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Abstract: Yardstick regulation requires the utilization of benchmarking, a valuable tool for improving 
public service delivery, especially in developing countries where inefficiencies translate into negative 
health impacts and social unrest. However, benchmarking must account for both the cost and the quality 
of service. Using data from 38 Peruvian water utilities (1996 to 2001), the paper evaluates 
quality-incorporated firm performance and identifies changes in efficiency, technology (frontier), and 
service quality. The study utilizes the nonparametric data envelopment analysis (DEA) model, a 
preference structure model, and the quality-incorporated Malmquist productivity index in evaluating firm 
performance; the study discusses their implications for regulating state-owned enterprises. 
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1. Introduction 
 

Yardstick (benchmark) regulation for public utilities shows promise for improving the 
performance of regulated monopolies.  Regulatory and institutional reforms in developed and 
developing countries during the past decade has stimulated interest in benchmarking as a tool for 
evaluating the effectiveness of the reforms, introducing competition through yardstick comparisons, and 
providing useful information about the “X factor” utilized in price cap regulation (Shleifer, 1985; 
Carrington et al., 2002).1 For instance, benchmarking is now part of the process of setting price caps in the 
UK. OFWAT, the water regulator in UK, uses econometric models to create efficiency bands and then set 
the X factor and price cap based on the efficiency bands (Saal and Parker, 2006).  

The empirical literature on yardstick regulation contains some studies of the water sector in 
developing countries. Most of these studies have not considered the role of quality in the benchmarking 
processes due to data limitations and methodological issues. In an earlier study, Lin (2005) utilized a 
stochastic cost frontier to illustrate the importance of incorporating quality into performance comparisons. 
This study extends that work by: (1) providing more empirical evidence about firm performance and 
productivity and quality change of the water sector in developing countries (using Peru as a case study); 
and (2) proposing a benchmarking framework based on a preference-structure data envelopment analysis 
(DEA) model and the quality-incorporated Malmquist index; the approach allows regulators to apply their 
valuations of different quality dimensions to the benchmarking regulation they impose.  The framework 
allows the decomposition of firm-level productivity change into efficiency change, technology change 
(frontier change) and quality change.  

As an indicator of the firm-specific overall multi-dimensional quality change, the quality change 
indicator can provide useful information to regulators about the Q (quality) factor in the 
quality-dependent price cap regulation: CPI-X+Q, where CPI is the consumer price index and X is the 
productivity offset. In addition to traditional performance indicators based on DEA and the Malmquist 
productivity index, this study utilizes the preference structure DEA model and quality-incorporated 
Malmquist productivity index. To the authors’ knowledge, the preference structure DEA model has not 
been used in regulatory studies, and the quality-incorporated Malmquist productivity index has not been 
used in water studies to date (due to data availability issues).2  

The results show that the preference structure DEA model can be used to reflect the weight given 
to quality in regulatory objectives. After imposing preference weights on the quality outputs (based on the 
current Peru water evaluation system), the correlation between the efficiency results of a basic model 
(only physical outputs) and a comprehensive model (both physical and quality outputs) is seen to be much 
lower than the correlation between the comprehensive model and a weighted-quality model (with the 
three quality variables weighted more heavily).  Inclusion of quality indicators as desired outputs has a 
significant impact on firm efficiency rankings. In addition, analysis of the quality-incorporated Malmquist 
productivity index shows that on average productivity grew during 1998-1999, 2000-2001 and 1998-2001; 
productivity appears to have declined during 1999-2000. The average quality of service improved slightly 
during 1998-1999 and 1999-2000, but declined during 2000-2001. Overall, service quality improved very 
slightly from 1998-2001, indicating inadequate incentives for the publicly owned companies to improve 
their service quality under the regulatory scheme applicable for those years. The study also tests the 
multiplicative separability assumption in the process of decomposing the Malmquist index using both a t- 
test and nonparametric statistical test. 

The rest of the paper is organized as follows: Section 2 provides a short literature review of 
benchmarking studies in public utility industries and reviews the reasons for taking quality variables into 
                                                        
1 In practice, benchmarking is widely used in regulatory sectors such as the transportation sector in Costa Rica, the 
telecommunications sector in Hungary, the electricity and telecom sectors in the Netherlands, and the electricity sector in Norway 
and New South Wales (Parker et al., 2006). Burn et al. (2006) review the information revelation incentives for electricity utilities 
and the use of benchmarking in setting electricity distribution prices in Austria, the Netherlands, and Britain. 
2 Giannakis et al. (2005) and Estache et al. (2004) applied similar techniques to the electricity and railway industries, 
respectively. 
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account in the benchmarking process. Section 3 provides background information regarding the Peru 
water sector and summarizes the current performance evaluation system. Sections 4 and 5 discuss the 
techniques used in the current evaluation and present empirical models and results. 
 
2. Literature Review 
 

Benchmarking studies based on parametric (e.g., stochastic frontier analysis) and non-parametric 
(e.g., data envelopment analysis) methods have been conducted in various infrastructure industries during 
the past few years. For example, Carrington et al. (2002) evaluate the relative utility performance in the 
Australian natural gas industry. Using DEA and SFA methods, Estache et al. (2004) and Farsi and 
Fillippini (2004) measure the efficiency of electricity distribution companies in South America and 
Switzerland, respectively. Lam and Shiu (2004) calculate the efficiency values and the efficiency change 
in China’s electricity generation industry. Using data from Ukraine electricity distribution firms, Berg et al. 
(2005) find that private operators respond more aggressively to cost-plus regulation to increase 
shareholder value through cost inflation though privatization improved some dimensions of performance. 
Knittel (2002) checks the effect of alternative regulatory methods on the utility efficiency of the U.S. 
electricity distribution industry. For more detailed reviews, see the studies by Jamasb and Pollitt (2001) 
and Estache et al. (2005).  

