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Abstract Over the past few years, model complexity in quantitative finance has
increased substantially in response to earlier approaches that did not capture criti-
cal features for risk management. However, given the preponderance of the classical
Black–Scholes model, it is still not clear that this increased complexity is matched by
additional accuracy in the ultimate result. In particular, the last decade has witnessed
a flurry of activity in modeling asset volatility, and studies evaluating different alter-
natives for option pricing have focused on European-style exercise. In this paper, we
extend these empirical evaluations to American options, as their additional opportunity
for early exercise may incorporate stochastic volatility in the pricing differently. Spe-
cifically, the present work compares the empirical pricing and hedging performance
of the commonly adopted stochastic volatility model of Heston (Rev Financial Stud
6:327–343, 1993) against the traditional constant volatility benchmark of Black and
Scholes (J Polit Econ 81:637–659, 1973). Using S&P 100 index options data, our
study indicates that this particular stochastic volatility model offers enhancements in
line with their European-style counterparts for in-the-money options. However, the
most striking improvements are for out-of-the-money options, which because of early
exercise are more valuable than their European-style counterparts, especially when
volatility is stochastic.
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1 Introduction

The Black and Scholes (1973) formula for European options is without doubt the
most successful pricing formula. However, it has known biases for which remedies
have been attempted in a number of different directions. They can be traced back to
Black (1976) who observed that time-series of equity returns displayed fatter tails
than implied by the normal distribution under the geometric Brownian model of Black
and Scholes (1973). Additionally, the non-constant implied volatility across time and
strike prices, together with the phenomenon of volatility clustering (sustained periods
of high-variability alternating with sustained periods of low-variability) and leverage
effect (high variability associated with asset price declines) as observed in many studies
has provided enough evidence to seek alternative option pricing models (cf., Rossi
1996; Fouque et al. 2000; Cont and Tankov 2000). Indeed, several such models have
been proposed particularly in the last two decades. They include features such as
stochastic volatility, stochastic interest rates, and stochastic jumps that are considered
in various specifications, separately or in combinations. A sampling of the literature
includes the stochastic interest rate model of Amin and Jarrow (1992); the stochastic
volatility models of Hull (1987), Scott (1987), Melino and Turnbull (1990, 1995), Stein
and Stein (1991), and Heston (1993); the stochastic volatility and stochastic interest
rate models of Bailey and Stulz (1989), and Amin and Ng (1993); the stochastic-
volatility jump-diffusion models of Bates (1996) and Scott (1997). This list is far
from being exhaustive but already points to the different orientations of the efforts to
improve upon the original model of Black and Scholes (1973).

As these models become increasingly complex, requiring additional parameters to
be estimated and more sophisticated numerical techniques for their pricing and hed-
ging, it is unclear whether this complexity cost is matched by additional accuracy
in pricing and hedging. In a comprehensive study based on S&P 500 data, (Bakshi
et al. 1997) compare a number of popular alternative models and conclude that overall,
stochastic volatility models appear to provide the main source of option pricing impro-
vement when considering various combinations of stochastic volatility with stochastic
interest rates and stochastic jumps.

Given that the volatility of an asset return is not directly observable, its modeling
as a stochastic process leads to challenging issues for the estimation of the associated
parameters. For example, Bakshi et al. (1997) use cross-sectional information contai-
ned in option prices with different maturities and strike prices resulting in implied
volatilities in order to infer estimates for the structural parameters of the stochastic
volatility model. On the other hand, it appears that these implied structural parameters
deviate substantially from their time-series counterparts (e.g., (Bakshi et al. 1997) use
implied volatilities to estimate the correlation coefficient of the asset return innova-
tion with that of its stochastic volatility as 0.76 whereas their estimate based on the
underlying asset time-series is 0.23.) As an alternative, (Zhang and Shu 2003) pro-
posed to use a two-step procedure to estimate first, via the indirect inference method
of Gourieroux et al. (1993), structural parameters for the underlying asset, follo-
wed by a second set of additional parameters needed for option pricing via a market
price calibration based on least-squares. An example for the latter is the empirically
determined volatility risk premium, which is required since the pricing model is
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incomplete (i.e., non-uniqueness of risk-neutral equivalent measure). Zhang and Shu
(2003) apply this two-step approach in their study comparing the pricing accuracy of
the stochastic volatility model of Heston (1993) against the Black–Scholes constant
volatility model. They use S&P 500 data to show that the Heston model significantly
outperforms the Black–Scholes model in almost all moneyness-maturity classes. As
their results are limited to European options, it remains to be seen how they genera-
lize to American-style options, which have the additional early-exercise feature that
may amplify the stochastic volatility characteristic of the underlying asset. These
options are notoriously difficult to price in comparison. For example, Heston (1993)
derives Fourier-based expressions for European option prices that can be evaluated
through standard numerical techniques. In contrast, the application of standard dyna-
mic programming to price American options is practically infeasible due to the curse
of dimensionality problem especially acute in any model that extends the standard
Black–Scholes paradigm. As a result, we adopt an approximate dynamic program-
ming method developed particularly to price American options, namely that of least-
squares Monte-Carlo (LSM) attributed to Carrière (1996) and Longstaff and Schwartz
(2001), which approximates the continuation value in the related optimal stopping pro-
blem by a regression for which data are generated via simulation. It should be noted
that alternative methods based on numerical solutions of partial differential equations
have been developed to price American options under stochastic volatility considera-
tion (cf., Ikonen and Toivanen 2007; Zvan et al. 1998). However, we chose the LSM
approach as it presents more flexibility for our approach, particularly in its anticipated
extensions to higher dimensions and path-dependent option payoffs, which explain
partly its wide adoption. It also avoids the stability issues associated with numerical
solutions of partial differential equations.

