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Abstract

This paper addresses the existence of market clearing prices and the economic interpretation of strong
dudity for integer programs in the economic analysis of markets with nonconvexities (indivishilities).
Electric power markets in which nonconvexities arise from the operating characteristics of generators
moativate our andyds; however, the results presented here are generd and can be applied to other mar-
kets in which nonconvexities are important. We show that the optima solution to alinear program that
solves the mixed integer program has dud variables that: (1) have the traditional economic interpretation
as prices, (2) explicitly price integrd activities, and (3) support an equilibrium in the presence of non
convexities. We then show how this methodology can be used to interpret the solutions to nonconvex

problems such as the problem discussed by Scarf (1994).
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|. Introduction

Scarf (1990, 1994) describes most markets in today's advanced economies as having consder-
able indivighilities. For example, firms must make discrete decisons on whether to invest in anew pro-
ject or not, or to start-up a production process or not. These indivishilities, which cause nonconvexities
in the cost function, have important implications for markets and market clearing prices. It iswidely be-
lieved that in the presence of nonconvexities, it is not possible to guarantee the existence of linear prices
that will alow the market to clear.

Unfortunately, economists have largely avoided the modeling of nonconvexities such as discrete
choices and economies of scale because of mathematical and analytical intractability. * Furthermore, in
the face of nonconvexities, lineear commodity prices in generd will result in either a Stuation of excess
supply or excess demand, and the market will not clear.? Consequently, economists have used more
convenient and tractable linear or convex nonlinear optimization modd s to represent profit maximization
problems for producers and utility maximization problems for consumers. Such optimization problems
assume desirable properties such as the continuity (dong with linearity or concavity) of the objective
function to be maximized, and the convexity of the feasible region defined by the congdraint set.
Hence, an equilibrium in such a market yields a linear price (or vector of linear prices) and quantity
(vector of quantities) such that al economic agents maximize their objectives and the markets clear (the
quantity supplied equas the quantity demanded for each commodity priced). Conceptudly, a linear
price vector arises out of the application of the Separating Hyperplane Theorem. * Moreover, such as-
sumptions about the objective function and congraint sets dlow economidts to prove the existence of
market clearing prices using fixed-point arguments. Computetiondly, if the market equilibium problemis
solved by Samudson's (1952) principle, the equilibrium prices for such markets are smply the dud
variables (shadow prices or LaGrange multipliers) for the market clearing congraints for the goods in
question.

1 For example, standard graduate texts in microeconomics such as Kreps (1990) and Varian (1992) note
that assuming away nonconvexities is unredistic, but they proceed with the standard assumptions without
addressing the issue further. Moreover, standard mathematical references used by economists such as
Chiang (1984) and Takayama (1985) do not mention integer programming as a technique for solving apti-
mization problems with nonconvexities.

2 As a simple example in which nonconvexities prevent a market from clearing, consider a market in
which al firms have the same cost and entry is free. Each firm must incur afixed cost of one to produce
any positive amount of a good in the range (0,1]; in that range, margina cost is zero. If the market de-
mand curve is P = 2 — 0.6Q, then there is no market equilibrium. For any price less than 1, no firm will
produce and there will be a shortage. For any price strictly grester than 1, quantity supplied is infinite, and
there isa surplus. Findly, for P =1, quantity demanded is 1.67, but the quantity supplied will be no more
than 1, because if a second firm enters, it will not earn enough revenue to cover its fixed cost. Below, we
examine at length another example of this phenomenon posed by Scarf (1994).

3 As a jutification for the assumption of convexity, Arrow and Hahn (1971), Mas-Colell et al. (1995),
Takayama (1985), and Varian (1992) all argue that if agents in an economy were replicated many times
over, then linear prices will support a competitive equilibrium. Arrow and Hahn show how a competitive
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Such modding assumptions have alowed economists to congtruct useful models of economic
behavior, and over the years, conduct ingghtful smulation experiments with these increasingly complex
models. But since the work of Gomory and Baumol (1960), andogous dua variable interpretations for
mixed-integer programs have eluded economists and mathematicians®  The economic literature contir-
ues to reflect a belief that there is no andogous dua varigble interpretation of integer constraints that
yield prices with any meaning. Consequently, market models are largely unable to ded with the sgnifi-
cant nonconvexities that actudly exist in markets. In particular, many firms face discrete integer deci-
sions. For example, decisons to invest in a new capita project or not, or to sart-up a production op-
eration or not are discrete decisions. In addition to these discrete choices, many production processes
have economies of scale, a property contrary to the linearity/convexity assumption. Consequently, the
nonexistence of market clearing prices can be ared problem, and some degree of centraized coordina-
tion may be required in some markets to reach the welfare maximizing solution.

An important market where such nonconvexities are Sgnificant and are a concern in congtructing
prices is the short-term (day- to week-ahead) electric power market. Nonconvexities include start-up
and shut-down cogts dong with minimum output requirements (which date that if a plant is running, it
must produce at least a certain amount). These lumpy costs can be a large fraction of a generator’'s
cods, and ther treetment can influence optima operating schedules and ultimately invesment. It is
widely recognized that the presence of these nonconvexities generaly imply that there will be no linear
power prices that will support an equilibrium (e.g., Johnson et al., 1997, Madrigal and Quintana, 2000;
Hobbs, Rothkopf et al., 2001). The resulting potentia mismatch of supply and demand is of concern to
enginears respongble for maintaining system baance and stability, to economists and market designers
who are interested in promoting market efficiency, and to the market participants themsalves who are
worried about how measures taken to balance supply and demend might affect their outputs and reve-
nues.

