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Abstract

We present an efficient method to price discretely monitored lookback options when

the underlying asset price follows an exponential Lévy process. Our approach extends the

random walk duality results of AitSahlia and Lai (1998) originally developed in the Black-

Scholes set-up and exploits the very fast numerical scheme recently developed by Linetsky

and Feng (2008, 2009) to compute and invert Hilbert transforms. Though Linetsky and

Feng (2009) do apply these transforms to price lookback options, they require an explicit

transition probability density of the Lévy process and impose a condition that excludes

the pure jump variance gamma process, among others. In contrast, our approach is much

simpler and makes use of only the characteristic function of the log-increment, which is

central to Lévy processes. Furthermore, by focusing our approach on determining the

distribution function of the maximum of the Lévy process we can also determine price

sensitivities with minimal additional computational effort.
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1 Introduction

Lookback options provide the largest payoff potential because their holders can choose (in

hindsight) the exercise date with the advantage of having full path information. Lookback

options were initially devised mainly for speculative purposes but starting with currency mar-

kets, their adoption has been increasing significantly, especially in insurance and structured

products during the past decade. For example, embedded lookback option features have been

highlighted in equity-indexed annuities (cf. Tiong( 2000), Gerber and Shiu (2003), and Lee

(2003).)

Lookback option payoffs depend on the maximum or minimum price of the underlying

asset observed over the contract period. The holder of a floating–strike call gets the right to buy

at the lowest price attained over the contract period and sell at the price on the expiration date.

The holder of a floating–strike put gets the right to buy at the price on the maturity date and sell

at the highest price over the contract period. For fixed–strike lookback options, the holder of

a call option gets the right to buy the security at a fixed price and sell at the highest price over

the contract period. The holder of a fixed–strike lookback put gets the right to buy at a fixed

price and sell at the lowest price attained by the underlying over the contract period. Other

variations on these basic forms of lookback options include versions for which the maximum

or minimum is replaced by a fraction of it and others where the monitoring periods are smaller

intervals of the contract duration.

When the underlying asset price is continuously monitored, analytical and closed-form op-

tion pricing expressions have been advanced, starting with the founding papers of (Conze &

Viswanathan, 1991) and (Goldman et al., 1979) for the standard Black-Scholes model. Ex-

tensions include the CEV model of Davydov and Linetsky (2001), who made use of Laplace

transforms, and Merton’s jump-diffusion model, with normally distributed jumps occurring

according to a Poisson process, as developed in Broadie and Yamamoto (2003) who further

extend their fast–Gauss transform approach to jumps with double-exponential distributions

(Broadie & Yamamoto, 2005).

In practice, monitoring occurs at predetermined discrete dates (once every day or every

2



week, for example) and the ensuing pricing is mathematically and computationally challenging.

Substantial mis-pricing occurs when a discretely monitored contract is priced approximately by

a continuous-monitoring formula (cf. (Broadie et al., 1999) ,(Heynen & Kat, 1995).) (Broadie

et al., 1999) introduce correction terms so that the continuous-monitoring formulas can be used

as approximations for the discretely monitored options. (AitSahlia & Lai, 1998) use the duality

property of random walks to derive recursively the distribution of the extrema of the geometric

Brownian motion price process and determine the price of the lookback option by numerical in-

tegration. (Andricopoulos et al., 2003) propose a procedure exploiting properties of Brownian

motion to improve methods based on trees and finite-differences. Beyond the Black-Scholes

model, (Petrella & Kou, 2004) find Laplace transforms of discrete lookback options using a re-

cursion based on Spitzer’s formula. They invert the Laplace transforms numerically to get the

lookback option price and hedging parameters for several Lévy price models. More recently,

(Feng & Linetsky, 2009) developed a forward recursion on the prices of the lookback option

utilizing Hilbert transforms and Fourier transforms. In particular, they propose a very efficient

algorithm to invert such transform with a complexity comparable to the widely popular Fast

Fourier Transform. However, their approach is restricted by some conditions making it inap-

plicable to important pure-jump processes, such as the popular variance gamma (Madan and