The remainder of the paper is organized as follows: Sect. 2 reviews the stochastic
volatility model of Heston (1993) that we adopt for option pricing; Sect. 3 describes the
data and their sources for this study; Sect. 4 concerns the two-step statistical technique
that we follow for the parameter estimation of the resulting bivariate diffusion process;
in Sect. 5 we adapt the Monte Carlo algorithm of Longstaff–Schwartz to compute
prices and hedging parameters for American options under stochastic volatility; Sect.
6 compares numerical results using two different estimates of volatility for pricing,
namely spot volatility and long-term mean. Section 7 addresses hedging errors and
compares results between constant and stochastic volatility models: Sect. 8 concludes.

2 Heston’s stochastic volatility model

Heston’s model (1993) assumes both the underlying asset and its volatility to be
stochastic processes defined by the following stochastic differential equations:

d St = (µ − δ)St dt + √
vt St dW (S)

t (1)

dvt = κ(θ − vt )dt + η
√

vt dW (v)
t (2)
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where, under the original measure P , µ and δ are the underlying mean return and
dividend rates, respectively, of the asset;

√
vt is its instantaneous volatility at time

t , κ is the mean reversion rate of the variance process {vt }, θ its long-term mean,
and η is the instantaneous volatility of volatility. Here W (S) and W (v) are Brownian
motions modeling innovations (randomness) affecting the asset price and its volatility.
They are assumed to have a correlation coefficient ρ (i.e., dW (S)

t × dW (v)
t = ρdt).

The specification of vt as a so-called square root process guarantees that it remains
positive as long as 2κθ ≥ η2 (cf. Feller 1951).

Whereas the Black–Scholes model considers only one observable process, {St },
which can be used to estimate its sole unknown parameter σ required for pricing, the
Heston model introduces an additional process {vt } that is not observable and for which
three parameters, κ , η, θ , must be estimated together with ρ and spot volatility v0. This
variation therefore increases immediately the complexity in the estimation procedure.
Though an estimate of σ can be obtained on the basis of past observations of S, the
community of financial practitioners has now grown accustomed to estimating the
constant σ through the so-called implied volatility approach, which uses option data
as well. It sets the Black–Scholes function evaluated for an at-the-money option equal
to the corresponding observed price, C(K , T ) = Cobs , from which σ is inverted, thus
now becoming a function of T and K . This approach may seem unfounded since the
Black–Scholes formula results from the assumption of constant σ , but it is appealing
when considering the result as being a forward-looking estimate of σ .

An additional complication emanating from any stochastic volatility model is rela-
ted to option pricing. On the one hand, the Black–Scholes model leads to a unique
equivalent risk-neutral pricing measure Q, under which the expected return of the
underlying asset is the prevailing riskless rate r . On the other, this measure is not
unique when volatility is stochastic. An approach to select the “right” pricing mea-
sure is through the so-called market price of volatility risk, which is independent of
the underlying asset, and which identifies the “right” expected instantaneous asset
return. As argued in Heston (1993), this market price of volatility risk is assumed to
be proportional to the instantaneous volatility; i.e.,

λ(St , vt , t) = λvt ,

where λ is a constant to be estimated. In the Heston model, the price of a European
call option with strike K , time to maturity T , and spot volatility vt is given by:

