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Abstract
A computationally attractive model for the analysis of con-

joint choice experiments is the mixed multinomial logit

model, a multinomial logit model in which it is assumed

that the coefficients follow a (normal) distribution across

subjects. This model offers the advantage over the stan-

dard multinomial logit model of accommodating hetero-

geneity in the coefficients of the choice model across

subjects, a topic that has received considerable interest re-

cently in the marketing literature. With the advent of such

powerful models, the conjoint choice design deserves in-

creased attention as well. Unfortunately, if one wants to

apply the mixed logit model to the analysis of conjoint

choice experiments, the problem arises that nothing is

known about the efficiency of designs based on the stan-

dard logit for parameters of the mixed logit. The develop-

ment of designs that are optimal for mixed logit models or

other random effects models has not been previously ad-

dressed and is the topic of this paper.

The development of efficient designs requires the evalu-

ation of the information matrix of the mixed multinomial

logit model. We derive an expression for the information

matrix for that purpose. The information matrix of the

mixed logit model does not have closed form, since it in-

volves integration over the distribution of the random

coefficients. In evaluating it we approximate the integrals

through repeated samples from the multivariate normal

distribution of the coefficients. Since the information ma-

trix is not a scalar we use the determinant scaled by its di-

mension as a measure of design efficiency. This enables us

to apply heuristic search algorithms to explore the design

space for highly efficient designs. We build on previously

published heuristics based on relabeling, swapping, and

cycling of the attribute levels in the design.

Designs with a base alternative are commonly used and

considered to be important in conjoint choice analysis,

since they provide a way to compare the utilities of pro-

files in different choice sets. A base alternative is a product

profile that is included in all choice sets of a design. There

are several types of base alternatives, examples being a so-

called outside alternative or an alternative constructed

from the attribute levels in the design itself. We extend

our design construction procedures for mixed logit models

to include designs with a base alternative and investigate

and compare four design classes: designs with two alter-

natives, with two alternatives plus a base alternative, and

designs with three and with four alternatives.

Our study provides compelling evidence that each of

these mixed logit designs provide more efficient parameter

estimates for the mixed logit model than their standard lo-

git counterparts and yield higher predictive validity. As

compared to designs with two alternatives, designs that

include a base alternative are more robust to deviations

from the parameter values assumed in the designs, while

that robustness is even higher for designs with three and

four alternatives, even if those have 33% and 50% less

choice sets, respectively. Those designs yield higher effi-

ciency and better predictive validity at lower burden to

the respondent. It is noteworthy that our ‘‘best’’ choice de-

signs, the 3- and 4-alternative designs, resulted not only in

a substantial improvement in efficiency over the standard

logit design but also in an expected predictive validity that

is over 50% higher in most cases, a number that pales the

increases in predictive validity achieved by refined model

specifications.
(Conjoint Choice; Design Efficiency; Heterogeneity; Base-
Alternative)
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1. Introduction
Experimental choice analysis places the design of

choice tasks under control of the researcher, offering

the advantage of choosing a design that provides

improved statistical properties of the model used to

analyze it. Not all designs are equally useful, and

several articles have addressed the problem of how

to construct good ones (Lazari and Anderson 1994,

Bunch et al. 1994, Huber and Zwerina 1996, Arora

and Huber 2001, Sándor and Wedel 2001). The crite-

rion mostly used by researchers in the field for what

constitutes a good design is that it should provide

as much information as possible on the parameters

of interest. That is, it should lead to more efficient

estimators.

Data from conjoint choice experiments are usually

analyzed with multinomial logit models (Louviere

and Woodworth 1983). An important drawback of

that model is that does not accommodate consumer

heterogeneity. Accounts of heterogeneity in the anal-

ysis of consumer behavior constitute an important

topic in the recent marketing literature (Allenby

et al. 1998, Allenby and Rossi 1999, Wedel et al.

1999). The ability to identify customer heterogeneity

is important in new marketing approaches, such as

one-to-one marketing, micro marketing, and mass

customization. Several approaches to representing

heterogeneity in choice data have been taken, the

most important distinction between them being

whether one assumes that the parameters of interest

follow a continuous or a discrete distribution. The

assumption of discrete mixing distribution leads to

finite mixture multinomial logit models for conjoint

choice experiments (Kamakura et al. 1994, DeSarbo

et al. 1995). Such models connect elegantly to sub-

stantive theories of market segmentation, but the

critique has been levied against them that they can-

not adequately capture heterogeneity if the true un-

derlying distribution is continuous (Allenby et al.

1998, Allenby and Rossi 1999). Many authors have

turned attention to continuous mixing distributions,

specifying random coefficient models. For example,

Haaijer et al. (1998) proposed a random coefficient

multinomial probit model for the analysis of conjoint

choice experiments. Whereas their model is computa-

tionally demanding, a computationally more attrac-

tive—but conceptually similar—alternative is the

mixed multinomial logit model (Revelt and Train

1998, McFadden and Train 2000): a logit model in

which it is assumed that the coefficients follow

a (normal) distribution across consumers. Such mod-

els have been applied to the analysis of scanner pan-

el data (e.g., Allenby and Lenk 1994, 1995), but

applications to conjoint choice experiments are less

common. Recently, Huber and Train (2001) provided

such an application and showed that the classical

(Maximum Likelihood) and Bayesian (Gibbs sam-

pling) approaches to estimate those models yield

very similar results. With the advent of such power-

ful but highly parameterized models and sophisti-

cated estimation methods, the quality of the design

deserves attention, since efficiency of the estimators

becomes more critical if many parameters are esti-

mated. Unfortunately, in applying the mixed logit

model to the analysis of conjoint choice experiments,

nothing is known about the efficiency of classical de-

signs for parameters of the mixed logit. The devel-

opment of designs that are optimal for mixed logit

models or other random effect models has not been

addressed and constitutes the topic of this paper.

Conjoint choice experiments pose complicated

problems of design construction. This is so because

the design of experiments for the logit model, con-

trary to experimental design methods for linear

models, requires knowledge of the values of its pa-

rameters. This situation arises because the amount

of information on the parameters provided by the

design is dependent on the value of those parame-

ters. Several solutions to that problem have been

proposed that include setting all parameters to zero,

using ‘‘reasonable’’ parameter values, estimating pa-

rameter values from a pilot study, or obtaining them

from judgments by consumers or managers (see

Bunch et al. 1994, Kuhfeld et al. 1994, Lazari and

Anderson 1994, Huber and Zwerina 1996, Arora and

Huber 2001, Sándor and Wedel 2001).

We elaborate on Sándor and Wedel (2001), who

present a method to provide more efficient designs

based on prior information about the parameters
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and the associated uncertainty, elicited from manag-

ers. It is a Bayesian procedure that assumes a prior

distribution of likely parameter values and opti-

mizes the design across the entire range of the prior

distribution. They propose a procedure to obtain

prior information from managers that they illustrate

in an empirical application, where they elicit prior

information on parameter values as well as the asso-

ciated uncertainty. However, neither this approach

nor one of the currently available approaches for

choice designs accommodates heterogeneity. Design

construction is complicated if consumer heterogene-

ity is to be accommodated, as was shown by Lenk

et al. (1996) for metric conjoint designs.

The work of Lenk et al. (1996) is a useful point of

departure for our study. They proposed the applica-

tion of a random coefficients (hierarchical Bayes)

model to analyze metric conjoint data. Those models

are designed to recover individual level estimates

even from short conjoint questionnaires, using pref-

erence ratings and accommodating consumer hetero-

geneity. With the availability of such random

coefficient models to analyze conjoint experiments,

the issue of the design of those experiments became

prevalent. Therefore, Lenk et al. (1996) develop ex-

perimental designs that provide high efficiency for

parameters of their random coefficient model. Their

approach of design and analysis, however, applies to

standard metric conjoint experiments and not to

choice experiments.

In this paper we address this issue and design

choice experiments that provide more efficient esti-

mates of parameters of the mixed logit model. We

develop designs for the mixed logit, following the

objectives of Lenk et al. (1996) and previous ap-

proaches for logit models, such as those proposed

by Huber and Zwerina (1996), Sándor and Wedel

(2001), and others. We provide an algorithm to

construct the designs. The designs lead to large effi-

ciency improvements, as we show in a Monte Carlo

study. The next section describes the mixed logit

model and proposes a design criterion for it. Subse-

quently, we describe the procedures that we use to

generate the designs. In §3 we compare the perfor-

mance of standard logit designs with that of mixed

logit designs and investigate the sensitivity of the

mixed logit designs to misspecification of the un-

known parameters in design construction. In the

Monte Carlo study we investigate the relative per-

formance of designs in four different design classes

(two, three, four alternative designs and two alterna-

tive designs with a base alternative). We conclude the

paper and discuss topics for future research in §4.