Non-energy network industries have also received attention. In telecommunications, Majumdar 
(1997) evaluates the effect of incentive regulation on the technical efficiency of U.S. local exchange 
carriers between 1988 and 1993. Uri (2001) uses the Malmquist productivity index to calculate 
productivity change due to the implementation of incentive regulation in telecommunications. In the 
water sector, Saal and Parker (2000, 2001) check the effect of privatization and regulation on productivity 
growth and the total cost of the water sector in England and Wales. They underscore the importance of 
using quality-adjusted outputs (adjusted by indices of the relative quality of drinking water and sewerage 
treatment). Saal and Parker (2006) employ a quality-adjusted panel input distance stochastic frontier to 
estimate productivity growth rates for the water operations of the water sector in England and Wales 
between 1993 and 2003. They further decompose the productivity change into efficiency change, 
technology change, and scale change. Wallsten and Kosec (2005) include several dimensions of quality in 
their comparison of privately and publicly owned water utilities in the U.S.: violations of the maximum 
levels of health-based contaminants and violations of monitoring and reporting regulations. Berg and Lin 
(2006) examine a methodological issue associated with benchmarking: the consistency of performance 
rankings based on non-parametric (DEA) and parametric (stochastic production frontier and distance 
function) methods (in the Peruvian context). Two service quality measures (coverage of service and 
continuity of service) are incorporated as outputs in the models. The present study adds the pass rate of 
chlorine tests as an additional quality indicator and focuses on how prioritizing objectives can be 
incorporated into the benchmarking process.  

Most other water studies have not incorporated quality variables into the analysis, but examine 
the impacts of other factors. Cubbin and Tzanidakis (1998) and Ashton (2000) estimate water utility firm 
efficiency in United Kingdom. Estache and Rossi (2002) use 1995 data from 50 water companies in 19 
Asian countries to explore the effects of ownership on utility performance. They do not find significant 
differences between private and public water utilities. However, Estache and Kouassi (2002) find 
empirical evidence supporting the view that private operators are more efficient than public operators in 
Africa. Corton (2003) uses OLS cost function to evaluate the efficiency of Peruvian water utilities. 
Tupper and Resende (2004) use DEA to develop efficiency scores for twenty Brazilian water utilities 
during 1996–2000 and propose a procedure for constructing a linear reimbursement rule that constitutes a 
yardstick competition mechanism. Kirkpatrick et al. (2006) find that private utilities in Africa are 
associated with better performance than are state-owned utilities based on DEA results but not in the 
stochastic frontier analysis (SFA) models. 

As noted above, only a few studies focus on the water sector in developing countries and include 
quality elements in the benchmarking processes. There are two reasons for the inclusion of quality aspects 
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into our study. First, if we ignore the quality aspects in the benchmarking, “low-cost, low quality” 
companies may be labeled as “efficient” companies, which may distort the original intention of 
benchmarking (Sappington, 2005). In addition, quality can be an important issue in total factor 
productivity (TFP). For instance, Saal and Parker (2001) show that the unadjusted TFP change in the U.K. 
water sector appears to have been extremely slow in recent years.  However, quality has improved 
significantly because of the large increases in minimum standards, which required significant outlays. 
Thus, the use of unadjusted TFP change measures during this period understates actual TFP 
improvements (measured in a more comprehensive manner).   

Second, service quality is an important issue in the water sector. According to the World Bank 
(2003), more than 1 billion people in the developing countries lack access to clean water, and almost 1.2 
billion people lack adequate sanitation. An estimated 12.2 million people die every year due to the 
diseases directly related to drinking contaminated water. The World Commission on Water estimated that 
mitigating water and sanitation problems would require US$600-800 billion between 2000 and 2010. 
Therefore, water regulators in developing countries may put extra weight on improving service quality 
and coverage when evaluating sector performance. 
 
3. Peru Water Sector and Its Performance Evaluation System 
 

Corton (2003) characterized the water sector of Peru as one with serious problems, including 
inadequate system maintenance, a high level of unaccounted-for water, excess staff, low metering rates, 
and low water quality. In order to effectively monitor the monopoly suppliers and improve their firm 
performance, in 1992 the Peru government created SUNASS (Superintendencia Nacional de Servicios de 
Saneamiento) to regulate water and sanitation services. SUNASS attempts to ensure that consumers 
receive the best possible drinking water and sewerage service, in terms of adequate quality, quantity, 
continuity, coverage, and fair price. Its functions include economic regulation, supervision, sanctions, 
setting rules/norms, and dispute resolution (between customers and service providers). This agency’s 
funding comes from a 1% surcharge on the invoicing from the service providers. The agency’s Board of 
Directors has five members: two from the First Ministry Office (one is appointed as Chairman), one from 
the Ministry of Finance, one from the Ministry of Housing, Construction and Sanitation, and another one 
from the Office of Fair Competition. 

To promote better performance, SUNASS developed a Management Indicators System (MIS) 
with the help of the World Bank. The MIS collects data from utilities, making it possible to compare 
service providers.  The expectation was that low efficiency companies would gradually improve in 
response to greater pressure to perform efficiently. SUNASS selected nine performance indicators and 
categorized them into four dimensions:  
1. Quality of Service includes three variables: compliance with the residual chlorine rule, continuity of 

service, and percentage of water receiving chemical treatment.  
2. Coverage of Service Attained consists of two variables: water coverage and sewerage coverage.  
3. Management Efficiency reflects three variables: operating efficiency (a combination of continuity of 

service and the volume of water produced to serve each person at a connection), percentage of 
connections with meter installed, and the ratio of bills not yet collected to the total number of bills.  

4. Managerial Finance Efficiency is defined by the ratio of direct costs and other expenses to revenues. 
The first two broad areas of efficiency are intended to represent the interests of society.  The third 

reflects the companies’ performance, and the fourth represents the citizen-owner’s perspective. In order to 
obtain a single measure of performance, each indicator expressed as a percentage is multiplied by its 
weight (equal weight=1) and added together to obtain a total score for each company. This total per 
company is divided by nine, the number of indicators, to get the final score. The emphasis on social 
concerns is evident in the greater number of indicators related to performance affecting society.   
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4. Methodology 
 

Efficiency measurement methods can be subdivided into parametric and non-parametric methods. 
The parametric methods of efficiency analysis rely on specified functional forms of production or cost 
functions; they utilize econometric techniques. Non-parametric methods use mathematical programming 
techniques and do not require specification of production or cost functions. 

