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1 Introduction

For equity options, American–style exercise is predominant and volatility plays a central role in

the appeal of early option exercise. However, the constant volatility assumption in the standard

Black-Scholes model has long been challenged empirically. Among modeling alternatives, the

literature on stochastic volatility is very large and is still growing, with diverse strands em-

phasizing different aspects such as forecast accuracy of realized volatility or fitting conditional

distributions and option prices (cf. Christoffersen et al. (2010) and Bates (2021).)

Though stochastic volatility models do not account for certain stylized facts, which are

usually captured through additional volatility components or jumps, they are considered to be

the most essential building blocks upon which further refinements may be made. They capture

enough complexity and yet are amenable to relatively manageable estimation and numerical

pricing procedures. While the classical study of Bakshi et al. (1997) based on S&P 500 data

provides empirical evidence that stochastic volatility delivers the most out–of-sample pricing

improvement for European options, AitSahlia et al. (2010a) use S&P 100 data to show corre-

spondingly that this aspect carries through to American-style exercise. Additionally, Broadie

et al. (2000) employ non-parametric estimation on the same type of data to make the case for

the need to incorporate stochastic volatility in American option pricing. Finally, Medvedev and

Scaillet (2010) develop pricing formulas when both volatility and interest rates are stochastic.

Through a numerical study, they show that both features have marked pricing effects relative

to the Black–Scholes model, most significantly through mean–reverting stochastic volatility.

The mean–reverting stochastic volatility model of Heston (1993) has, in particular, found

significant acceptance based on its ability to handle asymmetric fat tails and leverage as well

as volatility clustering (see, e.g., Dragulescu and Yakovenko (2002).) One of the main reasons

for the practical success of the Heston model is that it results in a nearly closed-form (analytic)
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pricing formula for European-style options. This in turn, when combined with the availability

of option data, provides a convenient specification to estimate the unobservable volatility.

In their paper, Christoffersen et al. (2010) conduct an empirical validation of alternative

stochastic volatility specifications comparable in model parsimony to Heston’s and find that the

most competitive is the one with linear, rather than Heston’s square root, diffusion for variance.

Specifically, it is the best fit for S&P 500 returns and their implied volatilities, and it also

captures stylized facts in realized volatility. However, similar to all the alternatives compared

in that paper, it results in pricing expressions for European options requiring significantly more

intensive numerical evaluations than the Heston model.

The Heston model is considered among the least parametrized, and a number of estimation

techniques can be pursued, with values that may, however, differ substantially. They include the

cross-section approach (cf., Bakshi et al. (1997), Bates (2000), and Huang (2004) ), maximum

likelihood based on filtering (Aı̈t-Sahalia and Kimmel (2007), Christoffersen et al. (2010) , and

Bates (2006)), and indirect inference (Gourieroux et al. (1993), AitSahlia et al. (2010a)).

When considering American options, however, pricing is a challenge even in the classical

constant–volatility model of Black and Scholes (1973) for which a number of techniques have

been developed and which can, in principle, be extended to account for stochastic volatility.

They include free–boundary PDE methods, Monte–Carlo simulation, and stochastic mesh al-

gorithms, among others (see e.g., Medvedev and Scaillet (2010) and Chockalingam and Muthu-

raman (2011) for reviews.)

Practitioners face the daunting task of evaluating several thousands of contracts simulta-

neously, where the vast majority can be exercised early, with trades increasingly occurring

at less than one millisecond intervals. The presence of the early exercise feature exacerbates

even more the pricing problem. In this paper, we follow a quasi–analytic approach whereby

the price of an American option price is decomposed into that of the corresponding European
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option price and an early exercise premium that can be expressed in terms of the associated

optimal early exercise boundary. When volatility is stochastic, this boundary is a surface de-

pending on time and values of instantaneous volatility. Touzi (1994), for example, derives

regularity results for the option price and shows that the optimal exercise boundary is a mono-

tone function of the spot volatility. As mentioned above, different volatility estimates may be

obtained, depending on the procedure used, which therefore call into question the accuracy of

the resulting American option prices as well as the optimality of the associated early exercise

strategy.

In this paper we show that this surface can be closely approximated based only on crude

estimates of the long-term volatility of the mean–reverting Heston model. Consequently, and

similarly to the constant volatility specification, we show that the optimal early exercise strat-

egy need only rely on the determination of a very small set (typically, 3 or 4) of deterministic

and time–dependent critical values of the underlying asset. In so doing, we develop an efficient

pricing algorithm for American options, which is especially important when dealing with large

option books. More specifically, our method relies on the constant volatility model, for which

fast and accurate techniques are well-developed, in order to determine the optimal exercise

surface. The latter is then employed in the American option pricing decomposition formula for

Heston’s stochastic volatility model developed by Chiarella et al. (2010), which is also used

in the regression–based technique of AitSahlia et al. (2010b). We will in particular exploit

the accurate approximation technique of AitSahlia and Lai (2001) to determine the constant

volatility exercise boundary. Our approach is then compared to recent alternatives through sys-

tematic numerical scenarios. It is also evaluated with S&P 100 data to support it as a model

that efficiently generates out–of–sample prices close to actuals.

The remainder of the paper is organized as follows: Section 2 summarizes the Heston model

and presents the price decomposition formula for American options in this context. Section 3
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expands on the method of constant volatility approximation approach. Section 4 compares it

against recent numerical alternative techniques for a variety of numerical scenarios. In Section

5 it is evaluated empirically with market data. Section 6 concludes.

2 Heston’s stochastic volatility model

Heston (1993) models both the stock and volatility as stochastic processes satisfying:

dSt = (µ− q)Stdt+
√
vtStdW1(t)

dvt = κ(θ − vt)dt+ η
√
vt

(
ρdW1(t) +

√
1− ρ2dW2(t)

)
(1)

where, under the original measure, µ and q are, respectively, the underlying mean return and

dividend rates of the asset,
√
vt is its instantaneous volatility at time t, κ the mean reversion

rate of the variance process {vt}, θ its long-term mean, and η is the instantaneous volatility of

volatility. In the above, St refers to the underlying asset (stock) price at time t and W1 and W2

are independent Wiener processes while ρ is the correlation between the innovations affecting

the asset price and its volatility.