In this paper, we present a method to construct prices for clearing markets with such noncon-
vexities. The method is based on methods for solving mixed integer linear programs, more usudly re-
ferred to as just mixed integer programs (MIPs). MIPs contain both continuous and discrete (binary or
integer valued) decision variables, and have objective functions and condraints that are linear in the de-
cison vaiables. Many nonconvexities can be modeled using integer variables in MIPs. Mixed integer
programming has become widdy used by engineers and management scientists for solving real noncon-
vex problems that arise in production and consumption (e.g., Hobbs, Rothkopf et al., 2001; Subrama-
nian et al., 1994). The increased use of mixed integer programming is in large measure because ad-
vances in computationa methods have made finding solutions to MIPs less problematic than it used to

equilibrium can be approximated in this case using the convex hull of the nonconvex set of congtraintsin
the firm’s or consumer’ s maximization problem and show the existence of this * approximate” equilibrium.

4 For example, see Takayama (1985, pp. 39-49, 103).

S As an example, Geoffrion and Nauss (1977) state “(integer programming) models have no shadow
prices or dud variables with an interpretation comparable to that in linear programming.”
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be. In this paper, we present a method based on mixed integer programming for finding linear pricesin
the presence of nonconvexities that will support equilibrium alocations in a decentralized auictionbased
market.

Our method for caculating such prices is relatively straightforward. First, solve a MIP to find
an optima solution. Next, delete the integrdity congraints and insart the solution values of the integer
variables as equdity condraints (cuts) into the resulting linear program (LP). Solve the LP to find the
associated dua variables on the market clearing conditions and new equdity condraints. These shadow
prices then can be used as prices to support an equilibrium. Such a method might be used, for instance,
by the administrator of an auction market. As an example, “independent system operators’ process
bids and cdculate prices in severd short-term power markets now operating in the U.S. and e sewhere;
many of these operators explicitly consider non-convexities in bids. Also, large consumers of a com+
modity might use this gpproach to design contracts with suppliers characterized by non-convex costs, an
example is the power supply procurement process indtituted by the U.S. Public Utilities Regulatory Pol-
icy Act of 1978 (Kahn et al., 1990).

The paper proceeds as follows. Section Il reviews the rdlevant literature. Thenin Section 11,
we define a linear program that solves mixed-integer programs and discuss why linear prices are not
enough for an equilibrium in the face of non-convexities. We then present in Section IV an example
used by Scarf (1994) to show how the market clearing prices are computed. In Section 'V, we provide
agenerd formulaion and genera proofs of our results dong with an explanation of the results. Section
V1 concludes and discusses applications and extensions.

Il. Related Literature

The economics and management science literature has occasiondly addressed the problem of
finding dud price interpretations to integer programs and MIPs. The classc work in this areais Go-
mory and Baumol (1960). In order to find the solution to the MIP, Gomory and Baumol add additiond
condraints (cutting planes) to the LP, which in their case they define as linear combinations of exigting
congraints, until the solution to the augmented LP results in an integer solution. With this methodology,
they obtain shadow prices that are non-negeative, impute zero profits, and infer zero prices for activities
not used to capacity.

However, the shadow prices obtained by Gomory and Baumol have some peculiar properties.
The prices themsdlves are integer valued and can vary with the choice of additiona constraints. Go-
mory and Baumol refer to the additiona congtraints needed to solve the problem as “ artificid”, and they
refer to the shadow prices on the additiona condraints as “ artificia capacity prices’ or asthe “opportu-
nity costs of the indivighilities” Moreover, they observe that condraints in the noninteger solution that
have positive prices may have zero pricesin the integer solution. For example, awarehouse may have a
capacity of, say, 3.4 units, but the units only come in integer values. In this case, the capacity condraint
may be binding (by making 4 units nfeasible), but there is il postive dack. In an economic sense,
there should be a positive price associated with this condtraint.
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In an attempt to ded with these peculiarities, Gomory and Baumol attempt to impute the prices
from the “artificid” congraints back into the origina congtraints to get prices. These recomputed prices
have the property that they will yidd zero profit and any good with a zero priceistruly afree good in an
economic sense. Unfortunately, the recomputed prices may not price at zero dl free goods.

The Gomory and Baumol prices dso have some welfare implications. First, competitive output
combinations arising from these prices will be efficient. However, Gomory and Baumol go on to Sate:

"Unlike the ordinary linear programming case, however, not every efficient output can
be achieved by smple centralized pricing decisons or by competitive market pricing
processes. Moreover, it is possible in the integer programming case that there exists no
hyperplane which separates the feasible lattice points from those which are preferred to
or indifferent with the optima lattice point. In other words, there may exist no st of
prices which smultaneoudy makes the gtimd point, Q, the mogt profitable among
those that can be produced and the cheapest among those that consumers consider to
be at least asgood as Q. That is, at any set of prices either producers will try to make,
or consumers will demand, some other output combination” (p. 537).

It is important to note here that Gomory and Baumol are searching for linear, uniform prices. They do
admit that there are decentradized discriminatory prices that would lead to dl efficient alocations, but
unfortunately do not proceed further with this line of inquiry.

Scarf (1990, 1994) describes the smplex agorithm for solving LPs as being analogous to the
economic inditution of competitive markets, specificdly a Warasan auction. The smilaritiesarethat in a
Walrasian auction, the auctioneer calls out prices until markets clear and there are zero profits, while the
smplex dgorithm attempts candidate solutions until no activity or dack variable can be introduced into
the solution basis that improves the solution.  Scarf then goes on to note that once increasing returns to
scde or indivighilities are introduced, it is difficult to draw any smilar anaogies between integer pro-
gramming agorithms and firms or markets with such indivishbilities. Moreover, Scarf (1990) makes the
following observations.