Both methods have been applied widely in different industries such as electricity, 
telecommunication, gas, and water. Berg and Lin (2006) examine the consistency of the performance 
rankings based on DEA and SFA models in the Peruvian context. They find that DEA and SFA distance 
functions yield similar rankings and have comparable success in identifying the best and worst 
performing utilities.3 

Because DEA analysis can easily accommodate multiple inputs and multiple outputs 
simultaneously, it is employed as the analytic tool in this paper.4 DEA has been used in a number of 
recent water studies. For example, Thanassoulis (2000) reviewed DEA and its use in estimating potential 
cost savings at water companies in the context of the price review conducted by the regulator of water 
companies in England and Wales. Similarly, Tupper and Resende (2004) use DEA supplemented by 
econometric analyses to provide efficiency scores for twenty Brazilian state water and sewage companies.  
 
4.1. DEA Analysis: CCR and BCC Models 
 

Single-measure gap analysis is the simplest form of performance evaluation and benchmarking. 
For example, regulators in the water industry commonly use efficiency indicators, such as the number of 
workers per connection and the number of connections per 100 families, to assess utilities’ performance.5 
However, these measures are not good substitutes for efficiency frontiers, which recognize the complex 
nature of interactions between multiple inputs and multiple outputs.6 Suppose that m input items and s 
output items are selected. Let each decision-making unit j ),,2,1 ,( njDMU j L=  produce a vector of 

outputs ( ),,, 21 sjjj yyy L by using a vector of inputs ( ),,, 21 mjjj xxx L . The output-oriented CCR 
(Charnes et al., 1978) model is expressed with a real variable φ and a non-negative vector 

( )Tnλλλλ K21=  of variables as follows: 

 0  ; ; s.t.   max*
11

≥=−=+= ∑∑
=
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=

−
j

n

j
rorrjj
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j
ioiijj ysyxsx λφλλφφ  

                                                        
3 This does not mean DEA and SFA always generate similar results. In some cases, the parametric and non-parametric methods 
do produce different results.  
4 The distance function can also accommodate multiple inputs and multiple outputs simultaneously (Coelli and Perelman, 2000). 
The distance function is generally expressed in flexible translog functional form because the Cobb-Douglas function imposes 
strong assumptions such as fixed returns to scale and a unitary elasticity of substitution. However, given the complexity of our 
models (3 inputs, 2 physical outputs and 4 quality outputs) and our modest sample size, translog would consume too many 
degrees of freedom (the model would contain 45 independent variables). Therefore, DEA models are used in this study.  
5 For instance, the high ratio of staff per connection in Peru may not indicate the inefficiency of the utility companies. It could be 
due to cheaper labor substituting for other inputs rather than over-staffing. Therefore, we need to use the multiple inputs/outputs 
frontier model to evaluate utility efficiency. 
6 DEA, the most typical non-parametric frontier method, is utilized here. DEA provides a mathematical programming method for 
estimating production frontiers and evaluating the relative efficiency of different decision-making units—here, water utilities. 
The advantages of the DEA model are that it does not require the specification of a functional form to be fitted, and can 
simultaneously accommodate multiple inputs and outputs. The technique also has its limitations: Rossi and Ruzzier (2000) show 
that the efficiency measures obtained with DEA can be very sensitive to the number of variables included in the model. As the 
ratio of the number of variables/sample size goes up, the ability of DEA to discriminate among firms is sharply reduced, because 
it becomes more likely that a certain firm will find some set of weights to apply to its outputs and inputs that will make it appear 
as efficient. Another limitation of the non-parametric approach is that the DEA models cannot take into account the effects of 
random noise or random error. 
 



 6

(i =1, 2,…, m; r =1,2,…,s; j =1,2,…,n) .            (1) 
where oDMU represents one of the n DMUs under evaluation, and iox and ioy are the ith input 

and rth output for oDMU , respectively. *φ represents the (output-oriented) efficiency score of 

oDMU . 

We define the input excesses −s  and the output shortfalls +s  and identify them as “slack” vectors by:               

 ro
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s  ; φλλ  (2)  

The CCR model is built on the assumption of constant returns to scale (CRS) of activities. According to 
the BCC (Banker et al., 1984) model, if the condition 1

1
=∑ =

n

j jλ  is added, then variable returns to 

scale (VRS) are possible. For detailed information about CCR and BCC models, readers are referred to 
Cooper et al. (2004).  
 
4.2. DEA with Preference Structure 
 

The basic DEA models (CCR and BCC) are called radial efficiency measures, because these 
models adjust all inputs, or outputs, of a DMU by the same proportion. reaF &&  and Lovell (1978) 
introduce a non-radial measure that allows a non-proportional reduction in inputs, or non-proportional 
augmentation of outputs. The output oriented CRS model can be expressed as: 

0 ;0 ;1  ; ; s.t.  1max
111
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In the standard DEA formulations, DMUs are in a position to choose the weights to be assigned to 
each input and output in a way that maximizes its efficiency, subject to the system of weights being 
feasible for all other DMUs. This freedom of choice is equivalent to assuming that no input or output is 
more important than any other (Cooper et al., 2004). In our case, it is necessary to construct a model that 
integrates the regulator’ s preferences and value judgments in DEA models and to estimate the targets 
according to these preferences7. Following Zhu (1996), the output-oriented weighted non-radial 
preference model can be expressed as: 
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where rB  (r =1, 2,…,s) are user-specified preference weights that reflect the relative degree of 
desirability of the adjustments of the current input and output levels, respectively. The greater is the 
weight rB , the higher is the priority that DMUj would be expected to give to increase its rth output. The 
basic non-radial DEA model (3) is a special case of (4) when all the rB  (r =1, 2,…,s) are equal. The 
preference weights can be obtained by using Delphi-like techniques or an analytic process yielding some 
value hierarchy.8  
 

