Q, the
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quantity where aggregate marginal benefits equals (assumed constant)

marginal cost. Thus, i IS presence imposes a cost on all the others by

shifting the outcome from A to Q. That loss equals the shaded area FEY;

the difference between their willingness to pay fo~ the extra units and

their outlays [(C - Ti)(A - Q)] had A been chosen instead of~Q. This

"damage ll from the addition of i is calculated and denoted an "incentive

tax. II This second tax is also imposed on i. Note that i has the

incentive to honestly reveal his preferences for the collective input.

Understating one1s valuations leads to the possibility that less of the

public good will be purchased--when the benefits of additional purchases

are actually greater than the costs. Overstating valuations involves

the risk of casting a cost-causing vote. Then the entity will bear an

additional tax (be allocated a cost) greater than the actual additional

benefits from the good.

The effective supply schedule of the public good to i, 5i , can be

obtained by subtracting the D-Di schedule from C. The intersection of

0i with 5i is the optimal quantity; here, it is Q. By consuming at Q

instead of A, consumer i loses Mr~NQ in surprus, pays an incentive tax of

FEY (equals ABX), but avoids ABNQ in pre-assigned taxes. Thus, the net

gain (under truthful revelation) is BMX. Falsely stating a greater Di
will damage i, just as understating 0i leaves i worse off. Note that

the disposition of the incentive taxes raises some issues, since TR =

TC and since LT. = TC. If marginal costs are declining, then we could
1

set the Ti to take the additional fees into account.

The independence of the Ti from the stated demand is crucial to

this approach. It resembles a two-part tariff schedule for a firm With

scale economies: a proportional (per unit) charge is made for use, and
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an additional charge is imposed based on the costs imposed on others for

demand on the peak. The limitations of using multipart tariffs to

achieve maximum welfare apply here as well. For example, the Ti might

extract all the demander's surplus--leading to a situation corresponding

to bankruptcy.

Two other issues arise in the context of such allocation pro­

cedures: subsidy-free prices and sustainability. The allocation of a

public input among either a division of a firm or among firms must be a

subsidy-free allocation to assure stability and avoid overconsumption or

overproduction (and perhaps too many firms producing the good).

Faulhaber (1975) defines this characteristic in a special way such that

"if, in the provision on any commodity (or group of commodities) by a

multi-commodity enterprise subject to a profit constraint leads to

prices for the other commodities no higher than they would pay for

themselves, then the price structure is subsidy-free. 1I This type of

price structure insures that the provision of each commodity by the firm

is Pareto superior to non-provision.

A problem with subsidy-free prices is that they may not be welfare

maximizing. In addition, thet need not be superior to other non

subsidy-free prices on the grounds of social justice. The subsidy-free

prices do nothing more than insure that the production and sale of each

commodity makes all consumers at least as well off as they otherwise

would be. Subsidy-free prices may be a welfare improvement, but are

only a floor, so to speak, on welfare and not a set of prices that

maximizes welfare. In other words, subsidy-free prices imply that the

cost of anyone service in joint production with any number of other
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services is less than or equal to the cost of producing alone.

Subsidy-free prices are those prices which satisfy this "stand alone ll

test.

Once subsidy-free prices have been established as a constraint, we

turn a second desirable characteristic of the outcome: sustainability.

A set of prices is sustainable if they correspond to a bundle of out­

puts, such that (1) entry by rival firms is unattractive, (2) demand is

satisfied, and (3) revenues cover costs of production. The reason why

these additional constraints on the game are important is because the

results from the game s~ould not generate false price signals that

encourage uneconomic entry by potential competitors. This· problem is

especially irnportant in the public utilities field, where regulators

influence the price structure.

Thus, not only must allocated costs be subsidy-free, but they must

also allow a firm to stay in the market in the long run. The Groves and

Loeb mechanism runs afoul of these two requirements in the sense that

there may be excess revenue from the incentive tax, so the budget may

not be balanced. Such a subsidy could enduce entry. Groves and Loeb

realize that an entry problem could exist, but do not offer any solu­

tion. The only hope in this case is if the original number of demanders

is large, the surplus may be relatively small.