2. Designs for the Mixed Logit
In the standard logit model, the utility for profile

j 5 1, . . ., J in choice set s 5 1, . . ., S is specified as:

ujs ¼ x9jsb þ ejs; ð1Þ

where xjs is a K-vector of the attribute levels of the

alternative j, b is a K-parameter vector, and ejs is an

error term following an extreme value distribution.

Assuming utility maximization, the probability that

j is chosen from choice set s can be expressed in

closed form:

pjs ¼
expðx9jsbÞPJ
r¼1 expðx9rsbÞ

: ð2Þ

To account for heterogeneity in the parameters of

the logit model across consumers, we assume that

the parameter vector b is multivariate normally dis-

tributed with mean l and variance R. Although co-

variance terms can be accommodated, we currently

restrict attention to the case where R1/2 is a diagonal

matrix having r 5 (r1, . . ., rK)9 on its main diago-

nal. Hence, b can be written as b 5 l 1 Vr, where

V is a diagonal matrix having the random vector

v 5 (v1, . . ., vK) with pairwise independent standard

normal elements on the diagonal. The model ob-

tained is called the mixed or heterogeneous logit

model (Brownstone and Train 1999). In the mixed

logit, the probability of product j being chosen is

pjs ¼
Z
RK

pjsðvÞ � /ðv1Þ . . ./ðvKÞdv; ð3Þ
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where / is the standard normal density function

and

pjsðvÞ ¼
expðx9js½l þ Vr�ÞPJ
r¼1 expðx9rs½l þ Vr�Þ

: ð4Þ

We are concerned with the construction of designs

for the mixed multinomial logit model that provide

high efficiency for the parameters b, and r.1 Our

concern is to find a design defining the product pro-

files, given a number of choice sets, S, a number of

alternatives in the choice sets, J, and a number of

attribute level combinations, K. Following previous

design construction procedures, we consider the

sizes and numbers of choice sets as fixed by the

researcher, prior to design construction. Our proce-

dure can be designated as one for profile construc-

tion, given the other features of the choice design.

Furthermore, in absence of a priori subject-specific

information, subjects are considered exchangeable,

and all receive the same choice sets. In addition, in

some designs we allow each choice set to contain

a base alternative, as detailed below.

The development of highly efficient mixed logit

designs requires the evaluation of the information

matrix of the mixed logit. Since we assume choices

in different choice sets to be independent, the infor-

mation matrix2 takes the form

Iðl;rjXÞ ¼ N �
XS

s¼1

M 9
s�


1
s Ms M 9

s�

1
s Qs

Q9
s�


1
s Ms Q9

s�

1
s Qs

� �
; ð5Þ

with

Ms ¼
Z
RK

½PsðvÞ 
 psðvÞpsðvÞ9�X � /ðv1Þ . . ./ðvKÞdv

and

Qs ¼
Z
RK

½PsðvÞ 
 psðvÞpsðvÞ9�XV � /ðv1Þ . . ./ðvKÞdv;

where ps(v) 5 [p1s(v), . . ., pJs(v)]9, Ps(v) 5 diag(p1s

(v), . . ., pJs(v)), X 5 [x11, . . ., xJ1, x12, . . ., xJ2, x1S, . . .,

xJS]9, and �s 5 diag(p1s, . . ., pJs).

The information in Equation (5) is not a scalar

measure. A widely accepted one-dimensional mea-

sure of information is the determinant of the infor-

mation matrix. It has been applied successfully to

designs for logit models (Zacks 1977) and conjoint

choice experiments (Bunch et al. 1994, Kuhfeld et al.

1994, Huber and Zwerina 1996). Researchers have

more often used a transformed version of it, how-

ever, the DP-error, which is based on the deter-

minant of the covariance matrix scaled by its

dimension K:

DP-error ¼ det½IðbjXÞ�
1=K
: ð6Þ

We extend this criterion to the context of mixed logit

designs, and as a measure of optimality for mixed

logit designs we propose the DM-error, which is the

determinant of the inverse of the full information

matrix to the power 1/2K:

DM-error ¼ det½Iðl;rjXÞ�
1=2K
: ð7Þ

This measure is directly optimized by our proce-

dures. Whereas in the standard logit design only the

parameter vector b needs to be fixed to determine

designs with high efficiency (Huber and Zwerina

1996), we need to fix both l 5 l0 and r 5 r0, which

may be considered a disadvantage of our and other

1The designs that we generate may not be strictly optimal for sev-

eral reasons. First, a single scalar measure of the information is

optimized. While the measure has intuitive appeal and has been

frequently used in the literature, other measures are possible. De-

sign ‘‘optimality’’ is only defined with respect to the particular

scalar measure of information that we use. Second, as will be ex-

plained below, heuristic search measures are used to find the

optimum. While those heuristics yield designs with improved effi-

ciency, they may not yield ‘‘optimal’’ efficiency. Third, our design

generating procedures rely on asymptotic approximations. There-

fore, rather than referring to ‘‘optimal’’ designs, we will refer to

designs with ‘‘improved efficiency,’’ or ‘‘more efficient’’ designs.
2The information matrix, as shown in the Appendix, is derived in

the usual way by computing the variance of the score function of

the log-likelihood.
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design generating procedures. We address this issue

in detail later in the Monte Carlo study.

In the design-generating algorithm, the informa-

tion matrix in (5) needs to be evaluated. Whereas in

the standard logit for fixed b the information matrix

has closed form, this is not the case for expression

(5), since it involves integration over the distribu-

tion of the b’s as shown in (5). We approximate the

integrals by sampling from the multivariate normal

distribution of b ; N(l, R). We use R 5 1,000 re-

peated samples from that distribution. We need a rel-

atively large number of draws, since for a small

number of draws, chance fluctuations affect the esti-

mates of the information matrix. We use procedures

to generate draws that are more efficient than pseu-

dorandom draws generated by the computer, based

on orthogonal arrays (Tang 1993).

2.1. Algorithms for Design Construction

The designs we construct cannot be claimed to be

strictly optimal. The reasons for that are, first, that

the designs are generated under constraints (e.g.,

number of choice sets and number of alternatives

per choice set) and, second, that finding the optimal

design would necessitate that one search across the

entire design space. Unfortunately, doing that is im-

possible, except for very small designs.3 Whereas

standard OR techniques could be used to explore

the design space, we use heuristic procedures that

have been developed specifically for generating

choice designs. Thus, we use relabeling, swapping,

and cycling, as proposed by Huber and Zwerina

(1996) and Sándor and Wedel (2001). These heuristic

procedures have been shown to perform quite well in

constructing good designs by several authors (Huber

and Zwerina 1996, Arora and Huber 2001, Sándor

and Wedel 2001). The three stages operate as follows.

Relabeling permutes the levels of an attribute

across choice sets and does that for all attributes and

choice sets. Take Level 1 of Attribute 1 and exchange

that with Level 2 of that attribute in all choice sets.

Then take Level 1 of that attribute and exchange it

with Level 3 across all choice sets, and so on. The re-

labeled design that arises is retained if it yields

a lower DM-error. All attributes are considered si-

multaneously.

Swapping involves switching two levels of the

same attribute among alternatives within a choice

set. Consider the first choice set. Take the level of

Attribute 1 for the first alternative and swap that

with the level of that attribute for the second alter-

native. The swapping algorithm verifies all those

possible swaps starting with the first choice set and

passing through all choice sets. If an improvement

in information occurs, then the procedure returns to

the first choice set and proceeds until no improve-

ment is possible.

Cycling rotates the levels of the attributes cyclically.