“And, perhgps even more sgnificant for economic theory, none of these agorithms
seemed capable of being interpreted - by even the most sympathetic student - in mean-
ingful economic terms. ... This test (for convex programs) for optimdity is not avallable
for integer programs; there smply need not be a set of prices that yields a zero profit for
the activitiesin use at the optimal solution. ... Isits profitability at the equilibrium pricesa
necessary and sufficient condition for a Pareto improvement - for the possbility that
everyone can be made better off wusing this new activity? The answer, unfortunatdly, is
no! ... The market test fails because the firm, whose technology is based on an activity-
andyds modd with integra activity levels, cannot be decentraized without losing the
advantages of increasing returnsto scale”’ (p. 381-382).
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In an atempt to link integer programming agorithms to economic inditutions, Scarf (1990)
draws the anadlogy of the internd gtructure of a large firm to an integer programming dgorithm. Scarf
looks at an integer programming agorithm that bresks the large integer program down into a decison
tree in which smdler sub-problems can be solved in polynomid time. Scarf likens the branches of this
tree to divisons of alarge firm, and the nodes as managers making decisons for each of the branches
below it. However, Scarf (1990) offers no method for computing prices that will help clear the market
in the presence of indivishilities, and that will provide a pricing test for Pareto improvements.

More recently, Williams (1996) discusses the mathematics of dudity and its potential economic
interpretations. Williams observes the same problems encountered by Gomory and Baumoal in that there
are often binding condraints in integer programs that have pogtive dack. Williams laments that this
problem leads to mathemeticd difficulties, particularly a violation of complementarity conditions. More-
over, Williams contends that the dua prices found by Gomory and Baumal do not provide a proof of
optimaity (equality of prima and dud objective functions). Williams then proposes a dua as a more
complex extenson of Gomory and Baumol. Computation of the dua relies heavily on advanced integer
optimization techniques, and in generd it is difficult to associate any dud variables with a particular re-
source. Findly, the dud proposed by Williams, while providing a proof of optimality, still does not sat-
isfy complementarity conditions. ©

[11. PricesintheLP that SolvetheMIP

A mixed integer problem with m continuous variables and n integer variables (R™ x Z") that has
afeasble and bounded optima solution can be converted to alinear program with at most m+ n conti-
nous variables (R™") and at most n additiona linear congtraints (Gomory and Baumol, 1960). These
gtatements can be proved by observing that an additional congraint can be defined for each integer
vaiable setting the variable equd to its optimal vaue, which produces a LP tha solves the MIP. *
Thus, n can be thought of as the maximum number of additiond degrees of freedom needed to price the
output or the maximum additiona dimensions needed for the space where the separating hyperplane or
linear support function exists. In R", the support function is nonconvex and poorly behaved (Gould
1971). InR™", there is dways a separating hyperplane.

6 Other operations researchers have also attempted to define interpretable and computable duals/shadow
prices/price functions for integer programs (Wolsey, 1981). For instance, Crema (1995) defines a shadow
price based on the average incremental  contribution of a resource, while Williams (1989) defines a mar-
gina vaue as the directiona partia derivative of the optimal objective function value with respect to per-
turbations in the right hand side.

71t isworth noting here that simply solving the integer program and inserting the optimal values as equality
congtraints is not what Gomory and Baumol had in mind. They were primarily concerned with using cu-
ting planes to find the solution to the integer program. As the reader will see below, we separate the issues
of finding the optimal solution and identifying cuts whose duals can be interpreted as prices.
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The next chdlenge is to find an economic interpretation of the linear prices in R™". For convex
problems there is a commodity vector for which there is a corresponding price vector.  In the fixed
charges example of Gomory and Baumol (1960, pp. 538-540), they assume that the additiond dimen
sons are atificid and not meaningful. However, we beieve the additiona dimensions required for inte-
ger problems can be usefully viewed as additiond commodities. One can think of the sub-optimdity as-
sociated with integrd activities and linear prices as a misspecification of the commodity space. If dart-
ups, or any other integrd activity, are necessary for production, the auctioneer can consder these activi-
ties as separate commodities complementary to the commaodity production activities that can therefore
be priced as well.

Alternaively, one could think of an integrd activity such as gart-up much like an externality. It
iswell known thet if externdities are present, market activities will result in sub-optima solutions unless
the externdity is explicitly priced which requires placing the good (or bad) externdity in the commodity
goace. In alinear program augmented with cutting planes that solves the integer program, one of the
cuts could be a “gart-up” condraint forcing the sart-up variable to equd its optimd vdue. Aswe will
see, the shadow price for “start-up” is the payment necessary to motivate the firm to Sart-up the unit or
branch operation.

V. Scarf’s Example

As an example of a market with nonconvexities that lacks a market clearing price for the com-
modity, consder the problem put forth by Scarf (1994). He postulates two types of firms, each with
ggnificant fixed cods and rdaively smal margind cods (Table 1). The objective o the problem isto
minimize the total cogt of satisfying afixed leve of demand.

Tablel. Production Characteristics: Smokestack versus High Tech (from Scarf, 1994)

Smokestack High Tech
Characteridtic (Type1 Unit) (Type 2 Unit)
Capacity 16 7
Congtruction Cost 53 30
Marginad Cost 3 2
Average Cost at Capacity 6.3125 6.2857
Total Cost at Capacity 101 44

Suppose that we were to attempt to satisfy a fixed demand of 61 units. The optima solution to
this problem would be to build 3 Smokestack units and 2 High Tech units with each running at full ca-
pacity except for the last Smokestack unit that only produces 15 units. What should the prices be? In
the context of linear prices, candidate prices might include the margind production costs of each type
and the average codts at full capacity of each type. Yet if price equaed ether of the margina costs (2
or 3), neither type of technology would want to produce. Each type would incur losses, so it is profit
maximizing a those prices to neither build nor produce. But on the other hand, if the price equaed the
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average cost of the Smokestack technology at capacity (6.3125), then two Smokestack type units
would be making zero profits, and the third Smokestack unit would be operating at aloss. At this price,
the High Tech types would be making postive profits, and an infinite number of this type would want to
enter the market. This cannot be an equilibrium since there would be excess supply at this price. The
only other serious candidate price is the average cost of the High Tech type at capacity (6.2857). At
this price the High Tech types would make zero profit if they operate at full capacity, but the Smoke-
stack types would till incur losses. Therefore, no Smokestack types would wish to enter; further, if
enough High Tech types enter to meet the demand of 61, the last unit would not be operating at capac-
ity, and would be incurring losses. Thus, a price of 6.2857 cannot be an equilibrium ather.