Consider the situation in telecommunications today with multi­

product firms. Suppose, for example, two types of firms existed and

each uses the public input (a local network). One firm uses the public

input to produce two-outputs (local and toll calls) and the other firm

uses the public input to produce one output (toll calls). So:

11122C (ql (K), q2(K)) and C (q2(K)) are the cost functions for these two
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types of firms where K is the public input and qi are outputs where i =

1, 2. The situation corresponds to the pre-divestiture environment for

AT&T and its operating companies.

If additional restrictions are placed on the cost function for firm

1, interesting results can be derived. Suppose C1 is subaddltive, ray

average costs are declining and C1 is transray convex. These are

sufficient conditions for economies of scope (considered in more detail

in the next chapter). In general terms, economies of scope are defined

to be savings accruing to a firm that is producing two outputs together

as compared to producing them separately:

Suppose also that the second firm decides to join together in the use of

K because for both firms, the cost of K is lower if used jointly:

where C1 and C2 are the respective cost functions for firms 1 and 2 and

Cis the total cost of producing for both firms while sharing K. The

implication here is that firm 2 brings additional demanders for q2 into

the market. Otherwise, the case for entry is weakened.

In this example, there is incentive to form a coalition. Given

economies of scope and subadditivity of costs, two types of cost

savings result: the first from the joint production of goods 1 and 2

from input K, and the second from the joint use of K by firms 1 and 2.

Should firm 2 capture all the savings from the economies of scope and

share in the savings due to subadditivity, or should firm 2 be able to

share in all savings from the shared use of K? It seems that if it is
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possible to do so, the multiproduct firm's benefits should stay with the

multiproduct firm and the only benefit flowing to firm 2 should he the

result of sharing the use of K. If, on the other hand, the separation

of these benefits is not possible, the multiproduct firm will not share

with the single output firm if the benefits of economies of scope are

larger than the savings generated by forming a coalition to use K:

C1(q2(K)) + C1(ql(K)) - C1(ql(K), q2(K))

> C1(qi(K), q2(K)) - C*(qi(K*), q~(K*) + q~(K*)),

where C*C) is the cost when both firms are joined in a coal ition. If

this is true, no coal ition will form and the core solution- is trivial.

The current debate over telephone system access charges is essentially

an argument over appropriate division (and sharing) of benefits.

The interrelationships of the long distance telephone carriers and

the access to local distribution networks are compl icated issues. If

we assume that this local distribution network is the public input (it

is used by both the long distance firms and the local company), what

incentives will exist for these actors if the local company is subject

to regulation and is required to have subsidy free prices? In addition,

regulators are concerned about overall social welfare and may not like

the results of some coalition forming another local network due to

problems of congestion, thus leaving the locale with two networks, both

with high "average costs" for the use of the public input. In order to

allow appropriate access to the local network by any newcomer (required

by the antitrust consent decree between AT&T and the Justice Depart­

ment), the local company has to allow other firms to use the local

network. As congestion rises, long distance firms will be tempted to

..
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drop out of the original local network to form another network. In

order to prevent this, it may be more efficient to allow a subsidy to

the long distance companies so that they stay with the local network

even with congestion. And as congestion rises, the subsidy would rise.

This process assumes, of course, that the incremental cost of capacity

for the established local network is much lower than the incremental

cost of building the first unit of a new network. In another sense,

this implies that subadditivity of costs still exists for added capacity

as compared to initial capacity.
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7.3.3 Summary

The issues raised in this chapter are complicated in some respects

but simple in others. The application of game theory allows us to

identify allocations which involve fundamental problems: incentives for

self-production may be present or coalitions may form to reduce costs.

The game theoretic concept of the core and solutions such as the separ­

able cost remaining benefit technique offer some promise in the regula­

tory arena. To date, their application has been neither systematic nor

widespread in the utility industries. However, they can be used to
..-

narrow the range of debate between customer groups, utilities, and

regu 1ators.
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Appendix 7-A

For the gross revenue and attributable cost method:
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