For example, if there are three levels, 1, 2, and 3, it re-

places 1 by 2, 2 by 3, and 3 by 1. The algorithm starts

with the levels of the first attribute in the first choice

set and rotates cyclically all its levels until all possi-

bilities are exhausted. (The number of subsequent ro-

tations needed for this is equal to the number of

levels minus one.) A cyclical rotation of the level of

the first alternative is applied followed by subse-

quent cyclical rotations of all alternatives, again, until

all possibilities are exhausted. After this, again, the

algorithm rotates only the level of the first alternative

and continues by rotating all levels afterwards, and

so on until all possible cycles for that attribute are

verified. The algorithm turns to the first attribute of

the second choice set and further passes through all

choice sets. Then it goes on to the next attribute until

the last one. At each stage, if an improvement is

made the procedure starts over from the first attri-

bute in the first choice set. When no more improve-

ment is possible, the procedure stops. We note that

this cycling algorithm is different from that in Sándor

and Wedel (2001) in that here the swaps are replaced

by cycling the levels of the first alternatives.4
3For very small designs we experimented with a search of over-

all possible designs, which is possible, although time-consuming.

The heuristic search algorithms did quite a good job in recovering

the optimum. Obviously, there is no guarantee that this is also the

case for larger designs.

4Gauss codes for the design generating procedures are available

from the first author.
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SÁNDOR AND WEDEL

Profile Construction in Experimental Choice Designs for Mixed Logit Models



For more details of the swapping and relabeling

design generating algorithms we refer to Huber and

Zwerina (1996) and Sándor and Wedel (2001). Our

design generating algorithms can be used for a wide

range of designs. However, for designs within par-

ticular design classes, modifications to the algo-

rithms make the search for better designs more

effective. Whereas for designs with two alternatives

per choice set the above procedures can be directly

applied; below we present modifications to the algo-

rithm for designs with a base-alternative and de-

signs with three and four alternatives that make the

search across the design space more effective.

We do not enforce criteria, such as maximal level

balance, minimal level overlap, or orthogonality

(Huber and Zwerina 1996) on the designs. Maximal

level balance means that all levels of an attribute oc-

cur in frequencies that are as close as possible to

each other. Minimal level overlap implies that within

a choice set the number of times the same attribute

level occurs should be as small as possible. (Infor-

mation) orthogonality causes the parameter esti-

mates to be independent, but this can be achieved

only for one specific set of parameter values and is

therefore not a useful criterion for the construction

of mixed logit designs. Sacrificing these criteria, in

particular minimal level overlap, allows us to gener-

ate statistically more efficient designs. However,

since we start the algorithms with designs having

that property, the design generating algorithms may

conserve that property and the designs obtained

may satisfy minimal level overlap.

2.2. Base Alternative Designs

A base alternative is a profile that is included in all

choice sets of a design. Designs with a base alterna-

tive are commonly used, since they provide a way to

compare the utilities of profiles in different choice

sets. To our knowledge, no successful attempt has

been made to develop procedures to generate such

designs, while in 1996, Huber and Zwerina already

stated this to be an important issue to be addressed in

future research. In addition, currently nothing is

known about the efficiency of base alternative designs

relative to other conjoint choice designs. Thus, in this

study we first generate base alternative designs with

improved efficiency and then compare that efficiency

to that of designs without a base alternative.

There are two important types of base alternatives.

The first are the so-called outside alternatives (‘‘I

choose none of these,’’ ‘‘I retain the brand I currently

own,’’ or ‘‘I do not make a purchase at this time

from the alternatives indicated’’), which do not de-

pend upon any of the attributes included in the

study. The second type of base alternative is con-

structed based on the attribute levels of interest but

is constrained to be present in each choice set in the

design. In the present study, we only deal with this

type of attribute-based base alternative. It may be

less common than the outside alternative in practice,

but its construction is more challenging. Designs

with outside alternatives can be constructed using

our procedures by forcing the outside alternative to

be in each choice set and applying the relabeling,

swapping, and cycling algorithms to the nonoutside

alternatives in each choice set.

Our method for base alternative designs with

attribute-based base alternatives also uses swap-

ping, relabeling, and cycling. We start with a design

whose subdesign not containing the base alternative

has the property of maximal level balance and mini-

mal level overlap. Then we take that subdesign and

optimize it in the same way as the designs without

a base alternative described previously. Then we ap-

ply the swapping algorithm to the subdesign, relab-

eling to the base alternative, then cycling to the

subdesign and relabeling again to the base alterna-

tive. We go on until no improvement of the objec-

tive function occurs. We note that the design criteria,

level balance, minimal level overlap, and orthogonali-

ty cannot apply for designs with a base alternative.

2.3. Designs with Three and Four Alternatives

For constructing designs with 3- and 4-alternative

choice sets we use the procedures relabeling, swap-

ping, and cycling described previously. While relab-
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eling can be used directly to these design classes,

swapping and cycling need slight modifications in

order to improve their effectiveness.

Swapping. We take the first choice set and apply

swapping first in the usual manner (described

above) to Alternatives 1 and 2 and then to Alterna-

tives 2 and 3, subsequently, in the case of 3-alterna-

tive choice sets, and go on to Alternatives 3 and 4 in

the case of 4-alternative choice sets. We go on to the

next choice set, and so on, until no further improve-

ment is possible.

Cycling. This procedure follows the same concept,

namely, we start with the first attribute of the first

choice set and apply cycling in the usual way, first

to the first two alternatives and then to Alternatives

2 and 3, in the case of 3-alternative choice sets, and

go on to Alternatives 3 and 4 in the case of 4-

alternative choice sets. Then we move on to the

first two alternatives of the second choice set, and so

on, until no improvement is possible. We note that

this procedure does not preserve the minimal level

overlap property of the designs, and because of this

it results in large potential improvements in the

DM-error of mixed logit designs.

3. Study on the Performance
of Mixed Logit Designs

We investigate the performance of mixed logit de-

signs. Since the designs are generated from parame-

ter values that need to be fixed a priori, it is of

particular interest to analyze their performance in

situations when the parameter values assumed in

generating the design deviate from the true ones.

We are interested in two particular aspects of the rel-

ative performance of the designs: efficiency of the

resulting parameter estimates and predictive abi-

lity. The corresponding measures are detailed in

subsections.

The comparisons are all based on the following

framework. We consider four design classes: designs

of type 34/2/18, that is, with 18 choice sets and in

each set two alternatives with four attributes, each

attribute having three levels; designs of the type 34/

3/12, with three alternatives in each of 12 choice

sets; designs of the type 34/4/9, with four alterna-

tives in each of 9 choice sets and 34/(2 1 1)/12 de-

signs with three alternatives in each of 12 choice

sets, where the third alternative in each choice set

is a base alternative constructed on the basis of the

attributes in the design and is included in each

choice set.

We investigate the performance of the designs in

a Monte Carlo study based on the following factors:

1. The mean of the coefficients assumed in the de-

sign are l 5 [21 0 21 0 21 0 21 0]9 or l 5 ½[21

0 21 0 21 0 21 0]9.

2. The deviation of the assumed mean, l, from the

true (l0) mean is computed as l0 5 l 1 kv, with l as

specified above, v ; N(0, IK) and 31 values of k 2 [0, 3].

3. The assumed standard deviation of the hetero-

geneity distribution is specified as r 5 [1.0 . . . 1.0]9,

r 5 [0.5 . . . 0.5]9, or r 5 [0.2 . . . 0.2]9.

4. The true standard deviation of the heterogeneity

distribution is taken to be r0 5 [1.0 . . . 1.0]9, r0 5

[0.5 . . . 0.5]9, or r0 5 [0.2 . . . 0.2]9.

5. The design type is either a 2-alternative, a 2-

alternative 1 base, a 3-alternative, or a 4-alternative

design.

This leads to a 2 3 31 3 3 3 3 3 4 experimental

design for the Monte Carlo study setup, resulting in

2,232 conditions.

In applying these design generating algorithms in

practice, several procedures to choose the initial val-

ues of the parameters are available. These include esti-

mating them from a pilot study or obtaining them

from judgments by consumers or managers (see

Huber and Zwerina 1996, Arora and Huber 2001,

Sándor and Wedel 2001). Factors 1 and 2 above enable

us to investigate the effect of misspecifying the mean

of the mixed logit parameter. We use two sets of val-

ues of the means assumed in the design. These two

values have a different scale, which makes it possible

to study the effect of setting the scale of the means.

For each of the two sets of assumed mean values we

generate l0 5 l 1 kv as the true mixed logit mean pa-
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rameter value, with k 2 [0, 3] and v ; N(0, IK). Hence,

k can be interpreted as the deviation of the true mean

parameter value from the assumed mean parameter

value. For a given value of k, where we use 31 differ-

ent values on [0, 3], we draw r 5 1, . . ., R 5 64 mean

parameter values lr
0 as an orthogonal array-based

Latin hypercube sample (Tang 1993). This enables us

to generate a curve of the efficiency of the design

against the degree of misspecification of the mean,

increasing with k, for each of the other conditions in

the study.