As long as 2κθ ≥ η2 (cf. Feller (1951)), the values of vt are guaranteed to remain positive

for all t. Furthermore, negative estimates of ρ, which occurs commonly, capture the leverage

effect whereby asset price declines are often accompanied with large volatilities.

Whereas the Black-Scholes model considers only one observable process, {St}, which

can be used to estimate its sole unknown parameter required for pricing, namely the constant

volatility of return, the Heston model introduces an additional process {vt} that is not observ-

able and for which three parameters, κ, η, θ, must be estimated. An additional complication

resulting from any stochastic volatility model is related to option pricing. Heston (1993) de-
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rives an analytic (nearly closed form) solution for a European option but the corresponding

problem of American option pricing is significantly more challenging and is not likely to result

in any comparable formula.

Given that the number of sources of uncertainty exceeds available risky assets, the Heston

model is incomplete and one way to select the risk–neutral pricing measure is through the

use of a universal market price of volatility risk, denoted λ (cf., Fouque et al. (2000) for a

discussion on market incompleteness in the context of stochastic volatility.) Under the risk

neutral measure, the stochastic volatility model (1) becomes:

dSt = (r − q)Stdt+
√
vtStdZ1t

dvt = κ∗(θ∗ − vt)dt+ η
√
vt

(
ρdZ1(t) +

√
1− ρ2dZ2(t)

)
(2)

where κ∗ = κ+λ, θ∗ = κθ/(κ+λ), and Z1 and Z2 are two independent standard Brownian

motions defined over an associated filtered probability space.

The estimation of the parameters for the specification above is a challenging problem. On

the one hand, one might want to rely on the observed values of the underlying asset in order to

estimate its structural parameters (µ, q, κ, θ, η and ρ) under the original (physical) probability

measure. On the other, one could use options data in order to estimate, under the risk-neutral

measure, the market price of volatility risk (λ) and the starred versions of the structural param-

eters. However, severe discrepancies could occur. For example, Bakshi et al. (1997) show a

direct estimation of ρ to be −0.23, all the while the estimate implied by options data is −.76.

This issue of calibration between objective and pricing measures is prevalent in many speci-

fications as discussed at length in Chernov and Ghysels (2000). As mentioned earlier in our

introduction, a variety of approaches have been developed, often leading to significant differ-
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ences in the estimated values. One may then wish to asses the impact of these discrepancies

on option prices. Our objective in this paper is to assess this impact on American option prices

for which estimates have been obtained via a two-step procedure based on indirect inference

(AitSahlia et al. (2010a)), specifically those for spot and long-term (equilibrium) volatilities.

3 Decomposition formula for American put under stochastic

volatility

If at time t the stock price is S and the volatility of its return is v, then the American put price

PA(S, v, t) satisfies

rPA =
∂PA
∂t

+ (r − q)S∂PA
∂S

+
1

2
vS2∂

2PA
∂S2

+ κ∗ (θ∗ − v)
∂PA
∂v

+
1

2
η2v

∂2PA
∂v2

+ ρηvS
∂2PA
∂S∂v

(3)

in the no–exercise region {(S, v, τ) : S > b(v, t)}, where b(v, t) is the optimal exercise bound-

ary that is determined jointly with PA satisfying (3) above and such that the following also

hold:

PA(S, v, T ) = (K − S)+ (4)

PA(b(v, t), v, t) = K − b(v, t) (5)

lim
S→b(v,t)

∂PA
∂S

(S, v, t) = −1, (6)

with the latter two conditions capturing the optimality of b(v, t) (smooth fit.)

In the Black-Scholes model, volatility is constant and the terms on the second line of (3)

vanish. In this case, American option prices and their hedging parameters can be determined
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very efficiently and very accurately thanks to the classical decomposition formula expressing

the American option price as that of the corresponding European option augmented by an early

exercise premium (Carr et al. (1992), Kim (1990), Jacka (1991).). The latter involves the early

exercise boundary, which is shown in an exhaustive and systematic study by AitSahlia and Lai

(1999) to be approximately piecewise linear (on the log-price scale), requiring only a few knots

to yield very accurate prices (AitSahlia and Lai (2001).)

Chiarella et al. (2010) obtain a decomposition formula for the price of an American call

option in the context of Heston’s stochastic volatility model (see their Proposition 10, p.293.)

As the vast majority of the published literature with which we will compare our method is

focused on the American put, we adapt the decomposition formula of Chiarella et al. (2010)

to the latter. Though the put-call parity does not apply to American options (except for non–

dividend paying calls), the adaptation of the Chiarella et al. (2010) approach to put options is

relatively straightforward. First, we need to recall some functions from Chiarella et al. (2010),

namely,

Λ(ζ) ≡ iζ − ζ2 (7)

Θ(ζ) ≡ β + ηρiζ (8)

Ω(ζ) ≡
√

Θ2(ζ)− η2Λ(ζ), (9)

for a complex argument ζ , where β = κ + λ. Then the American put price PA(S, v, τ), when

the spot volatility is v and τ units of time are left to maturity, is given by

PA(S, v, τ) = Ke−rτ P̄2(S, v, τ ;K, 0)− Se−qτ P̄1(S, v, τ ;K, 0)

+

∫ τ

0

∫ ∞
0

rKe−r(τ−ξ)P̄2(S, v, τ − ξ;w, b(w, ξ))dwdξ

−
∫ τ

0

∫ ∞
0

qSe−q(τ−ξ)P̄1(S, v, τ − ξ;w, b(w, ξ))dwdξ,

(10)
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where, for j = 1, 2,

P̄j(S, v, τ ;α, ψ) ≡ 1

2
− 1

π

∫ ∞
0

Re

(
e−iφ lnα

iφ
fj(S, v, τ ;φ, ψ)