Now, consder the construction (Sart-up) for each type as a separate commodity so that there
are now three commodities that must be priced: the find output, congtruction of the Smokestack type,
and congruction of the High Tech type. Let aprice of 3, the margind cost of the higher cost type, be
the candidate price for the final output. Let a price of 53, the congtruction cost of the Smokestack type,
be the candidate price for building the Smokestack type. Findly, let aprice of 23 be the candidate price
for building High Tech types. A price of 3 on the fina output makes sense, in the example above, since
the third Smokestack unit can produce one more unit at a margind cost of 3 before being at capacity.
At the candidate prices, al Smokestack units would receive aprice of 3 for the find output that they can
produce a a margind cost of 3. Each Smokestack unit then receives a price of 53 for congtruction,
leaving each Smokestack unit with zero profits. The High Tech units each receive a price of 3 for the
final output that they can produce & amargind cost of 2, leaving each High Tech unit with amargin of 1
per unit of output. At the candidate congtruction price of 23, each High Tech unit is left with precisely
zero profit. Note that the congtruction price that High Tech units receive is not equd to its actua con
struction codts. If the market were to naively pay them actua congtruction cogts, the High Tech units
would be making positive profits which would leed to entry of an infinite number of High Tech unitsand
excess supply.

Thus, if gart-up decisons in that example are viewed as commodities, equilibrium supporting
prices can be congtructed. It turns out that these prices are the dud variables for alinear program aug-
mented by two cuts that define the number of Smokestack and High Tech units as equding 3 and 2,
respectively. In the remainder of this section, we andyze Scarf’s problem further and then present the
origina mixed integer programming formulation aong with the augmented LP that solvesiit.

Table 2 presents the least- cost solutions for demands ranging from 55 to 70 unitsin the example
presented by Scarf (1994). We solved the problems using Exce® Premium Solver. We calculated
market-clearing prices for these problems using the following procedure:

Lo

Formulate the problem as a mixed integer program and solve.

2. Find a LP that solves the MIP by adding cuts that set the integer variablesto their optima val-
ues.

3. Usethe dud variables and prima quantities from the linear program to form an efficient con-

tract.
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Table2. Cost Minimizing Choices of Plants and Output L evels (from Scarf 1994)

Number of Number of Output of  Output of
TypelUnits Type2Units TypelUnits Type2

Demand (Smokestack) (High Tech) Units Total Cost
55 3 1 48 7 347
56 0 8 0 56 352
57 1 6 15 42 362
58 1 6 16 42 365
59 2 4 31 28 375
60 2 4 32 28 378
61 3 2 47 14 388
62 3 2 48 14 391
63 0 9 0 63 396
64 4 0 64 0 404
65 1 7 16 49 409
66 2 5 31 35 419
67 2 5 32 35 422
68 3 3 47 21 432
69 3 3 48 21 435
70 0 10 0 70 440

A MIP formulation of the Scarf problem in which each firm’'s decison to enter is represented as
aninteger varigble is®

8 The formulation shown here can take an unnecessarily long time to solve unless modern MIP software
is used (Hobbs, Stewart et al., 2001). An equivaent formulation that would solve more quickly on basic

10
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Minimize ? (532, 730,)? 7 (307, ? 2q))
subject to: 74?7 ,6,?Q
716z, 7 q, 2 0 ?]
272,20, ? 0 ?]
0,0, ? 0 20,

z,2,;? {03 ?21,],

MIP solvers defines z, and z, as representing the total numbers of units of types 1 and 2, respectively, and
q, and g, as representing their total output.

11
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where

z;; and z; represent the decison to start up uniti (i = 1,2,..., 1) of type 1 (Smokestack) and unit j
(=1,2,...,J) of type 2 (High Tech), respectively,

Qu and O are the quantities of output for Smokestack unit i and High Tech unit j, respectively, and

| and J are the numbers of Smokestack and High Tech units, respectively that are consdered in
the MIP. These numbers should be large enough so that they do not congtrain the so-
lution; otherwise they will generate scarcity rents.

A linear program that solvesthe above MIPis

Minimize ? (533, 73q,)? ? (307, ? 2q;)) Dud Varigbles
subject to: ?i%??jsz?Q y
716z, ? q, ? 0 ?i Yii
7, ?Z ?2i Wi
2727 ? 0 ?] Yz
2,? 2, ?] W
0;,d2; ? 0 21,7,
where
z, and 7,  aetheoptima valuesfrom MIP2, and
y isthe single commodity price for al production,
Y is the capacity dud varidble for the ith Smokestack unit,
Wi is the start-up price for the ith Smokestack unit,
Vi is the capacity dud variable for jth High Tech unit, and
Wy, isthe start-up price for the jth High Tech unit.

Table 3 summarizes the vaues of the dud variables from solving the LP for each of the in-
stances in Table 2 As we show in the next section, the dua variables for the market dearing and inte-
ger variable condraints, when used as prices, collectively can be used by a market operator (auction
eer) to define a contract that clears the market and is efficient. Each firm i of typet ispaid wy* z* for

garting up and y* g, * in exchange for producing qti* .9 Negative prices are payments to the auctioneer
as part of the contract. Aswe will dso show in the next section, this contract yields nonnegative profits
for each player. Further, these prices support an equlibrium. That is, under these contract offers,
those producing and those not producing are both economicaly satisfied with the individua contract

offer, in the sense that under the offered prices, no other levels of output would increase profit. Findly,
the solution is efficient (in this case, least cos).