C(St , vt , t, T ) = St P1 (St , vt , T, K ) − K e−r(T −t) P2 (St , vt , T, K ) (3)

where Pj (St , vt , T, K ), j = 1, 2, may be interpreted as adjusted or risk-neutralized
probability distributions and are obtained by inverting their corresponding characte-
ristic functions (cf. Heston 1993):

Pj (x, v, T, K ) = 1

2
+ 1

π

∞∫

0

Re

(
e−iφ ln(K ) f j (x, vt , T, φ)

iφ

)
dφ (4)
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for j = 1, 2, with the characteristic function f j defined by:

f j (x, v, T, φ) = exp[C j (T − t, φ) + D j (T − t, φ)v + iφx]

C j (τ, φ) = rφiτ + a

η2 (b j − ρηφi + d j )τ − 2 ln

[
1 − g j ed j τ

1 − g j

]

D j (τ, φ) = b j − ρηφi + d j

η2

[
1 − ed j τ

1 − ged j τ

]
,

with τ = T − t and

g j = b j − ρηφi + d j

b j − ρηφi − d j
, d j =

√
(ρηφi − b j )2 − η2(u jφi − φ2),

u1 = 1

2
, u2 = −1

2
, a = κθ, b1 = κ + λ − ρη, b2 = κ + λ

3 Data description

3.1 Data for parameter estimation

Our empirical study uses the daily closing prices of S&P 100 index options, which are
of both European and American exercise styles. We use European-style call options
to estimate and calibrate the parameters in the Heston model. American put options
are then priced through the LSM technique, which is evaluated via an out-of-sample
analysis. We acquired our data from a database maintained by the Wharton School at
the University of Pennsylvania through the WRDS interface. Our entire sample period
for estimation and performance evaluation is January 1, 2002 to April 28, 2006. The
reported price of any given option is the average of its bid and ask prices. We employ
the following exclusionary criteria to filter data: (i) to eliminate general arbitrage
opportunities we consider only options that satisfy C ≥ max(0, S − K ); (ii) options
with less than 6 days and more than 120 days to expiration are excluded because they
are sensitive to liquidity biases; (iii) we excluded very deep out-of-money and very
deep in-the-money options for they are not traded actively (with absolute moneyness
(in %) of an option defined as |S/K − 1|, these are options with absolute moneyness
greater than 7%); (iv) quotes less than 3

8 th are omitted; and (v) for estimation purposes,
we use European call options only from the period January 1, 2002 to December 31,
2005. Once these filter rules are applied, we are left with 33, 860 observations for
1,007 days (an average of 34 options per day).

3.2 Data for out-of-sample analysis

Once the parameters are estimated, the calibrated Heston model is used for the
out-of-sample performance evaluation of American put option prices obtained via
the LSM method. The option data used for this purpose are from January 1, 2006
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to April 28, 2006. We apply the same exclusionary criteria (i)–(v) as above on out-
of-sample data. After filtration, for 81 days in the sample period we have 8, 184 put
options (an average of 101 options per day).

4 Calibration of the Heston model

The structural parameters (µ, κ, θ, η) of the Heston model (1)–(2), the correlation
coefficient ρ and the risk premium λ are unobservable and need to be estimated. We
follow a two-step procedure using first time-series data on asset returns to estimate
the structural primary parameters(µ, κ, θ, η), followed by a model calibration based
on cross-sectional options data. For the latter we employ a non-linear least-squares
technique using estimates from the first to evaluate the remaining parameters (λ, v, ρ),
where v is the spot volatility to use at the moment of pricing (time 0, typically). Zhang
and Shu (2003) use the same treatment to estimate the stochastic volatility process for
S&P 500 index options, which have European exercise-style. Bakshi et al. (1997) use
the least-squares method on cross-sectional option data to estimate the parameters of
the Heston model. As noted in our introduction, we opt to follow instead the indirect
inference method of Gourieroux et al. (1993) to estimate the structural parameters
(µ, κ, θ, η). Before proceeding any further, we remark that our study of 5-minute
returns on the S&P 100 index does not show that their average is significantly different
from zero, we therefore set µ to be zero.

4.1 Structural parameter estimation

The indirect inference method of Gourieroux et al. (1993) involves defining an auxi-
liary parameter � that is first estimated through an econometric approach on the basis
of actual data and then used to estimate the original (structural) parameter of interest
� through moment matching. This approach is particularly useful when likelihood
functions, or any other estimation criterion, for the original model are difficult to eva-
luate, in contrast to the auxiliary model. The latter need not be correctly specified. If
it is, then indirect inference is equivalent to maximum likelihood.