                                                        
7 In the current SUNASS evaluation scheme, the emphasis on social concerns is evident in the greater number of indicators that 
are related to performance affecting society (coverage and treated water having implications for public health). This implicit 
weighting suggests that the regulator may prefer that companies improve service quality rather than cut their costs. Therefore, the 
regulator may want the benchmarking scheme to induce the DMUs to place greater emphasis on service quality outputs. 
8 For instance, Lynch et al. (1994) use hierarchical conjoint analysis to derive weights for dimensions of telephone service 
quality; the methodology could also be applied to water and other infrastructure industries. 
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4.3. Malmquist Productivity Index 
 

So far, the focus has been on evaluating firm performance at a point in time.  To evaluate the 
efficiency change over time, the Malmquist productivity index is used in the following analysis:9 

Suppose each ),,2,1( njDMU j L=  produces a vector of outputs ),,( 1
t
sj

t
j

t
j yyy L=  by 

using a vector of inputs ),,( 1
t
mj

t
j

t
j xxx L= at each time period t, Tt ,,2,1 L= . When multiple inputs 

are used to produce multiple outputs, Shephard’s (1953) distance functions provide a functional 
characterization of the structure of production technology. The output distance function is defined on the 
output set, P(x), as: 

 { })(/:min),(0 xPyyxd ∈= δδ .     (5) 
The Malmquist productivity index is defined as: 
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Mo measures the productivity change of oDMU  between period t and t+1. A value greater than one 
indicates positive productivity growth from period t to period t+1. A value less than one indicates negative 
productivity growth from period t to period t+1. The distance function ),( yxdo  can be calculated using 
the output oriented DEA model ( reaF && et al., 1994a). 

The Malmquist productivity index can be decomposed into two components: efficiency change 
(catch-up effect) and frontier shift (technological change).  
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Mo = EC*TC.                                                (8) 
According to Färe et al. (1994b), EC can be further decomposed into scale efficiency change and pure 
technology change. Ray and Desli (1997) pointed out the internal potential inconsistency problem of the 
further decomposition—both CRS and VRS models are used in the same decomposition. Consequently, 
the current paper uses the accepted decomposition shown in (8). 
 
4.4 Quality-incorporated Malmquist Productivity Index 
 

Färe et al. (1995) extended the Malmquist productivity index to incorporate quality attributes into it 
in a productivity analysis of Swedish pharmacies. Similar to the preference structure model, this is a 
useful model that has been rarely used in regulatory research and practice due to the lack of data on 
service quality. This study will extend the Malmquist productivity index to incorporate three quality 
attributes and test our hypothesis about the separation of the quality attributes. 

Specifically, the technology set at t is defined as ( ){ ttttt xayxS :,,= can produce ty and }ta  
The output distance function of iDMU becomes: 

{ }tttttttt
i Syaxyaxd ∈= )/,/,(:min),,( δδδ .     (9) 

The quality change index between t and t+1 is defined as: 

                                                        
9 See Färe et al. (1994a) for detailed background and estimations based on DEA models. 
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From equation (10) we can see, if tt aa ≥+1 , then 11, ≥+ttQ . 

The quality-incorporated Malmquist productivity index between period t and t+1 can be expressed 
as: 
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As before, this can be decomposed into technology change and efficiency change: 
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Equation (11) can be also rewritten as: 
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A further decomposition of (13) is obtained if the distance functions are multiplicatively separable in 
quality attributes and inputs/outputs; i.e., if 
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i

ttttt
i yxdayaxd .                                (14) 

The quality-incorporated Malmquist index can be expressed as: 
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The second part in the right hand side of (15) is exactly the same as equation (6), which can be further 
decomposed into technical change and efficiency change according to (7). Thus,  

1,1,1,1,
,

++++ ××= tttttttt
iq ECTCQM .                                            (16) 

If the productivity growth is the same with and without the imposition of separability (the Malmquist 
index calculated using equation (13) is similar to that calculated using equation (16)), the service quality 
aspect may be interpreted as consistent with the assumption of multiplicative separability. 
 
5. Empirical Model and Results 
 

We are now in a position to analyze the actual performance of 38 Peruvian EPS (Empresas 
Proveedoras de Servicios) from 1996-2001. Due to the missing value and extreme value problems, the 
sample size is 186 and involves an unbalanced panel. As Estache et al. (2004) note in their study, there are 
several possible ways to deal with the panel data within the context of DEA. One is to compute a frontier 
for each period and compare the efficiency of each firm relative to the frontier in each period. Another 
possibility is to treat the panel as a single cross-section (each firm year being considered as an 
independent observation) and pool the observations. This way, a single frontier is computed, and the 
relative efficiency of each firm in each period is calculated by reference to this single frontier. We follow 
this latter approach in order to increase the models’ discriminating power. The CCR model is chosen 
because its result is highly correlated with that of BCC model and, more importantly, the Malmquist 
productivity index is built on the CRS model ( reaF && et al., 1994b).10 
                                                        
10 As discussed earlier, the CCR model is based on constant return to scale while the BCC model is built on variable returns to 
scale. 
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5.1. Model Specification 
 

The models investigated here draw from the extensive benchmarking literature and earlier 
research on the characteristics of Peru’s water industry (high water loss, low water quality, and excess 
staff).  Model 1 (Basic Model) is based on simple physical inputs and outputs. Model 2 (Comprehensive) 
takes the service quality into account. Model 3 (Preference structure) applies a preference structure 
approach to DEA and weights quality even more heavily. It is clear that the service quality should not be 
neglected in the performance evaluation. Doing so causes the efficiency scores to change, although the 
new scores are still positively correlated with the original scores estimated in the basic model. 

Model 1 (Basic): The inputs are the number of employees, the number of water connections, and 
network length. The outputs are volume of water billed and the number of customers. The number of 
employees (sum of the permanent workers and contract workers) is the measure of labor input. Because 
all of the companies in water industry of Peru are state-owned companies, excessive labor may be a 
serious problem (due to the interference of unions and politicians). For example, the mean value of the 
ratio of staff per 1000 connections is 6.04, which is significantly higher than the mean value of the ratio 
(2.1) in developed countries (Tynan and Kingdom, 2002). The number of water connections is used as a 
proxy for capital inputs. Network length is used as a proxy for other operating costs. Specifically, network 
length is a crucial determinant of the administrative and maintenance costs, as well as depreciation. In 
addition, energy costs depend on network length (distance for pumping); furthermore, leakage (water 
losses) can be a larger issue when distances are significant. We therefore use network length as the third 
input of the model.  Volume of water billed and the number of customers (two widely used outputs) are 
both incorporated into Model 1.11 Because the volume of water billed is highly correlated with revenue, 
revenue is not included as an output.12 

Model 2 (Comprehensive): In model 2, we take service quality into account. Three service 
quality measures capture various dimensions of service quality: positive rate of chlorine tests, coverage of 
service, and continuity of service. The three service quality measures are treated as quality outputs in the 
comprehensive DEA models.  