The different values of the assumed and true het-

erogeneity parameters, varied in Factors 3 and 4, en-

able us to analyze the effect of misspecifying the

heterogeneity in constructing the design. We use

three levels of each of these factors, i.e., r0 5 [1.0 . . .

1.0]9, r0 5 [0.5 . . . 0.5]9, and r0 5 [0.2 . . . 0.2]9, and

similar settings for r. All nine combinations of those

two factors are included in the study. Three of them

pertain to situations where the variance is correctly

specified in generating the design, the other six cor-

respond to misspecified values. For a particular true

value r0, comparing the curves for different specifi-

cations of r allows one to appreciate the effect of

misspecifying the heterogeneity, in generating the

design, on its efficiency.

We investigate four different design types. The

simplest design is the 2-alternative design. This de-

sign is a useful benchmark, although it tends to be

used less often in conjoint choice experiments in

practice, except when paired comparisons are need-

ed. The 3- and 4-alternative designs are used much

more often. The base alternative design is included

to investigate the effect of adding a base alternative

to the 2-alternative design. As described above, the

base alternative itself is constructed from the attrib-

utes in the design.

The computations are done as follows. For each

design class we construct a standard logit design, S,

minimizing the DP-error (6), and three mixed logit

designs, M1, M2, M3, minimizing the DM-error (7),

as the objective function. The standard logit design,

S, is constructed with the parameter values l, the

mixed logit designs are constructed using l as the

mean parameter and r 5 [1.0 . . . 1.0]9 for M1, r 5

[0.5 . . . 0.5]9 for M2, and r 5 [0.2 . . . 0.2]9 for M3

(see the description of factor 3 above). We construct

the standard logit design with the same procedures

as the mixed logit design, in that we use relabeling,

swapping, and cycling. Each lr
0 and r are taken as

the true mean and standard deviation parameter

values and used in the evaluation of the information

matrix and the two comparison measures. We mea-

sure the performance of the mixed logit designs by

comparing them to the corresponding standard logit

designs, and in addition we compare the base, 3-

and 4-alternative designs to the 2-alternative design.

The designs obtained for the four design classes

and l 5 [21 0 21 0 21 0 21 0]9 are presented in

Appendix 2 in Tables Al through A4. We note an in-

teresting property of these designs regarding mini-

mal level overlap, namely, that there is a positive

correlation between the degree of level overlap and

the heterogeneity parameter r used in design con-

struction. In order to make this statement more pre-

cise, we introduce an intuitive measure of level

overlap for designs: The percentage of cases in

which the columns of the choice sets satisfy the min-

imal level overlap criterion. For the 2- and 3-alterna-

tive designs, this measure amounts to calculating the

percentage of columns in the choice sets whose ele-

ments are different, while for the 4-alternative de-

signs it amounts to computing the percentage of

columns that contain all three attribute levels, 1, 2,

and 3. The results are contained in Table 1. The stan-

dard logit design has a very low-level overlap in all

three design classes, while the M1 designs have the

highest-level overlap. We can also notice that as r
drops to [0.5 . . . 0.5]9 respectively [0.2 . . . 0.2]9, the

level overlap of the designs M2 and M3 decreases.

These findings seem to be in line with intuition.

Since efficient standard logit designs maximize the

information on the estimator of the parameters

(which is, loosely speaking, the inverse of the ‘‘vari-

ability’’ in the model), these designs tend to maxi-

mize the variation in their attribute levels, leading to

low-level overlap. This is the case because in the

standard logit model, there is no other source of var-
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iation than the differences in attribute levels. The sit-

uation is different in the case of mixed logit designs,

which maximize the information on the estimator of

mixed logit parameters, including unobserved con-

sumer heterogeneity through the value of r0. This

case is another source of variation in addition to that

provided by the attributes. This situation in turn im-

plies that higher values of r0 allow for larger ‘‘vari-

ability’’ in the model, and consequently, attribute

variation becomes less important (see Table 1). We

conclude that relaxing the minimal overlap criterion

in the construction of designs is more beneficial for

the mixed logit designs than for the standard logit

designs. However, this explanation is somewhat ten-

tative, and we do not have a formal proof. In the

next subsections we detail the computation of the

performance measures in the Monte Carlo Study.

3.1. The DM-error

For each value of l and each r, we compute the

DM-error 5 det[I(l, rjD)]21/2K, both for the standard

(D 5 S) and the mixed logit (D 5 M1, M2, M3) de-

sign. Then, the percentage difference of DM-errors

corresponding to these designs is computed and is

averaged across the R draws of the true mean pa-

rameters. This measure can be interpreted as the in-

crease in the number of respondents needed for the

standard logit design to attain the same efficiency as

the mixed logit design, when estimating a mixed

logit model. This phenomenon is simple to show, be-

cause in the DM-error the determinant of the infor-

mation matrix is normalized by its dimension

(Equation (7)), and since the information matrix is

proportional to the number of subjects (Equation

(5)), the DM-error is too.

3.2. Expected Root Mean-Squared

Prediction Error

Predictive validity has been of importance in the

evaluation of conjoint models in practice. Although

the procedures for generating mixed logit designs

improve the efficiency of the estimates and not the

predictive validity of the estimated models, im-

proved efficiency will translate in better expected

predictive validity as well. The criterion that we use

for assessing the predictive validity of the designs is

the expected root mean-squared error of the choices

in holdout choice sets. To compute that measure, we

proceed in the following manner. We construct a 34/

2/6 design for out-of-sample prediction (for all de-

sign classes in the simulation) and compute true and

predicted probabilities by using the true and esti-

mated parameters, respectively. Here we use the fact

that the asymptotic distribution of the ‘‘estimated’’

parameters is known. We compute the Expected

RMSE as:

ERMSEDðnÞ ¼
Z

ð½pðb̂bDÞ 
 n�9½pðb̂bDÞ 
 n�Þ1=2
fðb̂bDÞ db̂bD;

where D 5 S or M1, M2, M3, for the standard logit

and mixed logit designs, respectively. Here, n is the

vector of choice frequencies in the holdout choice

sets: The vector of probabilities computed for the

true values lr
0, r0 of the parameters, p(b̂bD) is the cor-

responding vector of predicted probabilities com-

puted for estimated parameter values b̂bD, and f(b̂bD) is

the asymptotic distribution of the estimates pre-

sented above. The expectation is again approximated

by averaging over a large number of draws from the

asymptotic distribution of the estimates. We com-

pare the mixed logit design to the standard logit de-

sign by computing the percentage difference in the

expected prediction RMSE between them. It may be

observed that if the distribution of the estimates

f(b̂bD) is more concentrated, as we expect to happen

Table 1 Percentage of Level Overlap for Standard and Mixed
Logit Designs in Different Design Classes

M1 M 2 M 3 S

2-alternative 22 22 6 0
3-alternative 75 69 50 6
4-alternative 75 56 31 12

Note: M1, M 2, and M 3 are mixed logit designs constructed with
r 5 [1.0 . . . 1.0]9, r 5 [0.5 . . . 0.5]9, and r 5 [0.2 . . . 0.2]9, respec-
tively, while S is the standard logit design.
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for the mixed logit design, the expected prediction

error will be smaller.

3.3. Simulation Results

We used ANOVA to formally test the significance of

the effects of the design factors and their interactions

on the (logit transformed) percentage reduction in

sample size relative to the standard logit design. The

factors presented above lead to 2 3 31 3 3 3 3 3 4 5

2,232 data points, which were analyzed for main ef-

fects and interactions of up to three factors. All main

effects and most of the 2- and 3-factor interactions

are significant. Therefore, it is not possible to present

the results in a more condensed way by averaging

over combinations of factors. However, to provide

general insights, we present a few overall means,

which should be interpreted with some care because

of the presence of interactive effects. The percentage

improvement for the two assumed mean values

(Factor 1) are 42.4 and 45.9 for l 5 [21 0 21 0 21 0

21 0]9 and l 5 ½[21 0 21 0 21 0 21 0]9, respec-

tively. These numbers represent the mean percentage

reduction in sample size averaged over all other fac-

tors when mixed logit designs are used instead of

standard logit designs. The mean percentage of im-

provement with respect to the design types (Factor

5) are 35.0, 46.5, 51.4, and 43.8 for 2-, base, 3-, and 4-

alternative designs, respectively. Thus, the percent-

age reduction in sample size for mixed logit designs

relative to standard logit designs is the highest for

the 3-alternative designs (51.4%) and lowest for the

2-alternative designs (35%) averaged across all other

factors in the study. Rather than providing the main

effects, we describe the significant 2-factor inter-

action of assumed and true heterogeneity (Factors

3 and 4). If the true heterogeneity is characterized

by r0 5 [1.0 . . . 1.0]9, the mean percentage im-

provement under the assumed heterogeneity values

[1.0 . . . 1.0]9, [0.5 . . . 0.5]9, [0.2 . . . 0.2]9 are, respec-

tively, 59.6, 55.7, and 44.6; for r0 5 [0.5 . . . 0.5]9 the

mean percentages are 46.6, 48.7, and 41.8; and for

r0 5 [0.2 . . . 0.2]9 the corresponding mean percen-

tages are 28.1, 36.9, and 35.4. Thus, the design con-

structed with an assumed heterogeneity equal to the

true heterogeneity tends to perform best, which is as

expected.