In our present case of stochastic volatility, the simulation is generated via an Euler
discretization of (1)–(2):

rt = √
vtτε1t (5)

vt = κθτ + (1 − κτ)vt−τ + η
√

τvt−τ ε2t (6)

where rt is the return over the period (t − τ, t], with τ being the time discretization
increment, and ε1t and ε2t are uncorrelated standard normal random variables. We
should also note that ε1t and ε2t should be correlated by virtue of the model speci-
fication (1)–(2). However, because (5)–(6) will be matched with the GARCH model
below, we can only estimate κ , θ , and η, and therefore set no correlation between ε1t

and ε2t . This is the same approach taken by Engle and Lee (1996) and Zhang and Shu
(2003) in their consideration of the Heston model for the S&P 500 index. Thus this
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data generating process (DGP) is fully specified when the parameter � = (κ, θ, η) is
fixed. On the other hand, we use a GARCH(1,1) model for the auxiliary model:

rt = εt (7)

ht = ω + αε2
t−1 + βht−1 (8)

where εt ∼ N (0, ht ), with the conditional variance ht ≡ V ar(rt |Ft−1) based on
the information set Ft−1 up to time t − 1. This choice is predicated on the results of
Nelson (1990) who argues that when the time increment τ of (5)–(6) is arbitrarily
small, the first and second moments of volatility in GARCH(1,1) match those of the
diffusion (2).

The parameter � = (ω, α, β) of the GARCH model is first estimated on the basis
of observed returns, yielding the estimate �(0) = (

ω(0), α(0), β(0)
)
. Another set of

data, now generated via the DGP (5)–(6), will be used to get another estimate �(1) of
�. As the DGP (5)–(6) requires the knowledge of � = (κ, θ, η), the idea of indirect
inference is to get an initial estimate �(0) of � to get �(1), which in turn will lead
to the “right” estimate �(1) of � via an optimality criterion. For this purpose, we
follow (Engle and Lee 1996) who suggest an intermediate estimate �(0) through the
matching of the first two moments of (5)–(6) with (7)–(8), resulting in:

κ(0) = ω(0)

τ
, θ(0) = (1 − α(0) − β(0))

τ
, ω(0) = α(0)

√
(ξ − 1)τ , (9)

where ξ is the conditional kurtosis of the volatility shocks estimated from the actual
data.

With � = �(0) now fixed, a sample of N observations is generated via the DGP
(5)–(6) in order to fit a GARCH(1,1) model of the form (7)–(8), yielding an estimate
�(1), which clearly depends on �(0). With Rt ≡ rt (�

(0)) denoting the simulated

returns and lt ≡ − ln ht − R2
t

(2ht )
the log-likelihood function to estimate �, the maximum

log-likelihood moment estimator

m(�, �(1))3×1 = 1

N

N∑
t=1

∂lt (rt (�), �(1))

∂�

∣∣∣∣
�=�(1)

(10)

is not necessarily the zero vector. As a result, the indirect inference method estimate
�(1) is that which minimizes the distance separating the above moment from zero.
Engle and Lee (1996) determine that the appropriate metric to use for this purpose is
defined by the matrix

� =
(

1

N

N∑
t=1

∂lt (R̃t , �)

∂�

∂lt (R̃t , �)

∂�T

∣∣∣∣
�=�(1)

)−1

,

where R̃t is the observed (market) return for period t and the superscript T stands as
the transpose sign. The indirect inference estimate of � is then
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Table 1 GARCH estimates of
auxiliary parameters

ω α β

Market data
(
�(0)

)
3.03 × 10−7 4.26 × 10−2 9.53 × 10−1

Simulated data
(
�(1)

)
4.03 × 10−9 0.4535 0.5457

�(1) = arg min
�

{
mT

(
�,�(1)

)
�m

(
�,�(1)

)}
, (11)

where the function m is as in (10), with � no longer fixed at �(0). As a result, the
simulated observations rt (�), which are generated through normal distributions in the
DGP (5)–(6), will appear explicitly in terms of � = (κ, θ, η). We should also note
that the matrix � is positive definite by way of �−1 (cf. Newey and West 1987).