)
dφ (11)

and

fj(S, v, τ ;φ, ψ) ≡ exp {Bj(φ, ψ, τ) +Dj(φ, ψ, τ)v + iφ lnS} (12)

Bj(φ, ψ, τ) ≡ iφ(r − q)τ +
α

η2

{
(Θj + Ωj) τ − 2 ln

(
1−Qje

Ωjτ

1−Qj

)}
Dj(φ, ψ, τ) ≡ iψ +

(Θj − η2iψ + Ωj)

η2

(
1− eΩjτ

1−QjeΩjτ

)

with Qj ≡ (Θj − η2iψ + Ωj) / (Θj − η2iψ − Ωj), Θ1 ≡ Θ(i − φ), Θ2 ≡ Θ(−φ), Ω1 ≡

Ω(i− φ), an Ω2 ≡ Ω(−φ). We should note here that the first line in the expression (10) above

is the price of the corresponding European put and the remaining two lines capture the early

exercise premium, which requires the determination of the early exercise boundary b(v, t),

where v is the instantaneous variance at time t. This boundary is a surface separating in the

(v, t)–space the optimal exercise region, where the put value is its payoff, and the continuation

region, where the put option value satisfies (3). Given the decomposition formula (10), b(v, t)

solves the integral equation

K − b(v, τ) = Ke−rτ P̄2(S, v, τ ;K, 0)− b(v, τ)e−qτ P̄1(S, v, τ ;K, 0)

+

∫ τ

0

∫ ∞
0

rKe−r(τ−ξ)P̄2(b(v, τ), v, τ − ξ;w, b(w, ξ))dwdξ

−
∫ τ

0

∫ ∞
0

qb(v, τ)e−q(τ−ξ)P̄1(b(v, τ), v, τ − ξ;w, b(w, ξ))dwdξ,

(13)

Given expression (11), the above equation requires the (numerical) evaluation of triple

integrals, which can be very burdensome. Based on the empirical evidence in Broadie et al.
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(2000) suggesting an approximate linear relationship between ln b(v, t) and v, namely

ln b(v, t) ≈ b0(t) + vb1(t), (14)

where b0(t) and b1(t) are deterministic functions of t, Adolfsson et al. (2013) obtain a decom-

position formula for the price of an American call option in the context of Heston’s stochastic

volatility model. As a result, the manage to reduce the integration dimensionality to two and

their approach still requires solving numerically for the roots of two-dimensional non–linear

systems, which are prone to numerical instability. We propose to go one step further in dimen-

sion reduction by solving the integral equation by approximating the optimal exercise surface

with a volatility invariant one; i.e., by setting b1 ≡ 0. This is a clearly a faster method than

that of Adolfsson et al. (2013). The focus of current alternative techniques on puts is behind

our adaptation of Adolfsson et al. (2013) to puts. With the linear approximation of log of the

surface, we have for the American put:

PA(S, v, τ) = Ke−rτ P̄2(S, v, τ ;K, 0)− Se−qτ P̄1(S, v, τ ;K, 0)

+

∫ τ

0

rKe−r(τ−ξ)P̄2(S, v, τ − ξ; eb0(ξ),−b1(ξ))dξ

−
∫ τ

0

qSe−q(τ−ξ)P̄1(S, v, τ − ξ; eb0(ξ),−b1(ξ))dξ,

(15)

To complete this expression, the early exercise premium (integral terms on the right-hand-

side of (4) above) we need the deterministic function b0(t) and b1(t), which are obtainable

through the matching condition upon exercise:

PA (b(v, τ), v, τ) = K − b(v, τ).

This is a significantly complex two-dimensional integral equation and we introduce next an
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approximation technique to reduce it to a more manageable one-dimensional integral equa-

tion, which results from our approximation based on a variance-invariant, but time–dependent,

optimal exercise surface.

4 Early exercise boundary approximation

In this section we show how we can adapt to the Heston stochastic volatility model a technique

initially developed for the classical constant–volatility Black-Scholes model. In the latter, the

underlying asset price process {St} is assumed to follow a geometric Brownian motion under

the risk-neutral measure:

dSt = (r − q)Stdt+ σStdWt,

where σ is its volatility of return, q its dividend rate, r the market risk-free rate, and Wt a stan-

dard Brownian motion. Given the comparison context for stochastic volatility in forthcoming

sections, we focus here on an American put written on this underlying. Its maturity is labeled

T while its strike isK. Then at time t, for a spot price S, the American put option price P (S, t)

can be decomposed as:

P (S, t) =PE(S, t) + rK

∫ T

t

e−r(τ−t)N(−d2(S;Bτ , τ − t))

− qS
∫ T

t

e−q(τ−t)N(−d1(S;Bτ , τ − t))dτ
(16)

where d1(x; y, τ) =
(
ln(x/y) + (r − q + 1

2
σ2)τ

)
/σ
√
t , d2(x; y, τ) = d1(x; y, τ) − σ

√
t,

PE(S, t) is the price of the corresponding European option, and N(x) is the cumulative stan-

dard normal distribution function (cf. Kim (1990), Jacka (1991) and Carr et al. (1992).) As the

boundary {Bt} is unknown in this expression, we use the matching condition upon exercise
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P (Bt, t) = K −Bt to get an integral equation for this boundary, namely:

K −Bt = PE(Bt, T − t)+∫ T

t

[
rKe−r(τ−t)N(−d2(Bt, Bτ , τ − t))− qBte

−q(τ−t)N(−d1(Bt, Bτ , τ − t))
]
dτ

(17)

This integral equation has been the focus of much research effort. Huang et al. (1996) ap-

proximate the early exercise boundary with piecewise constant functions, using only a few

pieces, typically 3 or 4. Ju (1998) followed the same general idea, using piecewise exponential

approximations instead. By showing that large classes of American option pricing problems

can be reduced to canonical pricing problems indexed by one or two parameters, AitSahlia

and Lai (1999) conduct an extensive study showing that the early exercise boundary for the

constant volatility model is indeed well-approximated by a piecewise exponential function.

