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Introduction

A significant number of optimal stopping problems of practical interest may
only be solved through numerical schemes. As many of them have surfaced
in the area of mathematical finance, illustrations drawn from that field will
be used to describe some of these numerical approaches. Specifically, consider
problems in the expected-value maximization form

sup
τ∈T

E[f(Xτ , τ)] , (1)

where T is a set of stopping times, f a measurable function and {Xt}t∈I ≡ X
a Markov process, where I is a time index set that can be either discrete or
continuous (see AitSahlia [1] for additional details).

Under technical conditions for its existence, a solution for (1) consists of

• the value function V (x, t) = supτ∈Tt
E[f(Xτ , τ)|Xt = x], where Tt is the

set of stopping times subsequent to t in T ,
• the optimal stopping time τ∗t = argmaxτ∈Tt

E[f(Xτ , τ)].

In this context, with E denoting the state space of X, the set E × I is
partitioned into a closed set S and its complement C labeled, respectively,
stopping and continuation regions. Then

τ∗t = inf{s ≥ t : Xs ∈ S} . (2)

Discrete-Time Models

When T = {0, 1, . . . , N} for some given N < ∞, the most straightforward
numerical device is the backwards recursive dynamic algorithm

V (x,N) = f(x,N) (3)

V (x, n) = max{E[V (Xn+1, n+ 1)|Xn = x], f(x, n)}, 0 ≤ n ≤ N − 1 (4)

• Monte-Carlo simulation approach: An issue with the above might
be implementing the proper numerical scheme to estimate E[V (Xn+1, n+
1)|Xn = x], especially in light of the so-called curse of dimensionality that
makes this algorithm inefficient in high dimensions. There are potentially
two remedies to this problem: one, for finite T , based on Monte-Carlo
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simulation, and another, for infinite T , based on large-scale linear pro-
gramming (LP). For the former, an efficient and popular algorithm is that
of Longstaff and Schwartz [11], which is now viewed within the wider con-
text of approximate dynamic programming (see also [5, 13]). The basic
idea of this algorithm is to use Monte Carlo simulation and least-squares
regression to estimate E[V (Xn+1, n+ 1)|Xn = x].

• Linear programming approach: For infinite T , the value function is
time-homogeneous when X and f are. In this case the value function solves

V (x) = sup
τ∈Tt

E[f(Xτ )|Xt = x] (5)

for all t ∈ {0, 1, . . . } and may be obtained through a LP algorithm thanks
to its Snell envelope characterization ([5]). Assuming a transition matrix
P for X and a finite state space, which might be genuine or the result of
a truncation, the resulting LP is

Minimize
∑
x

V (x)

subject to

V (x) ≥
∑
y

P (x, y)V (y) ,

V (x) ≥ f(x) ,

V (x) ≥ 0 .

See Çinlar [5] and Dynkin and Yushkevich [6] for proofs and further details.

• Neural networks approach: Becker et al. [5] approximate the optimal
stopping time recursively through a sequence of 0-1 stopping decisions
based on multilayer feedforward neural networks. Their approach is quick
to identify approximate stopping times τ∗ and τ∗∗ such that

E[f(X∗
τ , τ

∗)] ≤ sup
τ∈T

E[f(Xτ , τ)] ≤ E[f(X∗∗
τ , τ∗∗)]

Continuous-Time Models

When both X and its time index I are continuous, there are a number of
numerical schemes to generate solutions for (1). Overall, they approximate
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either the underlying diffusion process X by a discrete version or the value
function and its derivatives in its characterizing expression (e. g., integral
representation, partial differential equation.)

• Weak-convergence approximation approach: The most general scheme
concerning this approach is to approximate the infinitesimal operator L
of X in the free-boundary problem that characterizes the solution of (1).
For example, a finite-differences approximation of derivatives in the free-
boundary problem

LV +
∂V

∂t
= 0 in C ,

V = f on E × {T} ,
∂V

∂x
=

∂f

∂x
on ∂S

leads to the formulation of an optimal stopping problem for a Markov
chain (see Kushner and Dupuis [8]).

If the process X is explicitly expressed in terms of Brownian motion, then
random-walk approximations can directly be used on the latter. This is
a fairly well understood procedure for which rates of convergence have
been developed (see Lamberton [10]).