Coverage is defined as the population with access to water services as a percentage of the total 
population under the utility’s nominal responsibility. It can be considered as one of the indicators of 
service quality because it is a direct measure of water availability to citizens in a municipality. Since water 
availability tends to be viewed as a citizen’s “right,” coverage reflects an important aspect of water 
service quality (Lin, 2005). 

The percentage of samples with satisfactory residual chlorine and continuity of service are two of 
the three indicators used by SUNASS to evaluate the service quality. Due to the serious missing data 
problem, the percentage of water receiving chemical treatment is not included as an output. Percentage of 
samples with satisfactory residual chlorine is measured as a percentage of the sample where the residual 
chlorine (found in the water) satisfied the minimum requirements. Water is normally analyzed for many 
quality parameters; residual chlorine is chosen by SUNASS to show the degree of protection against 
bacterial contamination (http://www.ib-net.org). Substantial variation also exists for these two variables. 
The lowest satisfactory rate is only 4% while the minimum continuity of service is 5 hours per day. These 
patterns suggest the necessity of taking service quality into account when conducting benchmarking 
studies in developing countries like Peru. Therefore, these two variables are taken to be customer service 

                                                        
11 Peru has a serious problem with water loss. According to official estimates, more than 40% of water is not billed, because of 
leaks or unauthorized connections.  Therefore, we use water billed, not water delivered, as an output to measure the utility 
company’s capability in system management, pipeline maintenance, and commercial practice. 
12 Some utilities are also responsible for sewerage disposal. However, we cannot find data on physical output of treated 
sewerage. Therefore, in our study, we focus on water service. The sewerage inputs such as sewerage network length and 
sewerage connections are not included in the models. Due to data availability, most of the papers in the empirical literature do not 
include sewerage as an output. One exception is Tupper and Resende’s (2004) study of the Brazil water sector. 
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quality variables. The summary statistics of the inputs and outputs used in the analysis are presented in 
Table 1. 

[Table 1 here] 
 

Model 3 (Preference Structure Weights):  The SUNASS benchmarking scheme emphasizes 
social concerns: Six out of nine indicators are related to the customer service quality we defined above. 
Due to the lack of other studies that might establish the weights, we regard the current SUNASS 
benchmarking scheme as a proxy for regulators’ preferences and give a weight of 2 (6/3) to each of the 
three customer service quality variables while giving a weight of 1 to the other outputs.13 The results of 
this preference structure DEA are then compared to the other models. 

The models are summarized in Table 2. 
 

[Table 2 here] 
 

5.2 Empirical Results 
 
Efficiency Score (Model 2) 

For brevity, we only present the detailed estimation of the results from the comprehensive model 
(Model 2) in Table 3.14 The other detailed results are available from the authors upon request. 

 
[Table 3 here] 

 
Correlation matrix of efficiency score and ranking 

The Pearson Correlation matrix of efficiency scores15 is shown in Table 4 in order to check the 
pattern of correlations associated with the different models.16 

 
[Table 4 here] 

 
The results shown in the correlation matrix are consistent with our expectation. The basic model 

has a very high correlation with the comprehensive model but a relatively low correlation with the 
preference weighted model. This shows that the “efficient” firms are not necessary the high quality 
suppliers. Specifically, the correlation between the basic model and comprehensive model is 0.825, 
suggesting that physical outputs (customers and water billed) play more important roles in determining 
firm efficiency in the original radial DEA model. After imposing the preference weights to the outputs 
(more weight to the three customer service quality variables), the correlation between basic model and 
weighted model falls to 0.311 while the correlation between comprehensive model and weighted model is 
0.625. The result shows that the quality output dimensions now play a more important role in determining 
the firm efficiency for the weighted model (preference Model 3).   

The above analysis showed that the regulators should have a clear picture about the targets 
(reducing cost, improving service quality, or advancing both objectives) and give explicit weights to the 
objectives. They can then choose the appropriate tools to conduct the benchmarking study. 

 

                                                        
13 In the current SUNASS benchmarking scheme, six indicators (compliance with the residual chlorine rule, continuity of service, 
percentage of water receiving chemical treatment, water coverage, sewerage coverage, and operating efficiency) are related to 
service quality. Since the SUNASS assigns an equal weight to the nine indicators, it implicitly imposes more (double) weight on 
service quality. 
14 To make the results more intuitive, the input-oriented efficiency scores are presented. The output-oriented efficiency scores are 
the inverse of the input-oriented efficiency scores in the CCR model. 
15 The Spearman’s ranking correlation matrix generates very similar results.  
16 The correlation coefficients encompass the efficiency observations of the pool samples (all companies for all years). 
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Malmquist Productivity Index and Quality-incorporated Malmquist Productivity Index 
In order to analyze the quality and efficiency change and test the assumption of quality separation, 

the Malmquist productivity index and quality-incorporated Malmquist productivity index are calculated, 
respectively. The calculation is based on the comprehensive model (Model 3). The Malmquist 
productivity index is calculated using equation (6), (8), (11), and (12). The quality-incorporated 
Malmquist productivity index is calculated using (10) and (13)-(16). Then the two indices are compared 
to one another. If the results (performance ratings) are similar, it means that the data are consistent with 
the assumption of multiplicative separability. The calculation of the Malmquist index requires a balanced 
panel data. Because of a serious missing data problem in year 1996 and 1997, the time period from 1998 
to 2002 is utilized in the analysis. In addition, all the DMUs under evaluation are required to have 
complete data during this period. We exclude some problematic DMUs, and the sample size becomes 31 
DMUs /year.  