Furthermore, they make use of spline approximations in AitSahlia and Lai (2001) to efficiently

determine this piecewise exponential function. Their approach in fact improves upon that of

Ju (1998) as it makes use of root-finding algorithms in one dimension instead of two for the

latter, which are prone to stability issues. In addition, their boundary approximation is the only

one that is continuous, which is in conformity with its theoretical characterization. We there-

fore use the same method as in AitSahlia and Lai (2001) to approximate the constant volatility

boundary to generate the stochastic volatility surface in the next section.

Following AitSahlia and Lai (1999), we perform in (2) the change of variables:

s = σ2(t− T ), z = log(S/K)− (ρ− αρ− 1

2
)s,

where ρ = r/σ2 and α = q/r, to obtain the following integral formula for the boundary (z̄(s))
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in the canonical form

1− ez̄(s)+(ρ−αρ− 1
2

)s =eρs
[
N

(
−z̄(s)√
−s

)
− ez̄(s)−

1
2
sN

(
−z̄(s)√
−s
−
√
−s
)]

+ ρeρs∫ 0

s

[
e−ρuN

(
z̄(u)− z̄(s)√

u− s

)
− αe−αρu+ 1

2
s+z̄(s)N

(
z̄(u)− z̄(s)√

u− s
−
√
u− s

)]
du

(18)

An advantage of this change of variables is the significant reduction of the interval over

which to conduct computational procedures (a fraction σ2 of the original.) Dividing the interval

[s, 0] into m subintervals such that s = sm < . . . < s0 = 0 and proceeding in the same way as

in AitSahlia and Lai (2001), the boundary z̄() is solved recursively starting from

z(0) =


0 if 0 ≤ α ≤ 1

− lnα if α > 1

(19)

As the approximating boundary is piece-wise linear, each intercept is determined by the

previous piece and thus only the corresponding slope needs to be determined as root of a non-

linear equation as explained next.

With z̄j = z̄(sj) and τj = sj−sm, once z̄0, . . . , z̄m−1 are determined, z̄m can be determined
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by solving the following equation for z

1− ez+(ρ−αρ− 1
2

)sm =eρsm
[
N

(
−z√
−sm

)
− ez−

1
2
smN

(
−z√
−sm

−
√
−sm

)]
+ 1− eρsm − ez+(ρ−αρ− 1

2
)sm(1− eραsm)

+ e−ρτm−1N(b(z)τ
1/2
m−1)− 1

2
− b(z)

a(z)
N(a(z)τ

1/2
m−1 − 0.5)

−
m−1∑
i=1

Ai(z) + ez+(ρ−αρ− 1
2

)sm

[
b̃(z)

ã(z)
[N(ã(z)τ

1/2
m−1)− 0.5]

]

+
1

2
− e−αρsm−1N(b̃(z)τ

1/2
m−1) +

m−1∑
i=1

Ãi(z)

(20)

where Ai(z) and Ãi(z) are given by the RHS of equations (9) and (10) in AitSahlia and Lai

(2001) and

b(z) =
z − zm−1

sm−1 − sm
a(z) = [b2(z) + 2ρ]1/2

b̃(z) = b(z) + 1

ã(z) = [b̃2(z) + 2αρ]1/2

To solve equation (20) we use the bisection method, for which we use the lower and upper

bounds for the put option boundary (AitSahlia and Lai (1999)) as starting points:

z̄u(s) = −[ρ(1− α)− 0.5]s− ln(α)+, (21)

z̄l(s) = −[ρ(1− α)− 0.5]s− ln(β̄/(β̄ − 1)) (22)

where β̄ = −
[
ρ(1− α)− 1

2

]
+
{[
ρ(1− α)− 1

2

]2
+ 2ρ

}1/2

The obtained boundary values z̄(0), z̄(1), . . . , z̄(m) are then converted from the canonical
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form back to the standard form by using

Bt = Kez(s)+(ρ−αρ− 1
2)s (23)

where s = σ2(t− T ).

4.1 Constant–volatility surface approximation

Driven by practical implementation considerations and motivated by the fact that the (one–

dimensional) optimal exercise boundary in the Black–Soholes model can be approximated

rather crudely (e.g., piecewise constant) and still yield fairly accurate prices, we propose a

similar simple, yet accurate approach when dealing with stochastic volatility. The decompo-

sition formula for the American put under stochastic volatility expressed in (15) assumes that

the early exercise surface b(v, t) is of the form b(v, t) = exp{b0(t) + vb1(t)}. Setting b1 ≡ 0,

the corresponding integral equation is unidimensional in the same vein as (17), namely a deter-

ministic function exp{b0(t}) that plays the role of Bt therein. However, the quantities defined

in (15) require a value for the instantaneous volatility v, which we vary in our numerical and

empirical validations (Sections 5 and 6, respectively.) In what follows, we refer to our imple-

mentation as CV-Decomp (Constant Volatility-Decomposition) method. It should be noted that

neither the approximation (14) above due to Broadie et al. (2000) nor its restriction to the affine

form that we propose will lead to an option price satisfying the associated free–boundary prob-

lem (3) – (6). However, what we argue is that, similarly to the original Black–Scholes setup,

using a seemingly non–optimal exercise boundary does not prevent the generation of accurate

options prices. Clearly, this type of approximation does not fit a standard setup where conver-

gence can be assessed theoretically (cf. Huang et al. (1996), Ju (1998), and AitSahlia and Lai

(2001).) Therefore, we focus on the practical impact of our approach by assessing its accu-
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racy via (i) a comparison with alternative PDE–based approaches, and (ii) an out–of–sample

empirical validation.