We provide a more detailed discussion of these re-

sults. Figures 1–4 present comparisons of standard

and mixed logit designs from the same design class,

while Figure 5 shows comparisons of mixed logit de-

signs from different design classes. With the former

comparisons we aim at analyzing the potential effi-

ciency gains from using mixed logit designs instead

Table 2 Predictive Validity Comparisons Based on Percentage Differences

Deviation of True from Assumed Mean Parameters

0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5

S and M1 Designs

True Variance Parameters 2-Alternative Base Alternative 3-Alternative 4-Alternative

l 5 [ 2 1 0 2 1 0 2 1 0 2 1 0]9

1.0 49.8 34.4 44.1 32.2 71.6 71.5 50.5 42.0
0.5 61.4 17.4 36.3 14.5 61.6 44.6 41.8 21.9
0.2 26.5 5.2 24.0 8.8 32.1 22.2 27.3 13.9

l 5 1/2[ 2 1 0 2 1 0 2 1 0 2 1 0]9

1.0 28.6 35.9 51.9 46.7 65.0 66.0 56.1 43.9
0.5 38.7 22.1 40.1 16.9 62.9 49.3 48.6 34.4
0.2 18.1 12.3 16.5 8.4 38.4 31.7 36.0 26.8
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of standard logit designs when the true mean and

heterogeneity parameters of the model are unknown.

These figures also show the effects on design effi-

ciency when the parameters are misspecified. For

analyzing the effect of misspecifying the hetero-

geneity parameters the standard logit design serves

as a useful benchmark since it does not depend on

these parameters. With the graphs in Figure 5 we

aim at directly comparing different mixed logit de-

signs in cases of parameter misspecification.

Figures 1–4 show the efficiency gains of mixed

logit designs with respect to standard logit designs

for the four design classes: the 2-alternative design,

the base-alternative design, the 3-alternative design,

and the 4-alternative design, respectively. Each

graph contains six panels grouped in two columns,

where the left columns show the results for an

assumed value of l 5 [21 0 21 0 21 0 21 0]9 and

the right columns show those for l 5 ½[21 0 21 0

21 0 21 0]9. The three panels in each column corre-

spond to the three different true values of the het-

erogeneity variance: r0 5 [1.0 . . . 1.0]9 (top panel),

r0 5 [0.5 . . . 0.5]9 (middle panel), or r0 5 [0.2 . . .

0.2]9 (bottom panel). In each of these graphs, the

Figure 2 Graphs of the Percentage Reduction in Sample Size
Needed with Respect to the Deviation of the Assumed
from the True Mean Parameters

Note. These graphs are for base alternative mixed logit design rel-
ative to the standard logit design when the true heterogeneity vari-
ance is r0 5 1, 0.5, 0.2 (top, middle and bottom panels). The
designs are generated for two sets of means m 5 [21 0 21
0 21 0 21 0] and m 5 1/2[21 0 21 0 21 0 21 0] (left versus right
panels) and three values of the assumed heterogeneity variance
r 5 1, 0.5, 0.2 (three lines in the graphs).

Figure 1 Graphs of the Percentage Reduction in Sample Size
Needed with Respect to the Deviation of the Assumed
from the True Mean Parameters

Note. These graphs are for 2-alternative mixed logit design relative
to the standard logit design when the true heterogeneity variance is
r0 5 1, 0.5, 0.2 (top, middle and bottom panels. The designs are
generated for two sets of means m 5 [21 0 21 0 21 0 21 0] and
m 5 1/2[21 0 21 0 21 0 21 0] (left versus right panels) and three
values of the assumed heterogeneity variance r 5 1, 0.5, 0.2 (three
lines in the graphs).
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DM-error is expressed relative to the DM-error of the

corresponding standard logit design, so that the ver-

tical axes can be interpreted as the percentage reduc-

tion in the number of subjects needed to achieve the

same efficiency as the standard logit design. The

horizontal axis of each graph presents the deviation

of the true from the assumed values of the mean pa-

rameters, previously denoted by k, which takes on

31 grid values in the interval [0, 3] as described

above (for each k we draw 64 true parameter values,

and for each of them we compute the percentage

difference of the DM-errors of the standard and

mixed logit designs and average these percentage

differences over the 64 draws). The larger the devia-

tion k, the larger the percentage of the true values

that are far from the ones assumed in constructing

the design, so that the degree of misspecification of

the mean parameters of the mixed logit model in-

creases from left to right in each graph. In each

panel there are three curves that correspond to dif-

ferent values of r assumed in generating the designs

and computing the DM-error, respectively: r 5 [1.0

. . . 1.0]9, r 5 [0.5 . . . 0.5]9, and r 5 [0.2 . . . 0.2]9. The

differences between those three lines in each panel

Figure 3 Graphs of the Percentage Reduction in Sample Size
Needed with Respect to the Deviation of the Assumed
from the True Mean Parameters

Note. These graphs are for 3-alternative mixed logit design relative
to the standard logit design when the true heterogeneity variance is
r0 5 1, 0.5, 0.2 (top, middle and bottom panels). The designs are
generated for two sets of means m 5 [21 0 21 0 21 0 21 0] and
m 5 1/2[21 0 21 0 21 0 21 0] (left versus right panels) and three
values of the assumed heterogeneity variance r 5 1, 0.5, 0.2 (three
lines in the graphs).

Figure 4 Graphs of the Percentage Reduction in Sample Size
Needed with Respect to the Deviation of the Assumed
from the True Mean Parameters

Note. These graphs are for 4-alternative mixed logit design relative
to the standard logit design when the true heterogeneity variance is
r0 5 1, 0.5, 0.2 (top, middle and bottom panels). The designs are
generated for two sets of means m 5 [21 0 21 0 21 0 21 0] and
m 5 1/2[21 0 21 0 21 0 21 0] (left versus right panels) and three
values of the assumed heterogeneity variance r 5 1, 0.5, 0.2 (three
lines in the graphs).
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enable one to identify the effect of a misspecified co-

variance matrix in design construction. For example,

if r0 5 [1.0 . . . 1.0]9, and for the line corresponding

to r 5 [1.0 . . . 1.0]9 in one of the top panels of the

figures, the assumption of the covariance matrix in

design construction is correct, but the other two

lines present situations of misspecification.

The first impression when looking at these figures

is that although they are similar qualitatively, they

are different quantitatively, both for different l’s and

different design classes. There are many features

that are intuitive and occur across all the graphs.

The most prominent is that all curves are above 0,

which means that all mixed logit designs are more

efficient than the corresponding standard logit de-

signs and are thus not only better on average, as the

main effects mentioned above show, but uniformly

better in all conditions in the study. The efficiency

improvements are, on average, around 20–30% for

‘‘average’’ misspecification and rise to more than

50% if the assumed mean parameter values are fair-

ly close to the true ones. This implies that with

mixed logit designs a reduction in the number of

respondents of 20 up to 50% may yield the same ef-

ficiency as that of standard logit designs.