• Integral equation approach: In this scheme, one makes use of the
Doob–Meyer decomposition formula for submartingales (see Karatzas and
Shreve [8]) to express the value function V in terms of the bound-
ary, which itself solves a related integral equation. For example, con-
sider a case in American option pricing , with horizon T, payoff function
f(x, t) = e−rt max(K − x, 0), and Xt = X0 exp{(r−σ2/2)t+σWt}, where
K > 0, r > 0, and σ > 0 are given and {Wt}t is a standard Brownian
motion started at 0. Then the value function V can be decomposed as

V (x, t) = U(x, t) +

∫ T

t

[rKΦ(−d(X,B(t), τ − t))]dτ , (6)

where Φ is the cumulative standard normal distribution function, d(x, y, τ) =
(ln(x/y)+(r+σ2/2)τ)/σ

√
τ−σ

√
τ , and U(x, t) = Ke(T−t)Φ(−d(x,K, T−

t)). This formula requires the knowledge of the boundary B = ∂S, where
S is the stopping region that identifies the optimal stopping time (2), and
which is obtained as the solution of the integral equation
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K −B(t) = U(B(t), t) +

∫ T

t

rKΦ (−d(B(t), B(t), τ − t) dτ . (7)

Efficient and accurate spline approximations of B can be found in Ait-
Sahlia and Lai [2].

• Linear complementarity approach: An alternative that does not re-
quire the explicit determination of the optimal stopping boundary relies
on the variational inequality formulation is, in the finite time horizon case:

min{LV +
∂V

∂t
, V − f} = 0, on E × [0, T ) ,

V = f, on E × {T} .

Finite-difference approximations then lead to a linear complementarity
problem (see Huang and Pang [7] and Wilmott et al. [14]).

• Deep neural networks Sirigano and Spiliopoulos [12] use deep neural
networks to approximate the solution to the free boundary problem. Their
approach avoids the use of meshes, which quickly reach the curse of di-
mensionality, but instead rely on random samples of time and space along
with stochastic gradient descent.

Conclusions

Stochastic optimal stopping problems are rarely solved in closed form.
Their solutions therefore call for numerical techniques, which include finite-
difference approximations to solve PDE–related formulations, spline approx-
imations to the optimal stopping boundary, linear complementarity ap-
proaches to solving variational inequalities and methods based on linear pro-
gramming.

References

1 AitSahlia F Stochastic optimal stopping: problem formulations, this En-
cyclopedia

2 AitSahlia F, Lai TL (2001) Exercise boundaries and efficient approx-
imations to American option prices and hedge parameters. J Comput
Finance 4:85–103

3 Becker, S., Cheridito, P. and Jentzen, A., 2019. Deep optimal stopping.
The Journal of Machine Learning Research, 20(1), pp.2712-2736.



6 Farid AitSahlia

4 Carrière J (1996) Valuation of early-exercice price of options using sim-
ulations and nonparametric regression. Insurance Math Econ 19:19–30

5 Çinlar E (1975) Introduction to Stochastic Processes. Prentice-Hall, En-
glewood Cliffs

6 Dynkin EB, Yushkevich AA (1969) Markov Processes: Theorems and
Problems. Plenum Press, New York

7 Huang J, Pang J-S (1998) Option Pricing and Linear Complementarity.
J Comput Finance 2:31–60

8 Karatzas I, Shreve SE (1991) Brownian Motion and Stochastic Calculus.
Springer, New York

9 Kushner HJ, Dupuis P (2001) Numerical Methods for Stochastic Control
Problems in Continuous Time, 2nd edn. Springer, New York

10 Lamberton D (2002) Brownian optimal stopping and random walks.
Appl Math Optim 45:283–324

11 Longstaff FA, Schwartz ES (2001) Valuing American options by simula-
tion: a simple least-squares approach. Rev Financial Stud 14:113–148

12 Sirignano, J. and Spiliopoulos, K., 2018. DGM: A deep learning algo-
rithm for solving partial differential equations. Journal of computational
physics, 375, pp.1339-1364.

13 Tsitsiklis JN, Van Roy B (2001) Regression methods for pricing complex
American-style options. IEEE Trans Neural Networks 12(4):694–703

14 Wilmott P, Dewynne JN, Howison S (1993) Option Pricing: Mathemat-
ical Models and Computation. Oxford Financial Press, Oxford


	Stochastic Optimal Stopping: Numerical Methods
	Farid AitSahlia
	References