[ This section to be further expanded with theoretical arguments regarding the validity of

our approximation approach, based on concentration bounds and approximations to the non–

central χ2 distribution. In addition, this error analysis will be linked to the literature on model

risk and robust pricing in derivatives.]

5 Comparison against PDE-based approaches

We assess the efficiency of our approach against those of recent PDE-based numerical methods

considered in Ikonen and Toivanen (2007) and Chockalingam and Muthuraman (2011). Ikonen

and Toivanen (2007) develop a componentwise splitting method to compute American put

option prices and compare it with those of Clarke and Parrott (1996), Zvan et al. (1998) and

Oosterlee (2003). Chockalingam and Muthuraman (2011) develop a method that transforms the

free–boundary problem arising in American option pricing into a sequence of fixed-boundary

problems involving European–type options. We therefore use the parameter values used in

both papers to assess the accuracy and computational efficiency of our approach against all

these alternatives. In essence, this is one way to gauge how well we solve the optimal stopping

problem associated with the pricing of an American option with our approach. We should

note, in passing, that we did not compare with Beliaeva and Nawalkha (2010) as their method

is based on the trinomial tree, which is significantly slower than any quasi-analytic approach

such as ours.

Ikonen and Toivanen (2007) compared the speed and accuracy of five numerical methods

to price American puts in the Heston model: their component-wise splitting technique, the

projected SOR, the projected multi grid method of Clarke and Parrott (1996), the operator

16



splitting method of Oosterlee (2003), and the penalty method of Zvan et al. (1998). Their

study indicates that their approach is the fastest with an accuracy comparable to the others.

Ikonen and Toivanen (2007) computed put prices with strike K = 10, a maturity of

T = .25, and spot prices S0 = 8, 9, 10, 11 and 12, for two spot volatilities: v0 = 0.0625

and v0 = 0.25. They report the time for a particular grid size (1280; 512; 258) to be 56.82

seconds on 3.40 GHz Intel Xeon PC. For the Heston model, the parameters used are: κ =

5.00, θ = 0.16, η = 0.9, ρ = 0.1, λ = 0, r = 0.1, q = 0.0. In anticipation of the more system-

atic comparison we present next, we calculated the early-exercise boundary by assuming σ to

be equal to one of two different values: σ2 = θ and θ +
√
θη. In reference to the next set of

numerical tests, we could not use σ2 = θ −
√
θη as it was negative. For our implementation,

we computed the put option prices with the same parameters, considering constant volatility

boundaries with 3, 5, 10, 25 and 50 pieces for the two values of σ above. Table 2 reports the

mean prices for these five runs. The corresponding standard deviations are given in parenthe-

ses. Their values indicate that there is little variation between the different runs. Ikonen and

Toivanen (2007) list their best time as 56.82 seconds on a 3.40 GHz Intel Xeon PC. Chock-

alingam and Muthuraman (2011) implement their technique on a 2.8 GHz Intel Xeon Mac Pro

and report comparable accuracy to Ikonen and Toivanen (2007) while doubling the computa-

tional speed. However, ours is even much faster, for comparable accuracy. For example, the

maximum time taken (with the 50-piece boundary) is 0.05 seconds on a modest 2.00 GHz Intel

Core2 PC.

6 Empirical Validation

AitSahlia et al. (2010a) use the least–squares Monte Carlo (LSM) method of Longstaff Schwartz

algorithm (Longstaff and Schwartz, 2001) to price American options under constant and stochas-
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tic volatility using actual market data. They find that Heston’s stochastic volatility model im-

proves the pricing and hedging performance over the constant volatility model, thus extending

earlier results obtained by Bakshi et al. (1997) for European options. In this section, we use

the same data in order to validate our approach which combines a constant–volatility model to

determine the early exercise boundary with a stochastic–volatility model to determine prices.

We rely on the same data in order to compare directly with a method (LSM) that makes full

use of the Heston specification in AitSahlia et al. (2010a), in contrast to the partial reliance in

the present paper on constant volatility.

6.1 Data description and parameter estimates

The data consist of the daily closing prices of S&P 100 index options, which are of both Euro-

pean and American exercise styles. The entire sample period for estimation and performance

evaluation is January 1, 2002 to April 28, 2006. The reported price of any given option is the

average of its bid and ask prices. In AitSahlia et al. (2010a) we used data on European style

S& P 100 index options to estimate the parameters in Heston’s model. The same estimates are

used here and are reproduced in Table 2.

Table 1: Parameter estimates of Heston’s model

Parameter Estimate
κ 2.65
θ 0.029
η 0.154
ρ̂ −0.487
v̂ 0.0349

λ̂ 2.14

The calibrated Heston model is used for performance evaluation of American put option

prices using CV-Decomp approach with 3 boundary pieces. The out–of–sample data are from
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January 1, 2006 to April 28, 2006. Applying the exclusionary criteria of AitSahlia et al.

(2010a), leaves 8, 177 put options for 81 days in the sample period (an average of 101 options

per day.). As shown through the numerical evaluation in the previous sections, our approach

is robust with respect to volatility estimates. Therefore, we use long–term mean
√
θ and spot

volatility v̂ calculated in AitSahlia et al. (2010a) as potential values for the constant volatility

σ and analyze the performance of the proposed model for these estimates.

6.2 Classification of options

We classify options according to maturity(T , in days) and moneyness (x), which for a put

option is defined as x = K/S−1, where S is the current spot andK the strike. Different option

groups are defined below. In our analysis, short-term options are those for which (T < 45);

mid-term options have (45 ≤ T < 90) and those with (T ≥ 90) are labeled long–term options.

With respect to moneyness, we classify options with x > 0.05 as deep-in-the-money (DITM),

those with x ∈ (0.02, 0.05) as in-the-money (ITM) options, those with x ∈ (−0.02, 0.02)

as at-the-money (ATM) options, those with x ∈ (−0.05,−0.02) as out-of-the-money (OTM)

options, and those with x > −0.05 as deep-out-of-the-money (DOTM) options.