From Table 5, we can see that (on average) productivity has positive growth except for 
1999-2000. Overall, productivity growth is quite modest. Frontier shift accounts for the productivity 
increase. This result is consistent with the finding by Saal and Parker (2006), who find that technical 
change (frontier shift) has been the dominant source of productivity growth in the English and Welsh 
water sectors. From Table 6 we can see that the quality-incorporated Malmquist productivity index 
depicts the same trend as in Table 5: on average, productivity growth is quite modest. We also see that on 
average the quality of service improved slightly during 1998-1999 and 1999-2000, but it declined during 
2000-2001. In general, the average quality of service improved very slightly from 1998-2001, which 
suggests a lack of incentives for companies to improve their service quality under the current regulatory 
scheme. In the current regulatory scheme, no formal rewards or penalties are linked to SUNASS’s ranking, 
and the ranking is not widely distributed.  

 
[Table 5 & 6 here] 

 
Because quality improvement comes at a cost, municipal utilities may not have sufficient 

incentives to improve their service quality under this regulatory scheme. Some firms (like firm 3 and 8) 
have the highest quality growth during 1998-1999, followed by lower growth during 1999-2000 and the 
lowest quality growth during 2000-2001. For most other firms, the service quality level is quite stable 
over the time period. 

Overall, these results show the importance of incorporating quality variables into a benchmarking 
scheme, publicly publishing the report, and linking the scheme to rewards/penalties. As was noted at the 
beginning of the paper, performance-based incentive standards such as quality-dependent price caps can 
be expressed as: CPI-X+Q, where CPI is the consumer price index and the X-factor is the productivity 
offset (based on the regulator’s assessment of the potential productivity growth of the regulated firms). Q 
is a quality factor that allows the companies to increase/decrease rates or retain more/less revenue when 
quality improves/degrades. The quality change (QC) component provides useful information about Q.17 
However, the QC index is based on the assumption of multiplicative quality separability (equations 
(14)-(16)), which has to be tested. Based on Färe et al. (1995), the Malmquist productivity index (MPI) is 
compared to the quality-incorporated Malmquist productivity index (QMPI). If the results are similar, the 
data are consistent with the assumption of multiplicative separability. 

The Pearson correlation between MPI and QMPI is 0.89, and the non-parametric Spearman 
ranking correlation is 0.96, both of which are significant at the 0.01 level. A two sample t-test assuming 
unequal variance is conducted. The null hypothesis that the sample means are equal cannot be rejected. 
(t=0.716).18 Therefore, the assumption of multiplicative separability is not rejected. 
 
                                                        
17 The regulator can also use other relevant information such as minimum quality standards and single dimension quality 
indicators to select appropriate Q targets. 
18 The assumption underlying the t-test required that the populations be normally distributed. In order to test the robustness of the 
result, we conduct the Kruskal-Wallis Test, a non-parametric test. Again, the null hypothesis cannot be rejected. 
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6. Concluding Observations 
 

In emerging markets, the individuals who are developing and implementing public policy must 
give attention to service quality issues, including low coverage for many infrastructure services (Holt, 
2005). As a tool to reduce the information gap between regulators and firms and introduce competition 
through regulation, yardstick regulation should include quality; otherwise low cost and low quality 
companies will be labeled as “efficient.” 

This study uses different types of DEA models (CCR and preference structure) to capture the 
regulator’s preferences and illustrate the importance of including service quality measures and regulatory 
preference into benchmarking. The quality-incorporated Malmquist productivity index is then introduced 
in order to analyze quality change, efficiency change, and shifts in the frontier. Given the poor status of 
water service quality in Peru, the results show a slight improvement in service quality from 1998-2001, 
suggesting the lack of appropriate incentives for the companies to improve their service quality under the 
regulatory system utilized during this time frame.19 

One additional use of benchmarking comparisons is to link managerial incentives more directly 
to performance. Some scholars (e.g., Shuttleworth, 2005; Cubbin, 2005) are skeptical of applying 
efficiency scores due to the sensitivity of the model specification and estimation. However, caution should 
not preclude the thoughtful application of appropriate models.  The types of models presented here serve 
as catalysts for (1) collecting data to mitigate information asymmetries, (2) identifying sector trends and 
performance outliers, and (3) designing incentive-based managerial compensation plans (Mugisha et al., 
2007). It is likely that far more waste has occurred due to poor management practices (and weak 
incentives) in developing countries than to the misapplication of infrastructure benchmarking techniques. 
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Table 1: Sample Summary Statistics 

Variable Mean Standard Deviation Minimum Maximum
Outputs       
Water Billed (m3) 6786308  8285202  132917  32990614 
Number of customers 141379  179617  6908  809158  
Coverage (%) 78  14  26  99  
Positive rate of chlorine tests (%) 86  17  4  100  
Continuity of service (hours/day) 16  5  5  24  
Inputs       
Number of Employees 143 178 6 856 
Number of Water Connections 24329  30866  1003  148511  
Network Length (km) 258 349 7 1783 

 
 
 
Table 2: DEA Model Specification 

  Model 1 (Basic Model) Model 2 (Comprehensive) Model 3 (Preference Structure) 

Inputs 

Number of Employees Number of Employees Number of Employees 
Number of water 

connections Number of water connections Number of water connections 

Network Length Network Length Network Length 

Outputs 

Volume of water billed Volume of water billed Volume of water billed 
Number of customers Number of customers Number of customers 

  Coverage Coverage 
  Positive rate of chlorine tests Positive rate of chlorine tests 
  Continuity of service Continuity of service 
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Table 3: Efficiency Score of Model 2 (1996-2001) 

Firm/Year 1996 1997 1998 1999 2000 2001 
1    0.716   0.726  
2    1.000   0.958  
3   0.995  1.000  1.000  1.000  
4    0.846  1.000  1.000  
5    1.000  1.000  0.992  
6 1.000  0.932  0.926  0.882  0.829  0.742  
7   1.000     
8 0.915  0.981  0.966  0.974  0.924  0.854  
9 0.910   0.689  0.751  0.604  0.829  