Table 1 reports the estimated parameters from GARCH fitting. The estimates on
the first row are based on market data. Those on the second are based on simulated
index returns with the starting structural parameters (as in set of equations in (9))
set at �(0) = (

0.0044, 6.93 × 10−5, 0.0653
)
. These returns are at 5-minute intervals,

with the starting index level and volatility set to those reported for the index level and
implied volatility on January 1, 2002, that is 588.98 and 0.187377, respectively. Every
day, there are approximately 77 5-min time intervals, resulting in a simulation length
of 1,007 days. In other words, we generate sample paths for 77,539 time steps, with
τ = 0.012987013. Then the minimization problem in (11) becomes

min
�

{
124.89 − 3245.11κθ + 0.08κ + 0.78η − 1.05θκ2 − 10.1κθη

+ 0.000252κη + 21081.64κ2θ2 + 0.000015κ2 + 0.00122η2
}

resulting in the indirect structural parameter estimate �(1) = (2.65, 0.029, 0.154).

4.2 Option pricing calibration

With the above estimates of �(1), we proceed to evaluate (ρ, v, λ) by nonlinear
least-squares, using data on S&P 100 European call option prices. For each day, there
are several options available with different maturities and strike prices. For option
j on day t , define the error between observed market price (pt j ) and model price
(pt j (ρt , λt , vt )) as:

�pt j = pt j − pt j (ρt , λt , vt ), (12)

where pt j (ρt , λt , vt ) are obtained via Heston’s pricing formula for a European call (3).
Let J be the number of options on day t . The estimate (ρ̂t , v̂t , λ̂t ) for day t minimizes

the sum of squares of errors
∑J

j=1 �p2
t j , which we performed through the non-linear

least-squares routine of MATLAB.
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Table 2 Nonlinear
least-squares estimates of option
pricing parameters

Mean Median Std.Dev. Minimum Maximum

ρ̂ −0.487 −0.644 0.4562 −0.999 0.999

v̂ 0.0349 1.5 × 10−8 0.13 2.2 × 10−14 0.8525

λ̂ 2.14 −2.2 × 10−14 6.8338 −9.88 10

These calculations are done for each day, and for a total number T of days in the
sample set, with the final estimates are reported as their averages:

ρ̂ = 1

T

T∑
t=1

ρ̂t , λ̂ = 1

T

T∑
t=1

λ̂t , v̂ = 1

T

T∑
t=1

v̂t

For our data set T = 1, 007, thus as many values of (ρ̂t , v̂t , λ̂t ) are calculated, with
summary statistics reported in Table 2.

Finally, we remark that the price-based criterion (12) may lead to biased estimates
in favor of out-of-the-money options as in-the-money options are likely to be priced
correctly with any reasonable set of structural parameters. But this is not a concern
precisely because of this latter feature. Alternatively, the calibration procedure could
be based on errors based on implied volatilities instead of prices, thus accounting in
some way for moneyness.

4.3 Discussion of estimated parameters

The structural parameters that control the volatility process of the Heston model are the
long-term mean θ , the mean-reversion speed κ , and the volatility of volatility η. The
average variance level θ is estimated to be 0.029, which corresponds to an annualized
volatility of 17.03%. The average historical volatility (obtained directly from past
asset prices) is 15.97%, which is very close to our estimate. We note that our estimate
for θ is slightly less than the value 0.35 reported by Zhang and Shu (2003) as our
observations are from a more stable subset of theirs (the S&P 100 index and S&P 500
index stocks, respectively.)

The estimated mean reversion rate κ is 2.65, i.e., every 64 days volatility reverts
halfway to the long-run mean, and is very close to theirs (2.75). Our estimate of the
variation of volatility η is 0.154, which is smaller than 0.425 reported by Zhang and
Shu (2003) for the same reason as just described above.

The stock prices and their volatility are negatively correlated with ρ = −0.487,
close to the value of −0.464 reported by Zhang and Shu (2003), reflecting the fact
that the stocks in the S&P 100 index dominate this effect over the entire set in the
S&P 500 index. This negative correlation is an expression of the so-called leverage
effect, which indicates in particular that equity market reactions to negative news are
more pronounced than those to positive news. Zhang and Shu (2003) also estimate
this coefficient on the basis of simply the historical index returns and their associated
volatility. The value they obtain, −0.23, is closer to both our value and theirs, compared
to the value of −0.64 obtained by Bakshi et al. (1997), thus supporting the use of our
two-step estimation procedure as discussed earlier.
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Our average estimate of the volatility risk premium λ is 2.14 but varies considerably
over the sample. This phenomenon is similarly observed by Zhang and Shu (2003) who
obtained an average value of −0.8716. The challenge in estimating this parameter is
not surprising as it is a component of the drift, which is notoriously difficult to evaluate
directly due to the so-called mean blur (cf. Luenberger 1998, for example.)