6.3 Measures of performance

We compare the LSM method in AitSahlia et al. (2010a) and CV-Decomp approach according

to out-of-sample mean relative-pricing errors and absolute-pricing errors, following the option

classification described above. For the ith option in a given group of n, we let CM
i and Ci

denote the observed market and model prices, respectively. Then the mean relative pricing
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error for the group is defined as

MRE =
1

n

n∑
i=1

(CM
i − Ci)
Ci

and its mean absolute relative pricing error as:

MAE =
1

n

n∑
i=1

|CM
i − Ci|
Ci

.

MRE is an indicator of the pricing bias whereas MAE evaluates the magnitude of mispricing.

The results in tables 3 through 6 are obtained by computing these averages for each moneyness-

maturity group. Since we have a choice in setting the initial volatility, namely the spot volatility

or the long-term mean θ, we chose to consider both as displayed in these tables.

6.4 Empirical Analysis

We use in this paper the same classification scheme and metrics for performance evaluation as

in AitSahlia et al. (2010a). In Tables 3–6, LSM represents the results from the Least-Squares

Monte Carlo approach in AitSahlia et al. (2010a) together with their reported standard error

values. 3CV-Decomp refers to the results obtained from our proposed approach with an early

exercise boundary approximated by a three-piece log–linear function, which is then input in the

decomposition formula for the SV model. The main purpose for including the LSM approach

is to provide context to the empirical accuracy. Specifically, the latter is assessed relative to

actual prices but it also needs to be viewed in comparison with a convergent approximation.

The results in Tables 3 and 4 are obtained by computing the average of percentage pricing

errors for each moneyness-maturity group when constant and initial volatility are set to spot

volatility and long term average, respectively. The results in Tables 5 and 6 are obtained by
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computing the average of absolute pricing errors for each moneyness-maturity group when

constant and initial volatility are set to spot volatility and long term average, respectively.

Let us first consider the percentage and absolute pricing errors listed in tables 3 and 5 which

correspond to prices obtained when initial volatility is set to spot volatility. Considering both

pricing errors, we observe that our approximation approach performs better for DOTM, ITM,

ATM and OTM moneyness groups and for mid-term and long-term maturities. For the deep-

in-the-money options, our model’s pricing accuracy is comparable with that of LSM approach.

The errors from approximation are within 2% difference. It also shows that for deep in the

money options the models have no particular bias towards overpricing or underpricing of op-

tions and the absolute pricing errors for this moneyness group have considerably lower errors

than the CV model. However, for deep out of the money options our proposed model has a

slight bias towards underpricing whereas LSM has bias towards overpricing.

Table 4 and 6 corresponding to prices obtained when initial volatility is set to long term

average. Compared with the previous two tables, it is evident that long term average gives

better results than setting the estimate as spot volatility for all the models. This can also be

attributed to the fact that the estimated spot volatilities are greater than the long term average

for almost all sample days which results in higher prices of the options. In this case our CV-

Decomp approach performs better than the LSM approach for all moneyness-maturity groups

except for deep-out-of-the-money options in which our proposed approach shows slight bias

towards underpricing options.

The computation time for these two approaches are unsurprisingly significantly different. The

pricing calculation of about 8, 177 options took 24+ hours for LSM approach whereas for

3CV-Decomp took 38.812 seconds. The main takeaway, however, is the fact that the empirical

accuracy of our decomposition method is on par with, and occasionally much better than, a
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converging approach.

7 Conclusion

Empirical evidence supports the improvement provided by the stochastic volatility model of

Heston (1993) in option pricing. Furthermore, this model yields a nearly closed-form formula

for European options. However, parameter estimation for this model is very challenging as it

involves terms associated with an unobservable process (volatility). Additionally, American

option pricing in this model is significantly more difficult. While an expression relating an

American option price to the corresponding European price is readily available, it also requires

the determination of an early exercise premium that depends on the optimal early exercise sur-

face. The latter is a function involving both time and instantaneous volatility, which can attain

substantially different values, depending on the estimation technique used for the Heston spec-

ification. In this paper we develop a method that approximately determines the early exercise

boundary, all the while resulting in a very efficient and accurate pricing procedure that is im-

pervious to parameter estimation error in the Heston stochastic volatility model. Through an

out-of-sample study, we also show that this procedure generates accurate market prices.

References

Adolfsson, T., Chiarella, C., Ziogas, A., and Ziveyi, J. 2013. Representation and numerical

approximation of American option prices under Heston stochastic volatility dynamics. The

University of Technology, Sydney.

22



Aı̈t-Sahalia, Y. and Kimmel, R. 2007. Maximum likelihood estimation of stochastic volatility

models. Journal of Financial Economics, 83:413–452.

AitSahlia, F., Goswami, M., and Guha, S. 2010a. American option pricing under stochastic

volatility: An empirical evaluation. Computational Management Science, 7:189–206.

AitSahlia, F., Goswami, M., and Guha, S. 2010b. American option pricing under stochastic

volatility: An efficient and accurate numerical scheme. Computational Management Sci-

ence, 7:171–187.

AitSahlia, F. and Lai, T. 1999. A canonical optimal stopping problem for american options and

its numerical solution. Journal of Computational Finance, 3(2):33–52.

AitSahlia, F. and Lai, T. 2001. Exercise boundaries and efficient approximations to american

option prices and hedge parameters. Journal of Computational Finance, 4:85–103.

Bakshi, G., Cao, C., and Chen, Z. 1997. Empirical performance of alternative option pricing

models. Journal of Finance, 52.

Bates, D. 2000. Post-’87 crash fears in the s&p 500 futures option market. Journal of Econo-

metrics, 94:181–238.

Bates, D. 2006. Maximum likelihood estimation of latent affine processes. Review of Financial

Studies, 19:909–965.

Bates, D. S. 2021. Empirical option pricing models. Annual Review of Financial Economics,

14.