Seneta (1990).). Even more recently, Green et al. (2010) exploit the Weiner–Hopf technique

to derive analytic expressions reminiscent of the classical Spitzer formulas. Their approach

requires that distributions have explicit density functions and that their characteristic functions

be analytic. In contrast, our method works directly on the characteristic functions of the asset

price change, with minimal assumptions, making it more generally applicable to pure jump

processes, which are excluded from the previous two papers. In addition, our approach has

the same efficient computational complexity of Feng and Linetsky (2009) as it also uses their

fast algorithm for the evaluation and inversion of Hilbert and Fourier transforms. Furthermore,

our approach is such that price sensitivities are readily obtainable with little additional com-

putational cost. For the remainder, our paper is organized as follows. Section 2 highlights the

prominence of jumps in underlying asset prices and reviews their most general and practical

classification as Lévy models. Section 3 presents an overview of the fast inversion algorithm
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developed by Feng and Linetsky for Hilbert transforms. Section 4 presents our extension of

earlier random walk duality results to Lévy processes, which are then exploited in Sections 5

and 6 to price fixed– and floating–strike lookback options, respectively. Further extensions are

presented in Section 7 and Section 8 concludes.

2 Jumps in asset prices and Lévy models

In the classical Black-Scholes model, the underlying asset price is assumed to follow a diffu-

sion process of the form

dSt = Stµdt+ StσdW

where St is its price time t, µ its mean return rate, σ its volatilty and W a Wiener process. The

main strength of this model is its resulting option pricing formula (Black and Scholes (1973).)

However, return distributions have long been known to exhibit leptokurtic and asymmetric

features that differ markedly from the normal distribution (cf., for example, Mandelbrot (1963)

and Fama (1965), for some of the classical evidence, and Cont and Tankov (2004) and Wu

(2008) for a more recent perspective.)

One of the earliest models capturing fatter tails than the normal distribution for asset returns

is the jump-diffusion model of (Merton, 1976), where the asset price follows the stochastic

differential equation

dSt = Stµdt+ StσdW + dq,

where q is a Poisson process with normally distributed jumps that are independent of W. These

random jumps lead to asset price return distributions with fatter tails than the normal distribu-

tion. Subsequent models capturing additional features such as asymmetry include the popular

double-exponential jump–diffusion of (Kou, 2002), where jumps occur as in Merton (1976) but

follow an asymmetric double Laplace (exponential) distribution, and the pure–jump models of

Madan and Seneta (1990) and (Carr et al., 2002). These models are now recognized as part of

the much larger and more general class of exponential Lévy models.
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A process (Xt)t>0 is called a Lévy process if it has

(a) Independent increments, that is for all t0, t1, ...., tn, the random variables

Xt0 , Xt1 −Xt0 , ...., Xtn −Xtn−1 are independent

(b) Stationary increments, that is Xt −Xs has the same distribution as Xt−s+u −Xu and

(c) Continuous paths a.e., that is limh→0 P (|Xt+h −Xt| ≥ ε) = 0.

Every Lévy process can be fully described by three parameters. The first two, a and σ2,

characterize the continuous component of the Lévy process, and the third, ν(x), is a func-

tion called the Lévy density that is associated with the jump component of the Lévy process.

Furthermore, a is the constant drift rate of the continuous component and σ2 is the constant

variance of the continuous component.

Using only those three parameters, the Lévy-Khinchine representation formula (cf. Sato

(1999)):

lnE[eiθXt ] = aitθ − 1

2
σ2tθ2 + t

∫
(eiθx − 1− iθxI|x|<1)ν(x)dx

where aεR, σ ≥ 0 and
∫
R/0min{1, x

2}ν(x)dx < ∞, allows for an easy retrieval of the char-

acteristic function, φ(θ) = E[eiθXt ], which makes them practically appealing, given the readily

available Fourier transform inversion technology (cf. . Carr & Madan(1999) and Lee (2004).)

