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Introduction

A typical stochastic optimal stopping problem consists of the following opti-
mization:
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supE [f(Xτ , τ)] s.t. τ ∈ T , (1)

where {Xt} ≡ X is a stochastic process known as the state process, E its
associated expectation operator, f a function measurable with respect to the
probability law induced by X, and T a set of stopping times to be defined
shortly. In many applications f(Xτ , τ) is interpreted as the gain resulting
from stopping at time τ when the state value is Xτ . It should be noted that
some problem formulations call for minimizing the expected value, which can
be recast in the maximization above.

An example that has been the subject of great interest in mathematical
finance/financial engineering is one with f(x, t) = e−rt max(K − x, 0), where
K > 0 is given, and X is the geometric Brownian process

Xt = X0 exp{(r − σ2/2)t+ σBt} ,

where r and σ are given positive constants and {Bt} is a standard Brownian
motion started at 0. In finance f(Xt, t) represents the discounted payoff that
results from the exercise at time t of a put stock option by its holder who is
allowed to sell this stock at share price K when it is traded at price X t. The
option holder’s problem is to find the best time to exercise this option, thus
maximizing its payoff, a problem that is mathematically expressed as (1).
As will be made precise soon, this optimal exercise time (or more generally
stopping time) must be determined only on the basis of past observations. It
should be mentioned here that {Bt} can also be considered the state process,
instead of X.

Note that the payoff function f as expressed in (1) does include pay-
offs that are path-dependent through the usual introduction of additional
variables to render a problem Markovian. For example, still in the financial
realm, one may consider the payoffs e−rt(Mt −Xt) or e−rt max(K −At, 0)
that depend on the maximum process Mt = maxs≤t Xs or the average pro-
cess At = (1/t)

∫ t

0
Xsds.

Stochastic optimal stopping theory, or optimal stopping as it is custom-
arily known, is a specialized type of the (stochastic) dynamic programming
approach devised by Bellman [1] in the 1950s. However, actual optimal stop-
ping problems originated in Wald’s work on sequential statistical inference
(Wald [6]), where the problem is to determine sequentially the sample size
that will decide between two statistical hypotheses. Another application in-
volving optimally stopped sequential sampling is in clinical trials, where is
studied under the general label of bandit problems ( [2].) Ever since these early
days, this field has experienced several developments in both theory and ap-
plications as described for example in the book of Peskir and Shiryaev [5]. As
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artificial intelligence has gained significant traction over the past few years,
optimal stopping has also found applications in machine learning to help with
the selection of hyperparameters ( [4].)

Optimal stopping problems are generally approached from a probabilistic
perspective through martingales and Markov processes. When the underlying
process X in (1) is a diffusion, they also lead to free-boundary problems for
partial differential equations. Optimal stopping problems are rarely solved in
closed-form and numerical methods abound, a topic addressed in a companion
entry in this Encyclopedia.

Definitions

This section sets up basic definitions that lead to the notion of stopping time.
As mentioned before, the decision to stop at time t must be based only on
information available up to t. In this respect the concept of information set in
the form of filtration is first formally presented, followed by that of stopping
time.

• Discrete-time filtration
Given a probability space (Ω,F , P ), a discrete-time filtration is a col-
lection (Fn)n≥0 where each Fn is a σ-algebra of subsets of Ω such that
F0 ⊂ F1 ⊂ · · · F . Fn represents the information available up to time n. It
generally consists of at least the set of events that have been determined
by the realized values of X t up to time n. The latter is called the natural
filtration of X and is often augmented to form (Fn)n≥0.

• Continuous-time filtration
Here the definition is essentially identical to the previous modulo a tech-
nical condition. Given a probability space (Ω,F , P ), a continuous-time
filtration is a collection (Ft)t≥0 where each Ft is a σ-algebra of subsets of
Ω such that Fs ⊂ Ft ⊂ F for s ≤ t. As in the discrete-time case, Ft also
represents information up to time t. Additionally, it is assumed that each
Ft contains all P -null sets in F and that (Ft)t≥0 is right-continuous; i. e.,
Ft =

⋂
t≤s Fs for all t ≥ 0.

• Stopping time
Let I = {0, 1, 2, . . .} and I = [0,∞] when X is, respectively, a discrete-
time process and a continuous-time process. A random variable τ : Ω → I
is a stopping time if P{τ < ∞} = 1 and {τ ≤ t} ∈ Ft for all t ≥ 0. Often
the set I is bounded and therefore the former condition is obviously true.
The latter condition expresses the fact that the decision to stop at time t
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must be based solely on information up to time t. In this case τ is adapted
to the filtration (Ft)t≥0.

Solution Methods

There are generally two approaches to solving (1): one based on probabilistic
tools and another on partial differential equations (PDE) techniques. How-
ever, both start by using the dynamic programming principle of optimality
to derive the so-called Bellman equation. When the interval I is of the form
[0, T ] or {1, 2, . . . , N} define Tt to be, respectively, the set of stopping times
in [t, T ] and {t, t+ 1, . . . , N}. When I is infinite, Tt is defined as the set of
stopping times in I that are ≥ t. Then solving (1) is tantamount to deter-
mining

• the value function V (x, t) = supτ∈Tt
E[f(Xτ , τ)|X0 = x], and

• the optimal stopping time τ∗t = argmaxτ∈Tt
Ef(Xτ , τ).

A sufficient condition guaranteeing the finiteness of the expectation in (1)
is

E
ï
sup
t∈I

|f(Xt, t)|
ò
< ∞ ,

which can in fact be relaxed a number of ways.