Another typical feature is that in the top panels,

that is, for true heterogeneity parameters r0 5 [1.0

. . . 1.0]9 the M1 designs are the best, followed by the

M2 designs. This confirms the interaction effect de-

scribed above and is expected because the M1 de-

signs are constructed with the variance parameters

r 5 [1.0 . . . 1.0]9, equal to the true ones. We notice

that the difference in efficiency between M1 and M2

is generally quite small, on average approximately

5%. The difference between M2 and M3 is higher: It

can go up to approximately 20%, which corroborates

the results provided above. Thus, these mixed logit

designs are fairly insensitive to mild misspecification

of the heterogeneity parameters. The designs con-

structed with the true heterogeneity parameters and

mean parameters close to the true ones are more ef-

ficient than those with misspecified heterogeneity

parameters, which is seen in the top, middle, and

bottom panels, reflecting different levels of true het-

erogeneity. However, the situation is different if the

mean parameters deviate more from the true ones

since the M1 designs tend to become the most effi-

cient in the right half of both the middle and bottom

(less true heterogeneity) panels, and the M2 designs

become more efficient than the M3 designs in the

bottom panels. The M3 designs dominate in the bot-

tom panels for low deviation of the mean values,

where the true heterogeneity is equal to variance

used in their construction. This phenomenon is obvi-

ously a minor part of all possible cases. We believe

it is intuitive if we interpret the heterogeneity pa-

rameter assumed for constructing the designs as

a tool that can account for possible misspecification

Figure 5 Graphs of the Percentage Reduction in Sample Size
Needed with Respect to the Deviation of the Assumed
from the True Mean Parameters

Note. These graphs are for base, 3- and 4-alternative mixed logit
design relative to the 2-alternative mixed logit design (the three
lines in the graphs) when the true heterogeneity variance is r0 5 1,
0.5, 0.2 (top, middle and bottom panels). The designs are generated
for two sets of means m 5 [21 0 21 0 21 0 21 0] and m 5

1/2[21 0 21 0 21 0 21 0] (left versus right panels) and heteroge-
neity variance r 5 1.
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of the true mean parameters. In this regard, large

heterogeneity parameters are expected to produce

designs that are more robust to misspecification of

the mean parameters than small heterogeneity pa-

rameters. Taking into account all possible types of

misspecification we conclude that it is better to as-

sume larger heterogeneity parameters in design con-

struction since these parameters lead to more

efficient mixed logit designs, especially if one is un-

certain about the true mean values.

The mixed logit designs constructed with a smaller

scale of l, that is, l 5 ½[21 0 21 0 21 0 21 0]9,

tend to have a somewhat higher efficiency relative

to the corresponding standard logit designs. Differ-

ences are not large, as can also be seen from the

means presented above, but are here seen to accrue

especially in cases where the assumed standard de-

viation is r 5 [1.0 . . . 1.0]9 and when the true means

are relatively far from the assumed ones.

Similar to Figures 1–4, Figure 5 contains six panels

where the two columns correspond to the two differ-

ent assumed mean values l, and the top, middle,

and bottom panels correspond to the three true

heterogeneity parameters r0. The curves represent

comparisons of the base, 3-, and 4-alternative mixed

logit designs to the 2-alternative mixed logit design

where all four designs are constructed with the het-

erogeneity parameter r 5 [1.0 . . . 1.0]9. What is ap-

parent from all graphs is first, that apart from

a minor part of deviations between 0 and 0.5 in

three of the panels, the base, 3-, and 4-alternative de-

signs are more efficient than the 2-alternative design

for all three values of true heterogeneity (misspecifi-

cation) and, second, that the base alternative design

is significantly less efficient than the 3- and 4-alter-

native designs. In the top panels, where the true het-

erogeneity parameters are the same as the assumed

ones, the 4-alternative designs are more efficient

than the 3-alternative designs. In the middle panels,

where the heterogeneity is moderately misspecified,

these two types of designs have approximately the

same performance. In the bottom panel, where the

difference between the assumed and true heteroge-

neity is higher, the 3-alternative designs appear to

be slightly more efficient than the 4-alternative de-

signs. Overall, based on the DM-error comparisons

from all six graphs the 4-alternative designs appear

to be slightly more efficient than the 3-alternative

designs. Thus, based on these findings we draw the

preliminary conclusion that increasing the number

of alternatives in a choice set improves efficiency of

the design, except when the heterogeneity of the

mixed logit is strongly misspecified. The differences

between the left and right panels, representing dif-

ferent values of l, are small.

Finally, we are interested in whether the designs

with improved efficiency also have better predictive

validity. Table 2 shows the expected predictive valid-

ity of the 2-, base, 3-, and 4-alternative standard and

mixed logit designs. The table contains two panels

of results that show comparisons of expected predic-

tion RMSE of standard logit designs to M1 designs

with 2-, base, 3-, and 4-alternatives. Similar to the

DM-error comparisons, the reported results here are

average percentage differences of expected predic-

tion RMSEs. The first panel represents the case of l 5

[21 0 21 0 21 0 21 0]9 while the third panel rep-

resents the case l 5 ½[21 0 21 0 21 0 21 0]9. The

predictive validity is evaluated for various values of

the assumed r, as shown in the rows of the table. We

evaluate these designs for two values of the deviation

of the true from the assumed means: 0.5 and 1.5.5

ANOVA revealed significant main effects of the

deviation of the assumed mean (Factor 2; mean per-

centages 42.8 and 30.1 corresponding to deviation

values 0.5 and 1.5, respectively), the true heterogene-

ity (Factor 4; mean percentages 49.4, 38.3, and 21.8

for the true heterogeneity values [1.0 . . . 1.0]9, [0.5

. . . 0.5]9, [0.2 . . . 0.2]9, respectively), and the design

type (Factor 5; mean percentages 28.4, 29.2, 51.4, and

36.9 for 2-, base, 3- and 4-alternative designs, respec-

tively). The 2-factor interactions of these data were

also significant.

In terms of the designs compared, the results from

Table 2 correspond to the curves of the M1 and

5The Monte Carlo study for predictive validity is somewhat less

elaborate than those for the other two measures above, because of

the very large computation times required to approximate the in-

tegrals through simulation at each of the design points.
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SÁNDOR AND WEDEL

Profile Construction in Experimental Choice Designs for Mixed Logit Models



standard logit designs in Tables A1–A4. The results

for the expected RMSE of prediction are somewhat

similar to the result reported in Figures 1–4. The re-

sults show the overwhelming superiority of mixed

logit design over standard logit designs in terms of

predictive validity, if there is heterogeneity. For large

misspecification of the—mean and variance—param-

eters, that is, for deviation of mean parameters equal

to 1.5 and true variances equal to 0.2, the percentage

differences are well above 5%. The average percent-

age difference is about 30–40%. According to these

results, the largest difference between the standard

logit and M1 design is obtained in the class of 3-

alternative designs (minimum 22.2%, maximum

71.6% improvement).

4. Conclusion
This paper provides compelling evidence that mixed

logit designs provide more efficient parameter esti-

mates for the mixed logit model than standard logit

designs and substantially higher predictive validity.

We find our results in that respect striking. We sum-

marize here three of our main findings. First, in the

cases investigated, designs that include a base alter-

native are more robust to deviations from the pa-

rameter values assumed in the designs, while that

robustness is even higher for designs with 3- and 4-

alternatives, even given that those have 33%, respec-

tively 50% less choice sets. Thus, those designs yield

higher efficiency and better predictive validity at

lower burden to the respondent. Secondly, the im-

provements tend to be larger if the assumed hetero-

geneity parameters in the design construction are

larger. Third, our ‘‘best’’ choice design resulted not

only in a substantial improvement in efficiency over

the standard logit design but also in an improved

expected predictive validity of around 65%, a num-

ber that pales the increases in predictive validity

achieved by model refinements. Based on these re-

sults we have the following recommendations.

� If the mean and variance parameters of the

mixed logit are known fairly precisely, for exam-

ple, obtained from estimates of a prior or pilot

study, then the design should be generated with

those values.

� The design class should contain a larger number

of choice alternatives (for example, 3 or 4) per

choice set. Here 4-alternative designs do slightly

better than 3-alternative designs and clearly bet-

ter than 2-alternative and base alternative de-

signs. Designs from these latter two classes

cannot be recommended in general for estimat-

ing the mixed logit. There may be substantive

reasons to use designs with base alternative.

� If the parameter values are unknown, a heuristic

procedure for generating a design with im-

proved efficiency and predictive validity is to

choose a zero mean and unit variances to gener-

ate the design. These parameter settings seem

to present a useful default for practical

applications.

While we believe that we have presented signifi-

cant advance in generating designs for conjoint

choice experiments, there are also limitations. In our

procedure, next to having to predetermine the val-

ues of the mean regression parameters as in a stan-

dard logit design, we also have to choose values for

the variances of the regression parameters. However,

our study shows that, with the exception of the case

where the true variances are very small, the efficien-

cy of the design is not much affected if the mean

and/or variance parameters are misspecified in con-

structing the design. Nevertheless, the procedures

applied in this study may be extended to Bayesian

designs based on prior values of the mean and vari-

ance parameters analogous to Sándor and Wedel

(2001), but currently the computational time re-

quired for such design generating procedures seems

prohibitive.