Lévy processes can have either finite activity, with a finite number of jumps within a given

time interval, or infinite activity, with an infinite number of jumps and no diffusion within any

interval. However, pure jump processes (σ = 0) with infinite activity, can often be difficult

to distinguish from pure diffusion processes (Wu (2008).) When ν(x) is zero we have a pure

diffusion process. The arrival rate for jumps is given by

∫
R/0

ν(x)dx = λ

If λ <∞, then the mean arrival rate of jumps is finite, and when λ =∞ the number of jumps

over any interval will be infinite. The simplest Lévy process is the Brownian motion, for which

ν(x) = 0. The processes discussed earlier can be identified as Lévy processes with explicit

expressions for the triplets appearing in the Lévy-Khinchinee representation (see, e.g., Cont
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and Tankov (2004).)

Exponential Lévy models entail the representation of the underlying asset price St of an

option as St = S0 exp{Xt}, where S0 is its initial price and Xt is a Lévy process such that

X0 = 0. The value of a (vanilla) option with payoff function h(ST ) on expiration date T

is E[h(ST )] and can be calculated very efficiently via fast Fourier transform techniques as

described in (Carr & Madan, 1999).

3 The fast Hilbert transform technique

The valuation of discretely monitored, path-dependent options invariable require some form

of recursion and exploitation of random walk results. It is thus not surprising to find, among

the first efforts to price discrete lookback options, the involvement Spitzer’s classic identity,

as was done in Petrella and Kou (2004), for the double-exponential jump–diffusion model of

Kou (2002), and Borovkov and Novikov (2002) for more general Lévy models. However, the

computational complexity of this approach, which is quadratic in the number of monitoring

dates, can become prohibitive for the typical practice of daily monitoring. A better alternative

is the method of Feng and Linetsky (2009), based on Hilbert transforms and the so-called

sinc expansion, which grows linearly in terms of number of monitoring dates and comes with

an approximation error for the Hilbert transform that decays exponentially fast in its grid size.

Their algorithm is in effect the Hilbert transform version of the classical fast Fourier transform,

a close relative of the former. However, for their approach to work, they need to impose a

condition (see their expression (2.2) on page 505) that excludes certain pure jump processes

such as the popular variance (VG) of Madan and Seneta (1990). Our approach, on the other

hand, makes use of random walk duality and preserves the computational complexity of Feng

and Linetsky (2009) without imposing their restriction. Before we describe it fully in the next

sections, we begin with a brief review of the Hilbert transform and the fast inversion algorithm

of Feng and Linetsky (2009). The need to resort to the Hilbert transform instead of working

with the Fourier transform in the context of lookback (or related barrier) options stems from
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the requirement of having to compute the Fourier transform of products of the form 1(0,∞)×f ,

where 1(0,∞) is the indicator function for the interval (0,∞) and f is a function satisfying some

integrability condition. Specifically, we have (see Stenger (1993), for example):

F
(
1(0,∞) · φ

)
(ξ) =

1

2
φ̂+

i

2
H
(
φ̂
)

(ξ),

for a function φ ∈ Lp (R), 1 < p < ∞ (or φ ∈ L1 (R) such that f̂ ∈ L1 (R), where f̂ is the

Fourier transform of f defined as

f̂(ξ) ≡ F(f)(ξ) =

∫
R
eiξxf(x)dx for ξ ∈ R, (1)

and H(f) is the Hilbert transform of f ∈ Lp (R), 1 ≤ p < ∞, defined a.e. as the Cauchy

principal value integral

H(f)(x) =
1

π
P.V.

∫ ∞
−∞

f(y)

x− y
dy (2)

The classical fast Fourier transform (FFT) algorithm enables us to discretize and invert a

Fourier transform with a computational complexity of O (N log2N), where N is the number

of points in the discretization. This is an advantage over computing the DFT in the naive

way, which results in a complexity of O (N2). Feng and Linetsky (2008, 2009) use Whittaker

cardinal series (Sinc expansion) to approximateH with

H(f)(ξ) ≈ Hh,Mf(ξ) =
M∑

m=−M

f(mh)
1− cos[π(ξ −mh)/h]

π(ξ −mh)/h
,

where h is the discretization step size and M > 0 is the truncating integer for the integral

approximation. After this discretization step, they then use the FFT and Toeplitz matrix-vector

multiplication to compute Hh,Mf(ξ). The overall computational complexity to find the Hilbert

transform is O (M log2M), or the same complexity as the FFT for the Fourier transform.