Beliaeva, N. A. and Nawalkha, S. K. 2010. A simple approach to pricing American options

under the Heston stochastic volatility model. The Journal of Derivatives, 17:25–43.

23



Black, F. and Scholes, M. 1973. The pricing of options and corporate liabilities. Journal of

Political Economy, 81:637–654.

Broadie, M., Detemple, J., Ghysels, E., and Torres, O. 2000. American options with stochastic

dividends and volatility: A nonparametric investigation. Journal of Econometrics, 94:53–92.

Carr, P., Jarrow, R., and Myneni, R. 1992. Alternative characterizations of American put

options. Mathematical Finance, 2:87–106.

Chernov, M. and Ghysels, E. 2000. A study towards a unified approach to the joint estimation

of objective and risk neutral measures for the purpose of options valuations. Journal of

Financial Economics, 56.

Chiarella, C., Ziogas, A., and Ziveyi, J. 2010. Representation of American option prices under

Heston stochastic volatility dynamics using integral transforms. In Contemporary Quantita-

tive Finance (C. Chiarella and A. Novikov, eds.).

Chockalingam, A. and Muthuraman, K. 2011. American options under stochastic volatility.

Operations Research, 59:793–809.

Christoffersen, P., Jacobs, K., and Mimouni, K. 2010. Volatility dynamics for the S&P 500:

Evidence from realized volatility, daily returns, and option prices. Review of Financial

Studies, 23(8):3141–3189.

Clarke, N. and Parrott, K. 1996. The multigrid solution of two-factor american put options.

Tech. Rep. ,Oxford Computing Laboratory.

Dragulescu, A. and Yakovenko, V. 2002. Probability distribution of returns under the Heston

model with stochastic volatility. Quantitative Finance, 2:443–458.

24



Feller, W. 1951. Two singular diffusion problems. Annals of Mathematics, 54:173–182.

Fouque, J., Papanicolaou, G., and Sircar, R. 2000. Derivatives in Financial Markets with

Stochastic Volatility. Cambridge University Press.

Gourieroux, C., Monfort, A., and Renault, E. 1993. Indirect inference. J Appl Economet,

8:s85—-s118.

Heston, S. L. 1993. A closed-form solution for options with stochastic volatility with applica-

tions to bond and currency options. Review of Financial Studies, 6:327–343.

Huang, J., Subrahmanyam, M. G., and Yu, G. G. 1996. Pricing and hedging american options:

A recursive integration method. Review of Financial Studies, 3.

Huang, J.-Z.and Wu, L. 2004. Specification analysis of option pricing models based on time-

changed levy processes. Journal of Finance, 7:1405–1439.

Ikonen, S. and Toivanen, J. 2007. Efficient numerical methods for pricing American options

under stochastic volatility. Numerical Methods for Partial Differential Equations, 24:104–

126.

Jacka, S. D. 1991. Optimal stopping and the american put. Mathematical Finance, 1:1–14.

Ju, N. 1998. Pricing of american option by approximating its early exercise boundary. Review

of Financial Studies, 11.

Kim, I. J. 1990. The analytical approximation for the american options. Review of Financial

Studies, 3:547–572.

Longstaff, F. A. and Schwartz, E. S. 2001. Valuing american options by simulation: A simple

least-squares approach. The Review of Financial Studies, 14(1):113–147.

25



Medvedev, A. and Scaillet, O. 2010. Pricing American options under stochastic volatility and

stochastic interest rates. Journal of Financial Economics, 98:145–159.

Oosterlee, C. W. 2003. On multigrid for linear complementarity problems with application to

american-style options. Electron. Trans. Numer. Anal., 15:165–185.

Touzi, N. 1994. American options exercise boundary when the volatility changes randomly.

Appl. Math Optim, 39:411–422.

Zvan, R., Forsyth, P. A., and Vetzal, K. R. 1998. A penalty method for american options with

stochastic volatility. Journal of Computational and Applied Mathematics, 91:199–218.

26



Table 2: American put price comparison: strike K = 10, maturity T = .25, spot price
S0 and two spot volatility values v0. Parameters for Heston’s stochastic volatility model:
κ = 5.00, θ = 0.16, η = 0.9, ρ = 0.1, λ = 0, r = 0.1, q = 0.0. CV-Decomp refers to our
constant volatility – decomposition formula approach with σ2 = θ. Entries for this approach
are the average of the option prices obtained with 3–, 5–, 10–, 25– and 50-piece approximate
exercise boundaries (with their standard deviations in parentheses). Other approaches are taken
from Ikonen and Toivanen (2007) and Chockalingam and Muthuraman (2011). The values for
their finite–difference schemes are averaged for the four grid sizes they considered and stan-
dard deviations are provided in parentheses. Our longest computation time (with the 50–piece
boundary took 0.05 seconds on 2.00 GHz Intel Core2 PC while the best time for Ikonen and
Toivanen (2007) was reported as 56.82 seconds on a 3.40 GHz Intel Xeon PC. Chockalingam
and Muthuraman (2011) run theirs on a 2.8 GHz Intel Xeon Mac Pro and report a computa-
tional time that is half of that of Ikonen and Toivanen (2007).