9 In generd, it is necessary to specify the quantity to be produced in the contract because price signals
alone as decentralized mechanisms are not aways sufficient to clear the market for either convex or non-
convex problems. Thisis not a characteristic of MIPs alone, but is also true for linear programs. In con-
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Table3: Dual Pricesfor Scarf's Problem

Unit 1 (Smokestack) Unit 2 (High Tech)
Dual Price Commodity Sart-up Capacity Sart-up Capacity
Set Price Price Price Price Price
Set I? 3 53 0 23 -1
Setl1® 6.3125 0 -3.3125 -.1875 -4.3125
Setlll® 6.2857 429 -3.2857 0 -4.2857

a Appliesto al integer demand levels from 55 to 70
b. There are aternative dud solution for demands of 55,56,58,60,62,63,64,65,67,69,70; for
these solutions, each unit in the solution of both types is producing at its capacity.

In Scarf’s example, the commodity price (y*) is either the variable cogt of unit 1 (the highest
unit margina operating cost), the average cost of unit 1 at full output, or the average cost of unit 2 a full
output (Table 3). In this case, there are often dternative optima contracts, depending on the leve of
demand, as indicated in Table 3. These result from degeneracy in the primd LP, semming from the
coincidence that demand exactly equals the sum of the capacities of the unitsin the solution. However,
each set of contract terms yields the same revenue and output result. Each aso has an economic inter-
pretation. There are three basic pairsof contracts that use the dud variablesin Table 3:

Contract Pair | (using dud price st 1):

1. For Smokestack units: produce q;*; get paid $3/unit of production (the highest margind cost of a
running unit); and get paid $53 to Sart up.

2. For High Tech units: produce gz* ; get paid $3/unit of production; and get paid $23 to start up.

Contract Pair I (dual price set I1):

1. For Smokestack units: produce qu;*; get paid $6.3125/unit of production (average cost of unit 1 at
capacity); and get paid O to start-up.

2. For High Tech units produce q*; get paid $6.3125/unit of production; and get charged $0.1875
if the unit is Sarted up.

Contract Pair 111 (dua price set 111):
1. For Smokestack units: produce q;*; get paid $6.2857/unit of production (average cost of unit 2
a capacity); and get paid $0.429 to start up units.

vex qotimization, only cost functions that are strictly convex at the equilibrium will, in genera, alow for
pure price signals in an auction context. Otherwise, quantities must be included in the auctioneer's con+
tract offer when there are aternative optima responses to a given price. For instance, if a supplier is on
the flat part of a margina cost curve, the auctioneer must send quantity signals in addition to price signals
to obtain a feasible solution that clears the market without excess supply or demand.

13
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2. For High Tech units: produce o*; get paid $6.2857/unit of production, and get paid $0 to start up
units.

Contract pair | will, for dl levels of demand, clear the market. Any of the three contracts will work
when both plants types run at capacity (under demands of 55, 56, 58, 60, 62-65, 67, 69, 70). How-
ever, under other demands (57, 59, 61, 66, 68), one or more Smokestack units operate at partid ca-
pacity because that type has the higher margina cost. In those cases, Contracts |1 and 111 do not sup-
port an equilibrium, as Smokestack units not running at capacity would not recover their costs. Those
units would aso like to produce more at these prices since their margind cost is only $3/unit when run-
ning a less than capacity.

In this example, it turns out that al units producing are offered a contract that pays exactly their
costs. The start-up payment is the difference between totd cost and the commodity revenues. Butin
generd, profits (scarcity rents) can be poditive if, for ingance, some firms possess uniquely low cost
technologies. In the Scaf example, however, there are an infinite number of potentid entrants with
cods identicd to firms in the solution, so for an equilibrium to accur, no firms can be earning positive
rents.

These linear price contracts can be viewed as being andogous to multi-part prices for com-
modities. For instance, a start-up payment can be viewed as being smilar to a demand or customer
charge in utility pricing. In generd, it is well recognized that multi-part pricing is necessary for efficient
pricing in the presence of nonconvex cogts. As an example, in the presence of demand with nonzero
eadticity, the best one-part prices are Ramsey (1927) prices and are "second best" when compared
with efficdent multi-part prices. Optima multi-part prices derived in the above manner are Smilar to a
solution to a cooperative bargaining problem (Luce and Raiffa 1957) and to optima multi- part pricing
for naturd monopolies such as demand and commaodity charges in regulatory contracts (Brown and
Sibley 1986). It is dready known that lump-sum payments or multi-part prices are necessary for effi-
cient pricing of a single good with nonconvex costs (see ibid. and Sharkey (1982)). It then should
come as no surprise that more degrees of freedom for pricing in the contract alows for grester effi-
ciency in a market with no transaction costs. For MIPs, the pricing degrees of freedom needed are
bounded by the sum of the number of explicit constraints and the number of integer variables. ™ If the
buyers problems are dso MIPs, optimal contracts can be devised for both buyers and sdlers. In the
next section, we present our generd results for al markets that can be represented by mixed integer
programs.

101n our experience in solving eectric power unit commitment models, the number of non-zero prices as-
sociated with start-up and shut-down decisions is one to two orders of magnitude smaller than the number
of such variables. However, in generd, the number of additiona prices could in theory equal the number
of integer variables.
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V. General Formulation and Proofs

In this section, we present a result concerning the equivalence of a MIP and an LP augmented
with certain defined cutting planes. We then define a contract that an auctioneer might offer that is effi-
cient and that has prices that support a market clearing equilibrium. The contract can be viewed as a
modified second-price auction because each participant in the auction is paid the same price for the
commodity it provides, but in addition may receive payments associated with its discrete decisions, rep-
resented as integer variables. Although these results are phrased as if they apply only to forma auction
markets, they are dso applicable to other markets.