Furthermore, the error in the approximation decays exponentially as h is taken smaller. The re-

sulting discretization–inversion algorithm for Hilbert transforms therefore has a computational

complexity of O (NM log2M) when there are N discrete monitoring dates. The application
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of this computational tool in the approach of Feng and Linetsky (2009) requires that the transi-

tion probability density of the Lévy process be known explicitly and excludes important price

specifications such as the variance gamma process. In our approach, we still manage to take ad-

vantage of the computational complexity of their Hilbert transform inversion algorithm while

avoiding their restrictive constraints.

4 Duality and Extrema of Random Walks

Under the assumption that the underlying price {St} follows an exponential Lévy process and

given the discrete monitoring of the maximum and minimum at dates t1, t2, . . . , tN , we can

write Stn = S0e
Un , where {Un : n ≥ 1, U0 = 0} is a random walk with i.i.d. increments

Xi such that their common characteristic function Ψ̂ is explicitly known thanks to the Lévy-

Khinchinee formula.

GivenN discrete monitoring dates t1, t2, . . . , tN , the maximum price M̃N = max {St1 , . . . , StN}

and minimum price Λ̃N = min {St1 , . . . , StN} of the underlying asset lead to inception (time

t0 = 0) prices for both fixed strike and floating strike lookback options summarized in the

Table 1 below.

Table 1: Loookback option prices at time t0 = 0

Fixed strike Floating strike

e−rTE
(
M̃N −K

)+
e−rTE

(
M̃N − StN

)+
e−rTE

(
K − Λ̃N

)+
e−rTE

(
StN − Λ̃N

)+

The difficulty in pricing these options is essentially due to the fact that the distributions

of M̃N and Λ̃N are not known in analytical form even for the standard geometric Brownian

motion of the Black-Scholes model.

Define now τ− = inf {n : Un ≤ 0} to be the first passage of the log-price process below

zero, observed on a monitoring date, and τ+ = inf {n : Un > 0} the corresponding first passage

of the log-price process above zero. τ− or τ+ are called ’ladder epochs’. The duality property
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of this random walk will enable us, through τ− and τ+, to derive recursive expressions leading

to the distributions of the extrema M̃N and Λ̃N .

From (AitSahlia & Lai, 1998) we know that the distribution of the maximum log-price can

be written as

P {MN ∈ dx} =

P {U1 ∈ dx}P {X2 ≤ 0, X2 +X3 ≤ 0, . . . , X2 + · · ·XN ≤ 0}

+
N∑
ν=2

[
P {Uν > Ui, i < ν;Uν ∈ dx} ×

P {Xν+1 ≤ 0, Xν+1 +Xν+2 ≤ 0, . . . , Xν+1 + · · ·+XN ≤ 0}
]

for x > 0. Furthermore, the duality of random walks (Feller, 1971), lets us rewrite one of the

above probabilities in terms of one of the ladder epochs

P {Uν > Ui, i < ν;Uν ∈ dx}

= P {Uν − Uν−1 > 0, . . . , Uν − U1 > 0;Uν ∈ dx}

= P {U1 > 0, . . . , Uν−1 > 0;Uν ∈ dx}

= P {τ− > ν;Uν ∈ dx}

And another of the above probabilities can also be written in terms of one of the ladder epochs

P {Xν+1 ≤ 0, Xν+1 +Xν+2 ≤ 0, . . . , Xν+1 + · · ·+XN ≤ 0}

= P {U1 ≤ 0, U2 ≤ 0, . . . , UN−ν ≤ 0}

= P {τ+ > N − ν}

Putting the simplified probabilities into the original equation yields, for x > 0,

P {MN ∈ dx} = P {U1 ∈ dx}P {τ+ > N − 1} (3)

+
N∑
ν=2

P {τ− > ν;Uν ∈ dx}P {τ+ > N − ν}
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And for x = 0, it is clear that P {MN = 0} = P {τ+ > N}. The advantage of writing the

above probabilities in terms of the ladder epochs τ− and τ+ is that they can be determined

recursively.