10  0.843  0.810  0.884  0.766  0.737  
11   0.752  0.872  0.700  0.849  
12    0.821  0.788  0.734  
13  0.669  0.779  0.807  0.715  0.749  
14  0.635  0.737  0.625  0.594  0.575  
15   0.684  0.758  0.729  0.729  
16 0.666  0.700  0.778  0.843  0.827  0.767  
17  0.756  0.746  0.736  0.808  0.813  
18 0.567  0.556  0.547  0.570  0.418  0.562  
19 0.821  0.867  0.831  0.891  0.869  0.865  
20   0.645     
21   0.611     
22   1.000  0.803  0.685  0.677  
23   1.000  1.000  0.903  0.980  
24  0.685  0.692  0.777  0.808  0.792  
25   0.762  0.842  0.791  0.749  
26 0.886  0.876  0.906  0.758  0.821  0.911  
27 0.838  0.820  0.763  1.000  1.000  0.944  
28 0.629  0.606  0.675  0.738  0.692  0.718  
29 0.861  0.765  0.725  0.683  0.692  0.679  
30   0.683  0.936  0.821  0.811  
31 0.784  0.743  0.702  0.775  0.808  0.741  
32   0.641  0.946  0.943  0.923  
33 0.636  0.639  0.673  0.907  0.791  0.839  
34 0.813  0.802  0.978  0.784  0.749  0.768  
35    0.895  1.000  0.859  
36   0.829  0.808  0.837  0.920  
37   0.873  1.000  0.969  1.000  
38 0.799  0.784  0.739  0.720  0.698  0.676  
39   0.773  0.784  0.752  0.715  
40  0.888  0.660  0.702  0.773  0.735  
41 0.963  0.846  0.825  0.939  0.740  0.769  
42 0.731  0.715  0.645  0.762  0.887  0.876  
43     0.659  0.689  0.711  0.710  
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Table 4: Correlations of Efficiency Scores (order by Models 1, 2, 3) 
 

Correlation Basic Comprehensive Preference 
Basic 1   

Comprehensive 0.825** 1  
Preference 0.311** 0.625** 1 

** Correlation is significant at the 0.01 level (2-tailed). 
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Table 5: Malmquist Indexes, Efficiency Change and Frontier Shift (1998-2001) 

Company 
1998-1999 1999-2000 2000-2001 1998 vs. 2001 

Malmquist 
Index 

Efficiency 
Change 

Technology 
Change M EC TC M EC TC M EC TC 

3 1.107  1.000  1.107  1.071  1.000  1.071  1.361  1.000  1.361  1.576  1.000  1.576  
6 0.919  1.000  0.919  0.948  1.000  0.948  0.923  0.928  0.994  0.884  0.928  0.952  
8 1.061  1.000  1.061  1.002  1.000  1.002  0.933  1.000  0.933  0.985  1.000  0.985  
10 1.246  1.061  1.175  0.889  1.000  0.889  0.978  0.790  1.237  1.087  0.838  1.297  
13 1.034  0.925  1.117  0.878  0.937  0.937  1.036  1.053  0.983  0.980  0.914  1.073  
14 0.797  0.812  0.982  0.922  0.934  0.988  0.968  0.994  0.974  0.686  0.754  0.910  
15 1.137  0.980  1.160  0.948  0.959  0.989  0.971  0.930  1.044  1.043  0.874  1.193  
16 1.065  1.003  1.063  0.908  1.000  0.908  0.926  1.000  0.926  0.945  1.003  0.942  
17 0.852  0.837  1.018  1.182  1.194  0.989  0.917  0.984  0.933  0.973  0.984  0.989  
19 1.052  1.000  1.052  1.014  1.000  1.014  1.023  1.000  1.023  1.068  1.000  1.068  
22 0.608  0.886  0.686  0.804  0.886  0.908  0.952  0.935  1.019  0.479  0.734  0.653  
23 1.159  1.000  1.159  0.826  1.000  0.826  1.095  1.000  1.095  1.022  1.000  1.022  
24 1.143  0.996  1.148  1.060  1.125  0.942  0.977  0.954  1.024  1.131  1.069  1.058  
25 1.154  1.012  1.141  0.932  0.964  0.967  0.925  0.925  1.000  1.021  0.902  1.132  
26 0.798  0.811  0.983  1.061  1.114  0.952  1.115  1.078  1.034  0.969  0.974  0.995  
27 1.341  1.123  1.194  0.997  1.000  0.997  0.920  1.000  0.920  1.281  1.123  1.141  
28 1.121  1.017  1.103  0.978  1.019  0.959  1.033  1.139  0.908  1.162  1.180  0.985  
29 1.020  0.902  1.131  0.989  1.011  0.978  0.972  1.003  0.969  0.990  0.915  1.082  
30 1.312  1.186  1.106  0.852  0.923  0.923  0.979  0.962  1.018  1.203  1.052  1.143  
31 1.114  1.084  1.027  1.046  1.142  0.916  0.908  0.935  0.971  1.098  1.158  0.948  
32 1.599  1.182  1.353  0.968  1.000  0.968  0.992  1.000  0.992  1.441  1.182  1.220  
33 1.279  1.083  1.182  0.824  0.986  0.836  1.094  1.014  1.079  1.177  1.083  1.087  
34 0.901  0.826  1.091  0.930  1.034  0.900  1.027  1.011  1.015  0.878  0.863  1.018  
36 1.031  0.815  1.264  1.007  1.089  0.925  1.106  1.092  1.012  1.139  0.970  1.174  
37 1.175  1.000  1.175  0.896  1.000  0.896  1.103  1.000  1.103  1.136  1.000  1.136  
38 1.025  1.000  1.025  0.950  1.040  0.914  0.936  0.958  0.977  1.000  0.996  1.003  
39 1.081  0.971  1.113  0.917  1.031  0.889  0.931  0.924  1.007  1.005  0.925  1.086  
40 1.067  0.843  1.265  1.074  1.193  0.900  0.917  0.900  1.018  1.129  0.906  1.246  
41 1.123  1.077  1.043  0.729  0.755  0.966  1.072  1.173  0.913  0.930  0.953  0.976  
42 1.220  0.987  1.235  1.186  1.281  0.926  0.995  0.959  1.038  1.537  1.213  1.268  
43 1.058  0.941  1.124  1.017  1.047  0.971  0.985  1.050  0.937  1.069  1.036  1.032  