Method v0 S0

8 9 10 11 12

CV-Decomp
0.0625 1.9486 1.0832 0.5189 0.2212 0.0891

(0.0023) (0.0021) (0.0043) (0.0016) (0.0002)
0.25 2.0867 1.3345 0.8001 0.4568 0.2528

(0.0042) (0.0011) (0.0020) (0.0013) (0.0004)

Ikonen
0.0625 2.0001 1.1046 0.5129 0.2099 0.0820

and Toivanen (2007)
(0.0002) (0.0031) (0.0094) (0.0045) (0.0006)

0.25 2.0747 1.3257 0.7858 0.4401 0.2385
(0.0048) (0.0110) (0.0143) (0.0114) (0.0059)

Chockalingam
0.0625 2.0000 1.1030 0.5120 0.2101 0.0823

and Muthuraman (2011)
(0.0000) ( 0.0054) ( 0.0105) ( 0.0041) ( 0.0010)

0.25 2.0752 1.3270 0.7880 0.4420 0.2393
( 0.0041) ( 0.0088) ( 0.0108) ( 0.0085) ( 0.0046)

Clarke and Parrott (1996)
0.0625 2.0000 1.1080 0.5316 0.2261 0.0907
0.25 2.0733 1.13290 0.7992 0.4536 0.2502

Zvan et al. (1998)]
0.0625 2.0000 1.1076 0.5202 0.2138 0.0821
0.25 2.0784 1.3337 0.7961 0.4483 0.2428

Oosterlee (2003)
0.0625 2.0000 1.1070 0.5170 0.2120 0.0815
0.25 2.0794 1.3340 0.7962 0.4490 0.2431
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Table 3: Out-of-sample relative pricing errors for initial and constant volatility approximation
σ set at spot volatility

Maturity
Money-ness Model Short-Term Mid-Term Long-Term

DITM LSM 0.002 0.019 0.019
(0.001) (0.002) (0.003)

3CV-Decomp -0.003 0.019 0.010
ITM LSM 0.133 0.241 0.228

(0.006) (0.006) (0.011)
3CV-Decomp 0.136 0.250 0.237

ATM LSM 0.991 0.699 0.479
(0.032) (0.014) (0.016)

3CV-Decomp 1.045 0.702 0.473
OTM LSM 2.049 1.217 0.66

(0.049) (0.026) (0.025)
3CV-Decomp 2.146 1.161 0.614

DOTM LSM 1.411 0.969 0.411
(0.054) (0.025) (0.029)

3CV-Decomp -0.391 -0.116 -0.323

LSM refers to results based on the least-squares algorithm of Longstaff and Schwartz (2001), with associated
standard errors, as reported in AitSahlia et al. (2010a); 3-CV-Decomp refers to our approach where the early
exercise boundary is approximated by a three-piece linear functions. The reported absolute pricing error is the
absolute value of market price minus the model price divided by the market price for each moneyness-maturity
category.
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Table 4: Out-of-sample relative pricing errors for initial and constant volatility approximation
σ set at long term average

Maturity
Money-ness Model Short-Term Mid-Term Long-Term

DITM LSM -0.009 0.000 0.003
(0.001) (0.001) (0.002)

3CV-Decomp -0.014 -0.012 -0.009
ITM LSM 0.072 0.146 0.139

(0.004) (0.004) (0.008)
3CV-Decomp 0.004 0.045 0.036

ATM LSM 0.697 0.449 0.288
(0.021) (0.008) (0.009)

3CV-Decomp 0.224 0.121 0.031
OTM LSM 1.149 0.688 0.347

(0.027) (0.014) (0.014)
3CV-Decomp -0.062 -0.013 -0.106

DOTM LSM 0.484 0.226 -0.071
(0.034) (0.016) (0.019)

3CV-Decomp -0.916 -0.808 -0.795

LSM refers to results based on the least-squares algorithm of Longstaff and Schwartz (2001), with associated
standard errors, as reported in AitSahlia et al. (2010a); 3-CV-Decomp refers to our approach where the early
exercise boundary is approximated by a three-piece linear functions. The reported absolute pricing error is the
absolute value of market price minus the model price divided by the market price for each moneyness-maturity
category.
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Table 5: Out-of-sample absolute relative pricing errors for initial and constant volatility ap-
proximation set at spot volatility

Maturity
Money-ness Model Short-Term Mid-Term Long-Term

DITM LSM 0.019 0.028 0.029
(0.001) (0.002) (0.003)

3CV-Decomp 0.016 0.035 0.038
ITM LSM 0.136 0.241 0.228

(0.006) (0.006) (0.011)
3CV-Decomp 0.139 0.250 0.238

ATM LSM 0.991 0.699 0.479
(0.032) (0.014) (0.016)

3CV-Decomp 1.045 0.702 0.473
OTM LSM 2.048 1.217 0.660

(0.049) (0.026) (0.025)
3CV-Decomp 2.146 1.161 0.614

DOTM LSM 1.419 1.002 0.514
(0.053) (0.023) (0.022)

3CV-Decomp 0.911 0.767 0.640

LSM refers to results based on the least-squares algorithm of Longstaff and Schwartz (2001), with associated
standard errors, as reported in AitSahlia et al. (2010a); 3-CV-Decomp refers to our approach where the early
exercise boundary is approximated by a three-piece linear functions. The reported absolute pricing error is the
absolute value of market price minus the model price divided by the market price for each moneyness-maturity
category.
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Table 6: Out-of-sample absolute pricing errors for initial and constant volatility approximation
set at long–term average

Maturity
Money-ness Model Short-Term Mid-Term Long-Term

DITM LSM 0.015 0.017 0.019
(0.000) (0.001) (0.001)

3CV-Decomp 0.015 0.015 0.013
ITM LSM 0.079 0.147 0.140

(0.004) (0.004) (0.007)
3CV-Decomp 0.034 0.048 0.039

ATM LSM 0.647 0.449 0.288
(0.022) (0.008) (0.009)

3CV-Decomp 0.229 0.125 0.049
OTM LSM 1.149 0.689 0.347

(0.027) (0.014) (0.014)
3CV-Decomp 0.252 0.109 0.131

DOTM LSM 0.571 0.394 0.281
(0.016) (0.007) (0.011)

3CV-Decomp 0.916 0.808 0.795

LSM refers to results based on the least-squares algorithm of Longstaff and Schwartz (2001), with associated
standard errors, as reported in AitSahlia et al. (2010a); 3-CV-Decomp refers to our approach where the early
exercise boundary is approximated by a three-piece linear functions. The reported absolute pricing error is the
absolute value of market price minus the model price divided by the market price for each moneyness-maturity
category.
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