In contrast to the standard definitions (1) and (2) above for the Fourier and Hilbert trans-

forms, resp., used by Feng and Linetsky (2009) we opt for slightly more general forms. Specif-

ically, define now the Fourier transform or characteristic function of a distribution function F

of a real random variable X as (cf. Chung (1974)) as:

F(F )(ξ) = E
(
eiξX

)
=

∫
R
eiξxdF (x).

Alternatively, the notation F̂ will also be used. Furthermore, we define the Hilbert transform

for such F by the Cauchy principal value integral

H(F )(ξ) =
1

π
P.V.

∫
R

dF (x)

ξ − x
,

which reduces to the earlier definition of a Hilbert transform when F is absolutely continuous

(with respect to the Lebesgue measure) with a density f ∈ Lp (R). We can now state the fol-

lowing generalization to Proposition 1 in AitSahlia and Lai (1998).

Proposition 1. Let J be either (0,∞) or (−∞, 0] and τ = inf{n : Un /∈ J}. For x ∈

J , let dFn(x) = P {τ− > n;Un ∈ dx} and let Ψ(x) be the cumulative distribution function

(cdf) of a log-increment Xi and Ψ̂ its characteristic function. Then the characteristic functions

F̂1, F̂2, . . . , F̂N can be determined recursively through the following relations:

F̂1 = Ψ̂ (4)

F̂n =
1

2
F̂n−1 · Ψ̂ +

i

2
H
(
F̂n−1 · Ψ̂

)
for 2 ≤ n ≤ N (5)

Proof. A straightforward generalization of the recursion on density functions (10) in Ait-
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Sahlia and Lai (1998) can be expressed as

F1(x) = Ψ(x)

Fn(x) = 1J(x) · (Fn−1 ∗Ψ) (x), for 2 ≤ n ≤ N

We now recall the following property that relates Fourier and Hilbert transforms for a func-

tion φ on R (cf. Stenger (1993) and Feng and Linetsky (2008)):

F
(
1(0,∞) · φ

)
(ξ) =

1

2
φ̂+

i

2
H
(
φ̂
)

(ξ),

which together with the independence of the Lévy increments leads, for 2 ≤ n ≤ N , to:

F(Fn) = F (1J · (Fn−1 ∗Ψ))

=
1

2
F (Fn−1 ∗Ψ) +

i

2
H (F (Fn−1 ∗Ψ))

=
1

2
F̂n−1 · Ψ̂ +

i

2
H
(
F̂n−1 · Ψ̂

)
.

Remarks

1. The preceding applies to the distribution of the minimum of the random walk as well.

Simply replace Un by −Un. Then

ΛN = min {Un : 0 ≤ n ≤ N} = −max {−Un : 0 ≤ n ≤ N}

And for x < 0,

P {ΛN ∈ dx} = P {U1 ∈ dx}P {τ− > N − 1}

+
N∑
ν=2

P {τ+ > ν;Uν ∈ dx}P {τ− > N − ν}

2. The recursions (2)–(3) fit perfectly the set-up of Feng and Linetsky (2008) to apply their

highly efficient algorithm to compute all the Fourier and Hilbert transforms and invert

the last (F̂N )for pricing purposes at a computational cost of O (NM log(M)), where
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M is the number of quadrature points in the integrals and N is the number of discrete

observation dates, with a resulting error O
(
M1/(1+ν) exp(−cM ν/(1+ν)

)
, c > 0, which

decays exponentially. The ultimate determination of F̂N (via its Fourier inversion) is at

the root of the computation of the option price as we show next.

5 Fixed-strike lookback options

We are now ready to apply the main result of the last section to price a fixed strike (a.k.a. hind-

sight) lookback option, which, upon exercise, grants the right to purchase the underlying asset

at the minimum price and re-sell it at the strike K, for a put, or to buy it at the strike K and

re-sell it at the maximum for a call. To enable comparisons with earlier results involving only

Brownian motion, we shall focus on the call, whose payoff is
(
S0e

MN −K
)+.

