Vertical Integration in Platforms: Evidence from Mobile App Stores

Dr. Mark A. Jamison Dr. Jakub Tecza

Public Utility Research Center

https://warrington.ufl.edu/public-utility-research-center/

Regulatory Cases Against Apple App Store

- April 2025—EU fined Apple €500m for App Store payment rules
 DMA steering rules
- March 2024—EU fined Apple €1.84b for App Store payment rules
 Spotify steering complaint
- March 2024—DOJ and 16 states file case against Apple for iPhone and App Store restrictions on types of apps and smartwatch connectivity
- May 2021 to April 2025—Epic Games wins case against Apple for App Store steering practices

Regulatory Cases Against Alphabet Play Store

 March 2025—EU finds Alphabet self-preferenced in Play Store and Search

O DMA

 October 2024—US judge orders Alphabet to facilitate rival app stores on Android OS

• Epic Games case

Legislation Regarding App Stores

- EU's Digital Market Act
- US Federal
 - Proposed Open App Markets Act
 - Proposed App Store Freedom Act
- US States
- South Korea "Google power-abuse prevention law"

Research Question

- What are the implications of platform developer vertical integration?
 - Do mobile platform developers...
 - Harm or help third-party app developers?
 - Or have no specific effect other than to provide a platform?
 - Indicators—revealed preferences of consumers and app developers
 - Downloads of third-party apps
 - Global and US
 - Updates

Preview of Conclusions

- Patterns in impacts hard to find, but...
 - \odot Apple and Google do not appear to hinder rivals
 - Top 20 Apps have more negative impacts on similar apps than do Apple and Google
- Next step: Apply machine learning to develop app predictions

Theory: If Platform Introduces an App...

Appears to suppress rivals if

- \odot Downloads decline for preponderance of similar apps, relative to other app entry
- Updates decline for preponderance of similar apps, relative to other app entry
- Appears to be helpful to rivals if
 - \circ Downloads increase for preponderance of similar apps, relative to other app entry
- Appears to have no effect on rivals if
 - \odot Downloads unaffected for preponderance of similar apps
- Appears to represent normal competition if
 - Downloads decline or increase for preponderance of similar apps, in line with other app entry
 - \circ Updates increase for preponderance of similar apps, in line with other app entry

Technical Theory

- Firm *i* supplies a platform with a vector of specified features $\hat{T}_{i,t}$ at time *t* if...
 - $\circ \pi(\widehat{T}_{i,t}, Z_{i,t}) \ge \pi(\widetilde{T}_i, Z_{i,t}) \forall \widetilde{T}_i \subseteq T$, where
 - T = set of all possible features, including device, user interface, OS properties, firstparty apps, prices, and rules for third-party developers
 - Z_{i,t} is a vector of exogenous parameters, including i's history and expectations of user and rival decision functions, regulations, technologies, and economic factors
- Third party j supplies its app on i with a vector of specified features $\widehat{T}_{i,t}$ if...
 - $\circ \pi(\widehat{T}_{j,t}, Z_{j,t} | \widehat{T}_{i,t}) \ge \pi(\widetilde{T}_j, Z_{j,t} | \widehat{T}_{i,t}) \forall \widetilde{T}_j \subseteq T, \text{ where }$
 - Z_{j,t} is a vector of exogenous parameters, including j's history and expectations of user and rival decision functions, regulations, technologies, and economic factors

Technical Theory II

- Differences between $Z_{i,t-1}$ and $Z_{i,t}$ induce *i* to change its feature choices, i.e., $\hat{T}_{i,t} \neq \hat{T}_{i,t-1}$. More specifically, $\hat{T}_{i,t} \hat{T}_{i,t-1}$ includes a first-party app
- Possible third-party impacts
 - Impacts j's sales, i.e.,
 - Increases downloads or users, i.e., $\pi(\widehat{T}_{j,t-1}, Z_{j,t} | \widehat{T}_{i,t}) > \pi(\widehat{T}_{j,t-1}, Z_{j,t} | \widehat{T}_{i,t-1})$
 - Or deceases downloads or users $\pi(\widehat{T}_{j,t-1}, Z_{j,t} | \widehat{T}_{i,t}) < \pi(\widehat{T}_{j,t-1}, Z_{j,t} | \widehat{T}_{i,t-1})$
 - \circ Increases profitability of updates, i.e., $\pi(\widehat{T}_{j,t}, Z_{j,t} | \widehat{T}_{i,t}) > \pi(\widehat{T}_{j,t-1}, Z_{j,t} | \widehat{T}_{i,t})$ where
 - $\widehat{T}_{j,t} \widehat{T}_{j,t-1}$ includes an update
 - Impacts profitability of entry, i.e.,
 - Increases entry, i.e., $\exists j \in J$ such that $\nexists \widetilde{T}_j \subseteq T$ where $\pi(\widetilde{T}_j, Z_{j,t-1} | \widehat{T}_{i,t-1}) \ge 0$ and $\exists \widetilde{T}_j \subseteq T$ where $\pi(\widetilde{T}_j, Z_{j,t1} | \widehat{T}_{i,t1}) \ge 0$, and the number of j's for which this is true exceeds the number for which $\exists \widetilde{T}_j \subseteq T$ where $\pi(\widetilde{T}_j, Z_{j,t-1} | \widehat{T}_{i,t-1}) \ge 0$ and $\nexists \widetilde{T}_j \subseteq T$ where $\pi(\widetilde{T}_j, Z_{j,t-1} | \widehat{T}_{i,t-1}) \ge 0$ and $\nexists \widetilde{T}_j \subseteq T$ where $\pi(\widetilde{T}_j, Z_{j,t-1} | \widehat{T}_{i,t-1}) \ge 0$,
 - Or decreases entry, i.e., the reverse is true

Econometric Research Model

Dependent variables

- **O** Third-party updates
- Downloads of third-party apps (global and US)
- Numbers of monthly active users of third-party apps

Explanatory variables

- Introduction of first-party apps
- \odot Introduction of top third-party apps
- \circ Fixed effects of third party and time period
- App similarity

Data

- Sensor Tower monthly data for ~all apps, January 2012 through May 2021
 - Apple has 30 own apps on iOS. None on Android.
 - $_{\odot}$ Google has 116 own apps on Android and 83 on iOS
- App descriptions
 - \odot From Sensor Tower and Web

App Similarity

- Similarity of apps' textual descriptions
- Use LLM for vector embedding
 - Numeric representation of 768-element vector
 - BERT-base-multilingual-cased model
 - Variant of Google's BERT allowing for different languages
- Cosine similarity scores

• For two apps, a and b• $cos(\theta) = \frac{|A| \cdot |B|}{\|A\| \cdot \|B\|}$, where A and B are vectors of a and b respectively • $-1 \le cos(\theta) \le 1$

Results 1

Results 2

Results 3

Results 1b

Results 2b

Results 3b

Results 1c

Results 2c

Results 3c

Results 1d

Results 2d

Results 3d

Conclusions

- Apple and Google have few impacts on similar third-party apps
- Top 20 Apps have more negative impacts on similar third-party apps than do Apple and Google
- Google has more negative impacts on third-party apps when on Android than when on iOS
- Otherwise, unable to find pattern in impacts on third-party apps
- Next step: Apply machine learning to develop app predictions

PURC

Dr. Mark A. Jamison, Director Public Utility Research Center

https://warrington.ufl.edu/public-utility-research-center/