An important topic for future research is to ex-

tend our procedures to enable the inclusion of the

number of choice sets and the number of alterna-

tives within a choice set in design generation.

From both a statistical and measurement perspec-

tive, increasing the size of the choice set and si-
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SÁNDOR AND WEDEL

Profile Construction in Experimental Choice Designs for Mixed Logit Models



multaneously decreasing the number of choice sets

is advisable. However, the conclusion is limited to

choice sets with 2-, 3-, and 4-alternatives investigat-

ed in this study. Therefore, we believe more work

is needed to further explore the trade-off of choice

set size and number. Another issue of interest is to

investigate the design-generating algorithms in the

situation where a nondiagonal covariance matrix is

to be estimated in the mixed logit model. The al-

gorithms themselves are a topic for future study.

While these heuristic procedures seem to work

well for the construction of choice designs to

which they have been tailored, the performance of

improved search procedures, for example, integer

programming (Goldengorin and Sierksma 1999)

and genetic algorithms (Hamada et al. 2001),

should be investigated.
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Appendix 1. Information Matrix for the Mixed

Logit Model
In this Appendix we derive briefly the information matrix for

the mixed logit model given in (5). We use the notation from

Equations (1), (2), (3), and (4). For saving notation, integrals

like
R
RKM(Æ)/(v1). . ./(vK) dv are written as

R
(Æ) dU (e.g.,

R
RK

pj(v)/(v1). . ./(vK)dv [
R

pjdU). Assume for the moment that there

is only one choice set, i.e., S 5 1, and suppress the notation in the

subscript corresponding to it.

The log-likelihood function of this model is

L ¼ N �
XJ

j¼1

fj � ln pj;

where fj denotes the observed number of purchases of product j

divided by the total number of purchases, N. For maximum likeli-

hood estimation we are interested in the first- and second-order

derivatives of the log-likelihood:

@L

@l
¼ N �

XJ

j¼1

fj
pj

� @pj

@l
and

@L

@r
¼ N �

XJ

j¼1

fj
pj

� @pj

@r
:

Hence, we need the following formulae:

@pj

@l
¼

Z
@pj
@l

d�;
@pj

@r
¼

Z
@pj
@r

d�;

@pj
@l

¼ ðxj 
 X9pÞpj;
@pj
@r

¼ Vðxj 
 X9pÞpj:

Combining these, we obtain

@pj

@l
¼ xjpj 
 X9

Z
ppj d� and

@pj

@r
¼

Z
Vxjpj 
 VX9ppj d�:

Now we are able to express the log-likelihood as:

@L

@l
¼ N �

XJ

j¼1

fj
pj

� xjpj 
 X9

Z
ppj d�

� �

¼ N � X9f 
 X9

� Z
pp9 d�

�
�
1f

� �
¼ N � X9

Z
ðP 
 pp9Þ d� ��
1f

and

@L

@r
¼ N �

XJ

j¼1

fj
pj

Z
ðVxjpj 
 VX9ppjÞ d�

¼ N �
Z

VX9ðP 
 pp9Þ d� ��
1f ; ð8Þ

where f 5 ( f1, . . ., fJ)9, P 5 diag(p1, . . ., pJ), and � 5
R

PdU.

The information matrix is defined as:

Iðl;rjXÞ ¼
E
@L

@l
@L

@l9
E
@L

@l
@L

@r9

E
@L

@r
@L

@l9
E
@L

@r
@L

@r9

2
6664

3
7775:

For simplifying this expression we use the fact that f is assumed

to have the multinomial distribution with Ef 5 p. Then f has the

property that E f f9 5 (1/N)� 1 (1 2 1/N)pp9. Using these we final-

ly obtain (5) for S 5 1. If the design has more than one choice

set, since we assume that choices in different choice sets are made

independently, the log-likelihood function will be the sum of the

log-likelihoods corresponding to the choice sets. This leads to

Formula (5).

Note that the standard logit model (Equation (2)) arises as

a special case of the mixed logit model (Equation (4)) for r fl 0.

The score function for the logit similarly arises from that of the

mixed logit in the limit since @L/@r fi 0 (see (8)) because the ex-

pectation E[VX9] 5 0.
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Appendix 2. Tables with Designs in the Four Design Classes

Table A1 Designs with Two Alternatives

S: Standard Logit M1: Mixed Logit M2: Mixed Logit M3: Mixed Logit

Attributes Attributes Attributes AttributesChoice Set Profile

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 I 1 3 3 2 3 3 1 1 3 2 3 3 3 3 1 1
II 3 2 1 3 3 1 1 1 3 2 1 2 1 2 3 3

2 I 1 2 2 2 2 3 3 3 1 1 3 3 2 1 3 1
II 2 1 1 3 1 3 1 3 2 3 3 2 1 3 2 3

3 I 3 2 1 2 3 3 2 2 1 3 1 3 1 3 2 1
II 2 1 3 1 2 3 1 2 3 3 3 1 3 2 3 1

4 I 1 2 1 3 1 2 3 2 1 2 3 2 2 3 3 3
II 2 1 2 2 3 3 3 2 3 3 3 3 3 3 2 1

5 I 3 1 2 3 3 2 3 2 2 2 2 2 2 2 2 3
II 2 3 3 2 2 3 2 1 3 2 3 3 2 1 2 1

6 I 2 2 2 1 1 1 3 3 3 3 3 3 1 3 3 2
II 1 3 1 2 2 3 3 2 3 3 3 1 3 1 2 1

7 I 3 1 2 1 3 1 1 1 1 3 1 2 1 3 2 3
II 2 2 1 3 1 2 2 2 2 2 2 1 3 2 3 2

8 I 2 3 1 3 3 2 2 3 1 3 1 1 2 2 1 1
II 3 1 3 1 1 1 2 1 3 1 2 2 2 1 3 2

9 I 2 2 3 1 1 1 2 2 3 3 1 3 2 3 3 1
II 1 3 1 2 2 2 1 3 2 1 3 1 3 1 1 2

10 I 1 3 2 3 2 2 2 2 1 3 2 1 3 2 1 3
II 3 1 3 2 1 1 3 1 2 2 1 2 1 2 3 1

11 I 3 1 2 3 2 2 2 3 1 2 3 1 1 2 2 2
II 2 2 3 1 2 2 2 1 3 2 2 2 2 3 1 3

12 I 3 3 3 1 1 1 2 3 1 3 3 1 2 3 2 2
II 2 2 2 3 3 3 3 1 1 1 2 1 3 1 3 3

13 I 3 1 1 2 1 2 1 1 1 2 2 3 2 2 3 1
II 1 3 2 1 1 3 3 2 1 1 3 1 3 3 2 2

14 I 2 3 1 1 1 3 1 2 2 3 3 2 2 1 3 1
II 1 2 3 2 3 1 2 3 2 2 1 2 3 2 1 2

15 I 3 2 3 1 2 1 2 2 2 1 3 3 1 3 1 1
II 2 3 2 2 1 3 3 3 3 2 1 1 2 1 2 2

16 I 2 2 1 2 1 2 2 1 3 2 3 2 1 2 1 3
II 1 1 3 3 1 1 1 2 2 3 1 3 2 3 3 1

17 I 1 1 3 3 3 2 1 1 1 2 3 2 3 2 2 2
II 3 3 2 1 2 3 2 3 3 1 1 1 1 2 1 3

18 I 2 1 2 3 2 1 3 1 3 2 2 1 2 2 2 3
II 3 3 1 1 3 3 1 3 2 1 2 1 1 1 3 2
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Table A2 Designs with a Base Alternative

S: Standard Logit M1: Mixed Logit M2: Mixed Logit M3: Mixed Logit

Attributes Attributes Attributes AttributesChoice Set Profile

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 I 3 3 2 1 3 3 3 1 2 2 3 2 3 3 2 2
II 2 2 3 2 3 1 3 1 2 2 2 1 2 3 2 1
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

2 I 3 2 1 2 3 1 3 2 2 1 2 2 1 3 1 3
II 2 1 3 3 3 2 3 3 2 1 3 3 3 1 3 3
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