Proposition 2. The value of a hindsight (or fixed-strike) lookback call at inception is

e−rTE
(
S0e

MN −K
)+

= e−rTαN (S0 −K)+ + e−rT
N∑
ν=1

∫ ∞
0

(S0e
x −K)+ dFν(x), (4)

where Fν(x) are obtained through the application of the numerical scheme of Feng and Linet-

sky (2008) to the recursions (2)–(3) for x > 0, with J = (−∞, 0], and α0, α1, . . . , αN defined

by

α0 = 1, αn = Gn(0)− lim
x→−∞

Gn(x) for n ≥ 1,

where Gn defined for x ≤ 0 by replacing F̂n by Ĝn in (2)–(3) and using J = (−∞, 0].

Proof. By definition, we have

E
(
S0e

MN −K
)+

=

∫ ∞
0

(S0e
x −K)+ P {MN ∈ dx} ,
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the right hand side of whcih can be re-expressed as

(S0 −K)+ P {MN = 0}+

∫ ∞
0+

(S0e
x −K)+ P {MN ∈ dx} .

Recall that τ+ = inf{n : Un > 0} and dGn(x) = P{τ+ > n;Un ∈ dx} for x < 0 and n ≥ 1.

Therefore

αn =

∫ 0

−∞
dGn(x) = P {τ+ > n} = P{U1 ≤ 0, . . . , Un ≤ 0}. (5)

The latter, together with (3) and the decomposition above, yields

P{MN ∈ dx} = αN−1P{U1 ∈ dx}+
N∑
ν=2

αN−νdFν(x) for x > 0,

which in turn concludes the proof by virtue of P{MN = 0} = P{τ+ > N}.

6 Floating-strike lookback options

We show in this section that the pricing via the recursions (2)–(3) extends to floating-strike

lookback options. These are contrasted to the fixed-strike by making the strike set to the price

of the underlying upon exercise. Thus with a floating-strike put, its holder can purchase the

underlying at its trading price upon exercise and sell it at the maximum it has achieved over the

life of the contract, resulting in a payoff
(
S0e

MN − SM
)+. On the other hand, a floating-strike

call allows its holder to purchase the asset at the minimum it achieved during its life and sell it

at the price it trades upon exercise. Again, to allow for comparison with the calssical Brownian

process in the Black-Scholes model we illustrate the application of the approach on the put.

Incidentally, floating-strike options are sometimes labelled standard.

Proposition 3. The value at inception of floating-strike lookback put is given by

e−rTE
(
S0e

MN − SN
)+

= e−rTS0

N−1∑
ν=0

βN−νIν ,
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where

βN−ν =

∫ 0

−∞
(1− ex) dGN−ν(x) for 0 ≤ ν ≤ N,

I0 = 1, Iν =

∫ ∞
0

exdFν(x) for ν ≥ 1,

with F̂ν and Ĝν obtained through the recursions (2)–(3) as in Proposition 2.

Proof. Since SN = S0e
UN , we have

(
S0e

MN − SN
)+

= S0

(
eMN − eUN

)+, from which

E
(
eMN − eUN

)+
= E

(
1− eUN

)
1{U1<0,U2<0,...,UN<0}

+E
(
eU1 − eUN

)
1{U1>0,U1>U2,...,U1>UN}

+
N−1∑
ν=2

E
(
eUν − eUN

)
1{0<Uν ,U1<Uν ,...,Uν−1<Uν ,Uν>Uν+1,...,Uν>UN}

,

where each of the above cases corresponds to the maximum being achieved at, respectively,

t0 = 0, t1, or tν , 2 ≤ ν ≤ N − 1. Observe that P{Ui = Uj} for i 6= j. By definition,

τ+ = inf{n : Un > 0} and τ− = inf{n : Un ≤ 0}, but since P{Un = 0} = 0 for all n > 0, we

have τ+ = inf{n : Un ≥ 0} almost surely. Therefore

E
(
1− eUN

)
1{U1<0,U2<0,...,UN<0} = E

(
1− eUN

)
1{τ+>0}

=

∫ 0

−∞
(1− ex)dGN(x).