Consider an auction market that can be represented by a Primal Mixed | nteger Program (PIP).
The formulation below assumes that the auctioneer is buying and/or sdling a set of goods, and has an

objective of maximizing the vaue bidders receive from them. The auctioneer is smply a computer code
that finds a solution to the problem: **

PIP Maximize: Ve = ? 6% 2?7  dz

Subjectto: 7 A% ?? A,z ?b,

BiiX ? B,z ? b, ?k
X, ?0 ?k
z 7 {03 ?k,

where

Xk Z are activitiesor column vectors of activities for participant k in the market (k ? K),

C, 0« arethe benefits (scaars or vectors) associated with activities of participant k (scalars or row
vectors). Thus, axy + diz isthe benefit accruing to participant k,

Ad, A,

Ba,Be aematricesof congraint coefficients,

by represents the right hand sides of internd congraints of the market participant k (scalars or
column vectors),

bo represents commodities to be auctioned by the auctioneer (ascalar or column vector), (Ina

double auction where the auctioneer just facilitates trades, by = 0.), and
{0,3"™ jsthe set of 0-1 activity vectors of cardindity n(k), and n(k) is the number of rowsin vector

Z

Lower case characters represent scalars or vectors, upper case characters represent matrices; al multi-
plication is of compatible dimensons.

11 In general, these problems may be hard to solve because, with a few specia exceptions, MIPs are NP-
hard problems (i.e., there is no agorithm whose solution time is guaranteed not to increase exponentialy
with the size of the problem) (e.g., Johnson et al. (1997)).
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A Primd Linear Program that solves PIP is.

PLIP(z*) Maximize Vo, = ? 6% 2?7 4z

subject to: ? AX?? ALz 2Dy

BuX ? B,z ? by 7K
2?2 ?k
X, ?0 7k,

where z&* represents the values of the z variablesin an optima solution to PIP. In generd, PLIP con-
tains more congraints than PIP; these are needed for the LP to solve the MIP and to yield strong dual-
ity. Thedud of PLIP(Z*) is

DLIP(z*)  Minimize Vour = Y ?? Vb 2?7 Wz

subject to: YoAq ? VBa ? C. ?k
YoAc ? VB ? W, ? dy ?k
Y, ? 0
Y. ? 0, 72k
W, unrestricted ?k,

whereyo, Yk, Wk aethedud variables, either scaars or gppropriately dimensioned row vectors.

Theorem 1. Vvpp* = Vpp* = Vpup*, Where* indicates the optimal solution value for the respective
problems.

Proof: Vpip* = Vpp* because PLIP is PIP with the additiond congtraints that the integer variables
are condrained to their optima vaues (which then dlows the integraity condition z ? Zy of PIP to be
dropped as redundant). vp p* = vpp* by drong dudity of linear programs. &

Definition 1. A market clearing set of contracts is a set of contracts with the following
characterigtics:

1. Each bidder isin equilibrium, in the sensethat given:
?? the prices{yo*, yi*, w*} and payment function defined by the contract, and

?? no redrictions on xy and z other than the bidder’ sinterna congraints (Buxk + Bez ? by, z ?
Zy),

16
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no bidder k would be able to increase its net benefit (Cxx + diz Minus its payment) over that re-
cavedif x, = x* and z = z*. Thus, the prices support the equilibrium solution {x* ,z*} .

2. Supply meets demand for the commodities (i.e.,, ?« (Aux* + Acz*) ? bo).

Definition 2: Let contract Ty be a contract between the auctioneer and bidder k with the falowing
terms:

1. Bidder k buys (or sdls) z=z*, xi=Xi*;

2. Bidder k pays an amount to the auctioneer equa to the following payment function:
Yo (Aaxict Aez) + Wi Z.

where, as before, * indicates an optima solution to PLIP or DLIP, as appropriate. This contract isa
modified uniform price auction contract. Let T ? {T« foreach k ? K}.

Theorem 2: T isamarket clearing set of contracts.

Proof: Let the optima solution to PLIP(z*) be {x¢*,z*'} and the optimd solution to DLIP(z*) be
{yo*, W*, w&}. (Weusethe notation z*' to diginguish the optimd vaue of the variadle z from the
fixed right hand sde of the condraint z.= z* in PLIP(z*).) The Karesh- Kuhn-Tucker conditions for
optimality of these problems are:*

0? (Yo*Aa + Y¥Ba- €)? x& 20 7k,
0? (Yo*Ae + YBet Wt - d)? z* 2?0 2k,
0?Yo*? (P AaXi* + 2k Az ?- b)) 70

0?2 y* ? (Bax& + Boz*?- )20 2K,
Wi (@& ?-z¢ ) =0 2k,

Now consider the following problem. Say that when the auctioneer defines T, each participant k is of-
fered prices {yo*, W*} (term 2 of the contract), but their prima variables are uncondtrained (term 1is
not enforced). Then each participant k will solve the fallowing MIP of maximizing its benefits minus
payment, subject to itsinternd congraints.

PIR, Maximize Vppk = (CXk + k) —Yo* (AkaXict Aozl -Wi* Z

12

12 Note that “0 ? f(x) ? x ? 0" is shorthand for the following complementarity condition for a scalar or
column vector x and afunction f(x) of the same dimension as x:

0?f(x); x?0; f(x)'x=0.

17
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SijeCttO: Buxx + Bz ? bk ?k
X ?0, 7k
z? Z 7k

Let vpp* be the vadue of the objective of PIPy at {z*, x*}. We can show that vpip* = yi* by asfol-
lows. Insert {z*, x*} into the objective of PP, and then add the term yi* (Baux* + Bz - by) to
the objective (which is permissible, snce by the complementary dackness conditions given above, that
term equas zero), and then cancedl terms:

Veip = (0Xi* + kzd) —Yo* (AaXic + Az ) Wi Ze — i (Baxi® + Bz —by)
= (Ck - Yo At -V Ba)Xt + (di - Yor Az - Vi Biozi* - Wi)z + Yt b
= yi* by

The third equdity follows because the first and second terms in the second equdity each equd zero by
the complementary dackness conditionsgiven earlier.