3 I 3 3 1 1 1 2 2 1 3 1 1 1 3 3 1 1
II 1 2 2 3 3 2 2 2 1 2 2 2 3 2 2 3
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

4 I 2 3 3 2 3 3 3 2 1 3 3 3 1 3 3 3
II 3 1 2 3 3 3 3 3 1 1 3 3 3 1 2 2
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

5 I 1 2 3 2 1 2 2 1 3 3 3 1 2 3 2 1
II 2 3 1 1 1 2 3 2 2 2 1 2 3 2 3 1
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

6 I 3 3 2 2 3 1 1 3 1 3 1 3 3 1 1 3
II 2 2 3 3 3 3 1 2 3 3 2 2 3 3 1 2
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

7 I 3 1 3 2 1 3 2 3 3 2 3 2 1 1 2 3
II 2 2 2 3 2 2 2 2 2 2 3 1 3 1 1 2
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

8 I 2 2 1 1 3 2 2 3 3 1 3 3 2 3 3 1
II 1 1 3 1 2 2 1 3 3 1 1 3 1 3 2 1
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

9 I 1 2 1 2 3 1 3 2 2 3 1 2 3 2 1 3
II 1 1 3 1 3 1 1 1 3 2 1 1 2 1 3 3
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

10 I 3 1 1 3 2 2 3 3 2 3 3 1 2 3 1 3
II 1 3 3 1 2 3 3 1 1 1 2 3 3 3 3 1
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

11 I 3 2 2 1 2 1 2 1 3 2 1 2 2 2 2 1
II 1 3 1 3 1 1 1 3 3 3 1 3 1 3 1 3
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2

12 I 3 2 3 1 3 1 3 1 3 1 2 2 3 1 2 1
II 1 3 2 3 3 1 3 2 2 2 2 3 2 3 1 3
III 2 1 2 2 3 2 3 1 1 3 3 1 1 2 3 2
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Table A3 Designs with Three Alternatives

S: Standard Logit M1: Mixed Logit M2: Mixed Logit M3: Mixed Logit

Attributes Attributes Attributes AttributesChoice Set Profile

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 I 1 3 3 1 3 1 2 2 2 1 2 2 3 1 3 2
II 3 2 1 2 3 2 1 1 1 1 3 1 2 1 1 3
III 2 1 2 3 1 1 1 2 3 2 2 1 1 3 2 1

2 I 3 1 2 1 2 1 2 1 1 2 2 2 3 1 3 1
II 1 2 3 2 2 1 1 2 1 1 3 3 3 3 1 3
III 2 3 1 3 2 1 1 1 3 1 1 1 1 3 2 2

3 I 2 2 1 3 1 2 1 3 3 2 3 1 1 2 3 3
II 1 3 2 2 2 1 2 3 2 2 1 1 3 2 1 1
III 3 1 3 1 1 1 2 1 1 1 2 3 1 1 2 3

4 I 3 2 2 1 2 3 2 2 1 1 1 3 3 3 2 2
II 2 1 3 2 3 3 1 1 2 3 3 1 1 3 3 2
III 1 1 1 3 2 3 3 3 1 2 3 1 3 1 2 3

5 I 3 1 2 2 1 1 2 2 3 1 2 2 1 3 1 2
II 1 2 3 3 2 2 3 2 2 2 3 1 3 2 3 1
III 2 3 1 1 1 1 3 3 2 3 2 3 2 1 2 3

6 I 2 3 2 1 3 2 1 3 3 2 3 2 2 1 1 3
II 1 1 3 3 2 1 1 2 1 2 3 2 3 1 3 1
III 3 2 1 2 1 1 3 1 3 3 1 1 2 2 3 2

7 I 1 2 2 3 3 1 1 3 1 3 1 2 1 2 3 2
II 2 1 3 2 1 1 2 3 2 2 1 3 1 3 2 3
III 3 3 1 1 3 1 3 3 1 2 3 1 2 1 3 3

8 I 3 2 1 2 1 2 2 1 2 3 1 1 3 3 1 1
II 2 2 2 3 3 1 1 1 3 1 2 3 1 1 1 3
III 3 3 3 1 1 3 2 2 3 1 1 2 2 2 2 1

9 I 3 1 2 2 3 1 3 2 2 1 2 2 2 3 1 2
II 2 2 3 1 2 3 3 1 2 3 2 2 3 2 1 1
III 1 3 1 3 3 3 3 2 1 3 1 3 3 1 2 3

10 I 3 1 1 3 2 1 3 1 3 3 1 1 3 3 1 1
II 2 3 2 2 1 3 2 1 3 3 1 3 1 2 3 3
III 1 2 3 1 3 1 2 2 1 1 2 2 2 2 2 2

11 I 3 1 2 3 1 2 1 2 3 3 3 2 3 3 2 1
II 2 3 1 2 3 3 3 1 3 3 2 1 2 2 3 2
III 1 2 3 1 2 1 2 3 2 2 1 3 3 3 2 3

12 I 2 2 3 1 2 2 1 3 2 1 3 3 1 2 2 3
II 1 3 2 2 2 3 1 1 3 1 2 1 3 1 1 2
III 3 1 1 3 1 2 3 2 2 3 1 2 2 3 3 1
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Table A4 Designs with Four Alternatives

S: Standard Logit M1: Mixed Logit M2: Mixed Logit M3: Mixed Logit

Choice Set Profile Attributes Attributes Attributes Attributes

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 I 1 1 2 3 1 2 2 1 1 1 1 3 1 2 3 2
II 1 1 3 2 1 3 3 1 1 2 2 1 3 1 2 1
III 3 2 3 1 1 3 1 3 1 1 3 1 1 3 1 3
IV 2 3 2 2 3 3 1 1 3 1 1 1 2 3 1 3

2 I 1 3 2 3 1 1 3 3 1 3 1 3 1 3 1 1
II 1 2 3 1 2 1 2 3 1 1 3 1 3 1 1 2
III 3 2 1 2 2 3 1 1 2 2 1 3 1 1 1 3
IV 2 1 3 2 3 1 3 3 3 3 1 3 1 1 3 1

3 I 1 1 2 2 3 2 3 3 1 2 2 3 3 1 2 3
II 2 2 2 2 3 1 3 2 1 2 3 2 2 1 3 1
III 1 3 3 1 3 1 3 1 1 3 3 1 3 1 2 1
IV 3 1 1 3 1 2 1 3 2 2 3 3 1 3 1 2

4 I 2 1 3 1 2 1 1 1 1 3 1 1 3 3 1 1
II 3 1 2 1 3 1 1 1 2 1 1 2 1 2 2 3
III 2 3 1 2 3 2 1 1 1 1 1 3 2 1 2 2
IV 1 2 2 3 3 1 2 2 2 1 2 2 3 2 1 3

5 I 2 1 3 3 3 2 2 3 3 2 2 3 2 3 1 1
II 3 2 2 2 1 2 2 2 2 3 1 2 1 1 3 3
III 3 3 1 1 2 2 2 3 3 2 2 1 1 2 2 2
IV 1 2 2 2 1 1 3 3 1 1 3 3 3 2 3 1

6 I 1 3 1 2 1 1 1 2 3 1 2 2 3 2 1 2
II 2 2 3 1 1 2 1 1 2 3 2 1 2 1 3 2
III 1 1 2 3 2 3 1 2 3 3 2 2 2 3 2 2
IV 1 3 1 1 1 3 2 1 3 2 3 1 2 2 1 3

7 I 1 3 3 2 2 2 2 2 2 1 1 3 3 1 1 1
II 2 2 1 3 1 2 1 2 2 2 2 2 1 3 2 1
III 1 2 2 2 1 2 1 3 3 1 3 2 1 2 1 2
IV 3 1 2 3 1 3 1 2 2 3 3 2 1 2 3 2

8 I 2 2 2 1 2 1 2 3 1 2 2 3 3 3 3 1
II 2 2 1 3 2 2 1 2 2 3 3 1 2 2 3 1
III 2 3 2 1 3 2 1 1 3 1 2 2 3 1 2 2
IV 3 1 3 2 2 3 2 3 3 3 2 3 1 3 1 3

9 I 3 3 2 1 1 1 2 2 2 1 2 1 1 1 3 3
II 2 1 1 3 1 2 3 2 1 2 3 2 2 2 2 3
III 2 2 1 2 2 1 3 1 1 1 3 1 2 2 2 1
IV 1 2 3 3 1 1 1 2 1 2 1 2 3 1 2 2
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