Furthermore, we have
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E
(
eU1 − eUN

)
1{U1>0,U1>U2,...,U1>UN}

= E
(
eU1 − eU1+

∑N
i=2Xi

)
1{U1>0,U2−U1<0,...,UN−U1<0}

=

∫ ∞
x=0

∫ 0

y=−∞

(
ex − ex+y

)
×P

{
U1 ∈ dx,X2 < 0, X2 +X3 < 0, . . . , X2 +X3 + · · ·+XN < 0,

N∑
i=2

Xi ∈ dx

}

=

∫ ∞
0

exP{U1 ∈ dx}

×

[∫ 0

−∞
(1− ey)P

{
X2 < 0, X2 +X3 < 0, . . . , X2 +X3 + · · ·+XN < 0,

N∑
i=2

Xi ∈ dx

}]

=

∫ ∞
0

exdΨ(x)

[∫ 0

−∞
(1− ey)dGN−1(y)

]
,

where we make use of the independence between U1 and (X2, . . . , XN) in the next to last step

above.

Finally,∑N−1
ν=2 E

(
eUν − eUN

)
1{0<Uν ,U1<Uν ,...,Uν−1<Uν ,Uν>Uν+1,...,Uν>UN}

=
N−1∑
ν=2

∫ ∞
x=0

∫ 0

y=−∞

(
ex − ex+y

)
P{U1 < Uν , . . . , Uν−1 < Uν ;Un ∈ dx}

×P{Xν+1 < 0, . . . , Xν+1 + · · ·+XN < 0;Xν+1 + · · ·+XN ∈ dy}

=
N−1∑
ν=2

∫ ∞
0

exdFν(x)

[∫ 0

−∞
(1− ey)dGN−ν(y)

]
.

7 Extensions

Further applications of the technique presented above can be made with straightforward modi-

fications to situations where the payoff depends on the minimum. In addition, all these options

can be valued at other times than their inceptions by conditioning on the suprema up to the

valuation time prior to expiration. Other variations on the pricing of these lookback include

the situation, for example, where the suprema are observed over a predefined window within

the life of the contract. In all these cases, the general relations provided by AitSahlia and Lai

(1998) also apply here, with obvious modifications and will therefore not be repeated here.

15



Additionally, our approach is particularly well-suited for the computation of hedging pa-

rameters, which are especially crucial to the option writer’s risk management practice. For

example, the fixed-strike lookback price at time 0 of Proposition 2 can be re-written as

e−rTE
(
S0e

MN −K
)+

= e−rTαN (S0 −K)+ + e−rT
N∑
ν=1

∫ ∞
0

(S0e
x −K)+ dFν(x)

=

 e−rT
∑N

ν=1

∫∞
log(K/S0)

(S0e
x −K))dFν(x) if S0 ≤ K

e−rTαN (S0 −K) + e−rT
∑N

ν=1

∫∞
0

(S0e
x −K) dFν(x) if S0 > K

from which the delta and gamma parameters (first and second derivatives with respect to S0,

respectively) can easily be computed.

8 Summary

In this paper we extended a recursive algorithm that was originally developed for lookback op-

tion pricing when the underlying asset follows a geometric Brownian motion and is monitored

at discrete dates within the life of the contract. Our extension to the geometric Lévy processes

exploited the duality property of random walks through the use of ladder epochs resulting in

recursion expressions for characteristic functions of the extrema that are perfectly tailored for

a powerful algorithm for Hilbert transform akin to the Fast Fourier Transform. In addition, our

approach yields hedging parameters with little additional computational effort. The ability to

develop such results is inherently linked to the characterization of Lévy processes as consisting

of continuous-time processes with independent and identically distributed increments. Thus

their discrete monitoring is in fact very helpful as it enables us to use readily available results

from fluctuation theory.
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bonds in Lévy process models: a fast Hilbert transform approach. Mathematical Finance,

18(3), 337–384.

Feng, L., & Linetsky, V. (2009). Computing exponential moments of the discrete maximum of
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Sato,K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University

Press.

Stenger, F. (1993). Numerical methods based on Sinc and analytic functions. Springer Verlag.

Tiong, S. (2000). Valuing Equity-Indexed Annuities. North American Actuarial Journal , 4

(4), 149–70.

Tse, W., Li, L., & Ng, K. (2001). Pricing discrete barrier and hindsight options with the

tridiagonal probability algorithm. Management science, 47(3), 383–393.

Wu, L. (2008). Modeling Financial Security Returns Using Lévy Processes. Handbooks in
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