(I) The Probabilistic Approach: Martingales
When I = {0, 1, . . . , N}, then by the optimality principle of dynamic pro-
gramming we can write the recursion

V (x,N) = f(x,N) (2)

V (x, n) = max {E[V (Xn+1, n+ 1)|Xn = x], f(x, n)} , 0 ≤ n ≤ N − 1 .
(3)

The solution for the system (2)–(3) induces a sequence of random variables
Sn = V (Xn, n) that satisfies the following properties:

(i) Sn = max{E [Sn+1|Fn] , f(Xn, n)};
(ii) (Sn)k≤n≤N is the smallest super-martingale that dominates the gain

process Gn = f(Xn, n)k≤n≤N (i. e.; Sn ≥ Gn P-a.s.);
(iii) the stopping time τ∗n = inf{n ≤ k ≤ N : Sn = Gn} is optimal for

0 ≤ n ≤ N ;
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(iv) the stopped sequence (Sk∧τ∗
n
)n≤k≤N is a martingale.

We recall here that a discrete-time process (Mn)n is a martingale with
respect to a filtration (Fn)n (martingale for short) if E|Mn| < ∞ for
n ≥ 0 and E(Mn+1|Fn) = Mn, P-a.s., for n ≥ 0. Correspondingly, (Mn)n
is a super-martingale if E(Mn+1|Fn) ≤ Mn, P-a.s., n ≥ 0. The process
(Sn)k≤n≤N is called the Snell envelope and the above characterization is
particularly useful to obtain the value function V through linear program-
ming when the state space is finite (see Çinlar p. 212 in [3]).

The generalization of the above result to the case where I is countably
infinite requires that the sequence Sn = V (Xn, n) be characterized differ-
ently through the concept of essential supremum below, which generalizes
in some sense that of deterministic supremum.

Essential Supremum. Let I be an arbitrary set and (Zn)n∈I be a col-
lection of random variables defined on the same probability space. Then
there exists a countable subset J ⊂ I such that Z∗ = supn∈J Zn satisfies

(a) Zn ≤ Z∗ P-a.s. for each n ∈ I;
(b) for any other random variable Z̃ such that Zn ≤ Z̃ P-a.s. for each n ∈ I,

we have Z∗ ≤ Z̃ P-a.s.

The random variable Z ∗ is labeled essential supremum and is denoted by
esssupn∈IZn.
As a consequence, we can now rewrite the above Snell envelope when
I = {1, 2, . . . , N} as

Sn = esssupτ∈Tn
E[f(Xτ , τ)|Fn] , n ∈ I , (4)

where Tn is the set of stopping times in {n, n + 1, . . . , N}. When I is
countable infinite then Sn is correspondingly defined with Tn as the set
of stopping times in {n, n+ 1, . . .}. Similarly, Sn satisfies both conditions
(a) and (b) and the optimality property (i) above for all n ≥ 0.
For the continuous-time case, where I is an interval, the value function for
problem (1) is the Snell envelope of the gain process (f(Xt, t))t defined as

St = esssupτ∈Tt
E[f(Xτ , τ)|Ft] , t ∈ I , (5)

where Tt is the set of stopping times in [t, T ] for a finite horizon problem
or [t,∞) otherwise. The Bellman equation in its discrete form (3) is now
replaced by
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V (x, t) ≥ max{E[V (Xs, s)|Xt = x], f(Xt, t)} ,
for s ≥ t.

Formulation (1) has cast the problem of optimal stopping in a Markovian
framework. This is in fact the most common situation in practice and the
set-up is not too restrictive as it mirrors well the generic martingale situ-
ation fully described in Peskir and Shiryaev [5].

(II) The Probabilistic Approach: Markov Property and Stopping
Boundary
When X is a Markov process (in discrete- or continuous-time) with state
space E the optimal stopping time is defined as

τ∗ = inf{t ∈ I : Xt ∈ S} ,

where S is a closed subset in I × E. S and its complement C in I × E are
such that

V (x, t) > f(x, t) on C ,

V (x, t) = f(x, t) on S .

C and S are respectively called the continuation and stopping regions.
The intersection B of their closures is called the stopping boundary. It
is time-dependent when I is bounded and time-homogeneous when I is
unbounded. When I is countably finite and E is discrete, then B can be
obtained through the backward recursion (2)–(3).

(III) The PDE Approach
When the state process X is a diffusion the boundary B and the value
function V can be obtained by solving a free-boundary problem. Alterna-
tively, when only the value function is of interest then it can be obtained
as the solution of a variational inequality. If we let L the infinitesimal
operator associated with X, then assuming regularity and differentiability
where necessary, the free-boundary problem when I = [0,∞) is stated as

LV = 0 in C ,

∂V

∂x
=

∂f

∂x
on B .

(6)

The latter condition is called smooth-fit. It is in a sense the condition
that characterizes the optimality of a solution V of the PDE (6). When
I = [0, T ] the free-boundary problem becomes:
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LV +
∂V

∂t
= 0 in C ,

V = f on E × {T} ,
∂V

∂x
=

∂f

∂x
on B .

(7)

One way to avoid reference to the free boundary B is through the use of
variational equalities. For example, the problem above with finite horizon
T can be re-expressed as

min{LV +
∂V

∂t
, V − f} = 0 , on E × [0, T )

V = f , on E × {T}.

Solution Methods

Optimal stopping problem formulations in stochastic environments abound
and can be applied in a variety of diverse fields. Their solution methods draw
from a diverse set of techniques, including dynamic programming, stochastic
calculus, and martingale theory, among others.
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