Average 1.084  0.979  1.103  0.962  1.021  0.942  1.002  0.990  1.015  1.065  0.985  1.077  
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Table 6: Malmquist Indexes with Quality Change 

Company 
1998-1999 1999-2000 2000-2001 1998 vs. 2001 

Malmquist 
Index 

Quality 
Change 

Efficiency 
Change 

Technology 
Change M QC EC TC M QC EC TC M QC EC TC 

3 1.659  1.210  1.229  1.116  1.074 1.038  1.242  0.833  1.102  0.926  1.000  1.191  2.437  1.169  1.527  1.366  
6 0.976  1.054  0.927  0.999  0.951 1.008  1.113  0.848  0.822  0.994  0.752  1.100  0.894  1.098  0.776  1.049  
8 1.192  1.149  1.081  0.960  0.996 1.075  1.022  0.906  0.892  1.009  0.844  1.048  1.129  1.246  0.933  0.972  
10 1.278  1.037  0.877  1.405  0.968 0.996  1.140  0.853  1.023  1.001  0.997  1.025  1.244  1.021  0.996  1.224  
13 1.046  0.996  1.008  1.041  0.875 1.003  0.973  0.897  1.042  1.001  0.975  1.068  1.004  1.013  0.956  1.037  
14 0.740  0.998  0.778  0.953  0.935 1.007  0.918  1.012  0.951  1.004  1.087  0.871  0.704  1.045  0.776  0.867  
15 1.147  1.000  0.944  1.215  0.946 0.983  1.016  0.947  0.932  0.998  0.929  1.005  1.093  0.992  0.891  1.236  
16 1.086  0.965  1.248  0.902  0.911 1.006  1.000  0.905  0.915  1.008  1.000  0.907  0.977  0.959  1.248  0.816  
17 0.928  1.004  0.910  1.015  1.209 1.002  1.262  0.956  0.918  1.002  0.991  0.923  1.132  1.041  1.138  0.955  
19 1.026  1.032  1.044  0.953  1.028 0.987  1.000  1.042  1.031  1.027  1.000  1.004  1.027  1.043  1.044  0.943  
22 0.605  1.016  0.884  0.674  0.794 1.000  0.888  0.893  0.932  0.999  0.897  1.040  0.477  1.025  0.704  0.661  
23 1.162  1.012  1.000  1.148  0.824 1.010  1.000  0.816  1.094  0.999  1.000  1.095  1.030  1.019  1.000  1.011  
24 1.162  1.010  1.017  1.131  1.061 1.001  1.154  0.919  0.976  1.001  0.942  1.036  1.141  1.014  1.106  1.018  
25 1.149  1.002  1.030  1.113  0.936 0.997  0.988  0.950  0.914  1.001  0.897  1.018  1.019  1.002  0.913  1.114  
26 0.779  1.004  0.790  0.983  1.046 1.001  1.109  0.942  1.118  1.006  1.090  1.019  0.983  1.040  0.954  0.991  
27 1.359  1.000  1.165  1.167  1.004 1.002  1.000  1.002  0.922  0.999  1.000  0.923  1.293  0.999  1.165  1.111  
28 1.127  1.000  1.057  1.067  0.964 1.001  0.992  0.970  1.045  1.001  1.159  0.902  1.175  1.002  1.215  0.966  
29 1.004  1.000  0.891  1.127  1.003 0.998  1.025  0.980  0.970  1.002  1.017  0.952  0.992  1.002  0.929  1.066  
30 1.327  1.001  1.208  1.098  0.853 1.001  0.923  0.923  0.979  1.000  0.962  1.018  1.212  1.002  1.072  1.128  
31 1.118  1.003  1.094  1.018  1.046 1.000  1.142  0.916  0.903  1.001  0.925  0.976  1.099  1.007  1.156  0.944  
32 1.623  1.001  1.227  1.321  0.963 1.002  1.009  0.953  0.992  1.003  1.000  0.989  1.519  1.002  1.238  1.225  
33 1.302  1.006  1.091  1.186  0.820 1.000  0.986  0.831  1.093  0.999  1.014  1.079  1.183  1.000  1.091  1.084  
34 0.894  1.000  0.824  1.084  0.928 1.000  1.036  0.896  1.028  1.000  1.011  1.017  0.874  1.000  0.863  1.012  
36 1.038  1.001  0.815  1.273  1.007 1.000  1.089  0.924  1.106  1.000  1.092  1.012  1.144  1.006  0.970  1.172  
37 1.181  1.005  1.000  1.175  0.899 1.004  1.000  0.896  1.100  0.997  1.000  1.103  1.147  1.010  1.000  1.136  
38 1.024  1.000  1.000  1.024  0.949 1.000  1.040  0.913  0.936  1.000  0.958  0.977  0.998  1.000  0.996  1.001  
39 1.081  1.000  0.971  1.113  0.917 1.000  1.031  0.889  0.931  1.000  0.924  1.007  1.005  1.000  0.925  1.086  
40 1.067  1.000  0.843  1.265  1.074 1.000  1.193  0.900  0.917  1.000  0.900  1.018  1.129  1.000  0.906  1.246  
41 1.123  1.000  1.077  1.043  0.730 1.001  0.755  0.966  1.072  1.000  1.173  0.913  0.930  1.000  0.953  0.976  
42 1.220  1.000  0.987  1.235  1.186 1.000  1.281  0.926  0.995  1.000  0.959  1.038  1.537  1.000  1.213  1.268  
43 1.058  1.000  0.941  1.124  1.017 1.000  1.047  0.971  0.985  1.000  1.050  0.937  1.069  1.000  1.036  1.032  

Average 1.112  1.016  0.999  1.094  0.965 1.004  1.044  0.922  0.988  0.999  0.985  1.007  1.116  1.024  1.022  1.055  