Now, let the optimd solution to PIR be vpip* *. If isvepd* islessthan or equd to vep* for each K,
then the contract T is market clearing for the reasons below:

? no participant can obtain afeasible {xy, z} giving agreater profit in PIP than {x*,z*}, and

? as {X&*,z*} by definition solves PLIP, they dso saisfy the maket clearing condition
?k(Ak1Xk+ AlQZk) ? bo.

Thelagt thing that must be shown isthat veip**  ? Ve iISindeed true. To demondrate this, rearrange
theterms of vpp** to yied the following:

Ve * = Maximize [(Cc - Yo* A)Xk + (i - Yo* A - W)z

subject to: Baxk + Bz ? b ?k
Xk 20 ?7k
z ?Z 7k

Now let {x**,z**} bethe optima solution for PIR.. Asaresult, Veipc** = [(Cc - Yo A)Xi** + (0 -
Yo A - WiF)zx*]. Now add the following nonnegetive term to Vpip* *:

'Yk*(Bklxk** + BQZ(** - bk)

Thisterm is nonnegative because yi* ? 0 (see the PLIP complementary dackness conditions, above)
and Bux** +Bez** ? by (by the definition of PIR,). Asaresult:

13 Note that since both Yk and by are nonnegative, Vpip t00 IS nonnegetive, and al bidders must earn
nonnegative (and perhaps positive) profits under contract T.
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Vo™ 2 [(Cc - Yo" Aa)Xic* ™ + (0 - Yo* Aa - Wi*)Z&*] - Y& (Biax™™ + Bz -by)
=[(Ck - Yo Aa =Y Ba)xid * + (di - Yo* Aie - Vi Bo - W)z * ] + yie b
? Vb = Ve,

Thelast inequdity results from noting that:

1 (& - YorAa W Ba)xe** ? 0, because (Cc - Yo*Au -Yi*Ba) ? 0 (from the definition of DLIP,
above) and x,** ? 0.

2. (dk - Yo*Ac - Vi B - W) zx* ? 0, because (dk - Yo* Ak - Yi* B - Wi*) ? 0 (again from DLIP) and
zx*?0.

Consequently, we have shown that vpip** 2 Vpipe®; 1.€., N0 participant k can obtain afeasible solu-
tion giving a grester profit for PIP than the auctioneer's solution {x,*, z*} . &

Theorem 2 shows that the dua solution to the constructed linear program PLIP that solves the
mixed integer program PIP can be used to form a contract for dl bidders. The contract uses the primal
quantities and the dud varigbles for the commodity and integer condraints as prices. In this modified
uniform price auction, bidders may make or receive payments associated with their lumpy decisons. In
contrad,, in a traditional uniform price auction, a bidder isjust paid the margina price (the dua varigble
on the market dearing congraint) for its output and ignores the dud variable on the individua capacity
condraint.

Theorem 2 in the context of Scarf’s problem provides other insights. For instance, there are
some levels of quantity demanded for which both Smokestack and High Tech units are “inframargind”
in the sense that their margina cogts are less than the commodity price and dl are operating at capacity
(see Table 3). In the linear program, the resulting scarcity rents appear as positive dud variables on
binding upper bounds of activities. And in some of these ingtances, High Tech units have negative
start-up payments, indicating that scarcity rents exceed start-up costs.  Such negative start-up pay-
ments can occur in order to dissuade uneconomic entry. For ingtance, if any unit of awiddy available
type is collecting scarcity rents, then an infinite number of those units will wish to enter and the market
will not clear. However, in auctions where entry cannot occur instantaneoudy (e.g., daily power mar-
kets), then rents can be earned by units under a T contract even when, in thelong run, the technology
iswiddly avalable.

Examples of auctions formulated in a manner smilar to, and yidlding linear prices Smilar to T
can be found in the New York Independent System Operator (NY1SO) and the Pennsylvania-New
Jersey-Maryland Interconnection (PIM) dectric energy markets. In these markets, the market operator
explicitly asks generators to bid costs associated with non-convexities (start-up and minimum load). For
example, suppose a generating unit is started up in order to meet energy or reserve margin (spare ca
pacity) congraints for the entire system. If the revenues from saes of energy and reserves fail to cover
those codts, then the auctioneer provides a lump sum payment to the generator to make up the differ-
ence. On the other hand, if a generating unit’s scarcity rents associated with binding internd capacity

19



Submitted to American Economic Review

congraints are greater than start-up costs, then the generating units are allowed to keep the rents, effec-
tively ignoring the dua variable on the art-up constraint.

Theorem 3: If each participant k submits a bid reflecting its true vauations (Cxx + diz) and true con
draints Baxk + Bezc ? be % ? 0; z ? Z, an auction defined as follows maximizes net socid
benefits (?, [ cx + diz] ) and is market clearing:

1. Theauctioneer firgt solves problem PIP, yidding prima solution {x*,z*};
2. Theauctioneer determines prices{yo*, Wi*} by solving problem PLIP(Z*); and
3.  Theauctioneer offers contract T.

Proof: By definition, the solution {x,*, z*} of PIP maximizes net socid benefits and satifies the sec-
ond condition of market clearing (?« [ Auxk + Az ? bo). The only remaning condition is whether the
prices from PLIP(z*) support this solution. Theorems 2 demondtrates this for the payment schemesin
T. &

Theorem 3 is an extenson, to auctions with nonconvexities, of the Fundamental Theorem of
Whéfare Economics, which states that a competitive equilibrium is Pareto Optimd.

VI. Conclusions, Applications, and Extensions

This paperhas addressed a problem that has troubled the economic anadysis of markets with
non-convexities: the existence of market clearing prices. Given the presence of non-convexities in
emerging eectricity auctions, this problem is of practica as wdll astheoreticd interest. We have shown
that the optimal solution to a linear program that solves the mixed integer program representing the non-
convex problem yields shadow prices (dud variables) that have an economic interpretation, and can be
used to design an optima contract with prices that support an equilibrium in a decentrdized market.
The contract defined by T provides an answer to Scarf’s (1994) search for a set of pricesin the pres-
ence of nonconvexities that yield zero profits for dl activities in the optima solution. A modified im-
plementation of T, in contrast, dlows pogtive profits for activities in the solution, and bears strong re-
semblance to actua auction mechanisms used in some power markets. These results hold for any mar-
ket that can be represented by mixed integer program.
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Given recent advances in computationd technology and integer programming agorithms find-
ing the prices necessary to define these contracts is practical. Roughly speaking, MIPs today take on
average about the same or lesstime (wal clock) that linear programs of Smilar Sze took to solvein the
1960s (Ceria, 2001; Hobbs, Stewart et al., 2001).14 Therefore, the results presented here are not
relevant just to toy problems. In particular, goplying this goproach to dectric generating unit commit-
ment auctions could be a significant step forward. As pointed out in Section I, the generating unit cont
mitment problem for day-ahead energy markets is inherently non-convex due to the discrete choice of
whether or not to start-up a unit and minimum run levels. The problem facing the market operator is
thet in generd linear prices in energy alone do not exist to support an equilibrium. As mentioned
above, new and evolving dectricity auction markets like PIM and NY1SO have implemented market
and pricing mechanisms smilar to the one discussed in this paper. Y et, there are other eectric power
auction mechanisms such as those in Cdifornia and New England that do not accept non-convex bid
functions, leaving it up to the individua generators to average in cogts related to start-ups in their e
ergy bids.

Now that we can define an equilibrium in markets with non-convexities, there are many ques-
tions that can be examined. First, Scarf’ s (1994) search for price based tests for Pareto improving en
try can be re-examined. For example, if any potentid activity can make a postive profit under the
prices and quantities specified n contract T, then it should be included in the solution. Future work
should investigate the definition and properties of such tests. However, such tests are unlikely to be
both necessary and sufficient for evauating the profitability of such activities in non-convex problems; in
generd, there may be some activities that fall those tests, yet their incluson would il increase profit.
A definitive test is to include the activity as a decison varigble in the MIP and resolve the modd. For-
tunately, improved capabilities in mixed integer programming make that a more practica gpproach than
it once was.

14 with respect to computational times, the theoretical upper bounds on calculations have usually been
much greater than the actua solution times for applications. There are several possible explanations for
this discrepancy. First, it may be that actua applications seldom encounter pathological problems. Sec-
ond, the difficult to solve problems are shelved. Third, the problems can often be reformulated to remove
many pathologies.
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Second, much has been made in the eectricity industry about the possibilities for strategic bid-
ding behavior to manipulate prices (e.g., Borenstein and Bushnell, 1999). Adding another bidding pa-
rameter, such as an integrd activity like start-up costs, gives generators another degree of freedom that
they can manipulate strategicaly.1> An examination of the posshilities of awhether a greater exercise
of market power, and hence higher market power rents, are possble in the auction market proposed in
this paper versus smple auction in which nonconvexities are ignored is required to address the above
issue. In the context of such a study, issues like what bid parameters (integral or continuous) should be
bid grategicaly to maximize profit, and what kind of activity rules hinder or help such drategic behav-
ior. Moreover, the auction pricing mechanism proposed in this paper could be compared afirst-price
and Vickery-Clarke-Groves auction mechanisms. 16

Third, the efficiency of the auction pricing mechanism proposed here can be compared to the
efficiency of ample auctions that ignore norconvexities. In particular, an efficiency comparison of the
MIP based auction to a smple (commodity only) one-time auction and to a smple (commodity only)
repeated auction would be of interest. In the context of eectricity markets, the above comparison may
have interesting implications. In &rms of overdl cogts, the cost of start-up/minimum-load payments
may be smal relative to energy costs. In PIM, sart-ug/minimum-load payments per MWh of load are
about 100 times less (roughly $0.30/MWh vs. $30/MWh).17 While the overal cost impact of non-
convex decisons may be smadl, these costs can be a sgnificant portion of generating total generating
costs to generators serving peek load or rdiability functions. Moreover, without this mechanism, gen-
erators may receive physicdly infeasible dispatch orders.

Findly, our results say nothing about the uniqueness of equilibrium prices. In fact, as can be
seen in Scarf’s example in Section 1V, there can be multiple equilibrial8 Alternative equilibrium prices
might lead to different distributions of surplus for market participants under contract T. Given that
thereisalot of money at stake in the new dectricity markets, where the bidding of non-convex costsis
dready taking place, an examindion of the distributiona consequences of dternative equilibria is of
keen interest to these market participants.

15 One intuitive observation can be made about strategic behavior. In the context of a sellers auction
where the technologies are widely available and entry is instantaneous (as in the Scarf example in Section
IV), even if the participants are not constrained to bid costs, a MIP auction solution produces a Nash equi-
librium in which all generators bid their costs. The reason is that if anyone bids above its costs it would be
immediately undercut by an entrant with the same costs. However, while this may be a good point of de-
parture, the reality of market power in markets with integral activitiesis much different.

165ee Hobbs et al. (2000) for a start at this.

17 personal Communication, Andy Ott, PIM

18Admittedly, in Smple examples degeneracy of the augmented LP can be a problem, leading to multiple
dual solutions. However, in larger more complex problems, it is not entirely clear how big a problem a
multiplicity of solutions will be. Here, for instance, it turns out that the multiple equilibria in Scarf’s prao-
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