5 Pricing American options

5.1 The LSM framework

Carrière (1996) and Longstaff and Schwartz (2001) proposed simulation-based tech-
niques with least-squares regression fitting (LSM) to price American options with
constant volatility. In our paper we use the algorithm in Longstaff and Schwartz (2001)
to price American options for models with both constant and stochastic volatilities.

As is standard, we assume a complete probability space (�,F ,P) and a finite
time horizon [0, T ], where � is the set of all possible realizations of the stochastic
processes, (St , vt ) over [0, T ]. A generic element of � will be denoted ωi . F and P
are the associated probability filtration and original/physical measure, respectively.

One way to evaluate the price of an American option is to first determine its optimal
exercise date. Since the latter is random (depending on the path followed by the
underlying asset), the corresponding payoff will be random. We are therefore interested
in obtaining the optimal exercise strategy, which maximizes the expected value of this
payoff, in the interval [0, T ]. Assume that the option can only be exercised at discrete
time points 0 ≤ t1 ≤ t2 ≤ · · · ≤ tM ≤ T . If the option is exercised at maturity, the
value of the option will simply be that of the payoff at maturity. For a given sample
path ωi at time tm , the payoff from immediate exercise is known. If the option is not
exercised at time tm , then its expected payoff from continuation is the expectation
of the remaining discounted cash flows C(ωi , t : tm, T ), t ∈ {tm+1, tm+2, . . . tM },
with respect to the risk-neutral measure Q. In other words, at time tm , the value of
continuation, F(wi , tm), is given by

F(wi , tm) = EQ

⎡
⎢⎣

M∑
j=m+1

exp

⎛
⎜⎝−

t j∫

tm

r(wi , t)dt

⎞
⎟⎠C(ωi , t j : tm, T ) | Ftm

⎤
⎥⎦ (13)

where r(wi , t) is the riskless interest rate and the expectation is conditional on the
information available up to time tm . With this setup, the problem reduces to evaluating
the conditional expected payoff F(wi , tm) at every time step tm , for every path ωi , and
comparing it with the immediate payoff. The option will then be exercised immediately
if the latter is higher.

5.2 Longstaff–Schwartz algorithm

For our study we adapt the Longstaff–Schwartz algorithm to handle stochastic
volatility in order to price S&P 100 put options, which are of American-style exercise.
In the LSM approach the goal is to approximate the above conditional expectation at
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tm , m = 1, 2, . . . , M − 1. Moving backwards in time, LSM assumes that at time tM−1,
the unknown functional form of F(wi , tM−1) in Eq. (13) can be represented as a linear
combination of a countable set of FtM−1 -measurable functions. For the purpose of this
paper we choose the basis functions as the set of weighted Laguerre polynomials:

Ln(X) = exp

(−X

2

)
eX

n!
dn

d Xn
(Xne−X )

For our implementation, as in Longstaff and Schwartz (2001), we use the first three
Laguerre polynomials, (L0(X), L1(X), L2(X)). Then F(wi , tM−1) can be approxi-
mated as:

F(wi , tM−1) ≈
3∑

j=0

A j L j (X), (14)

where A j are the coefficients of the regression equation. As in Longstaff and Schwartz
(2001), we approximate the value of F(wi , tM−1)by regressing the discounted payoffs,
C(ωi , t : tM−1, T ) onto the basis functions for the paths where the option is in the
money.

6 Empirical evaluation: pricing S&P 100 put options

To implement the LSM we generate N = 100,000 sample paths (50,000 plus 50,000
antithetic), {ω1, ω2, . . . , ωN } for stochastic processes, St and vt using a second-order
discretization of the Heston model (cf. Glasserman 2004). For a fixed time-step size h
(we use h = 1/365) and letting σ1 = ρη and σ2 = √

1 − ρ2η, we generate over time
asset and variance values, si and vi , respectively, through the recursions

si+1 = si (1 + rh + √
viw1) +

((
r + σ1 − κ

4

)
si

√
vi +

(
κθ

4
− η2

16

)
si√
vi

)
w1h

+1

2
r2si h

2 + si

2

(
vi + σ1

2

)
(w2

1 − h) + 1

4
σ2si (w1w2 + ε)

vi+1 = κθh + (1 − κh)vi + √
vi (σ1w1 + σ2w2) − 1

2
κ2(θ − vi )h

2

+
[(

κθ

4
− σ 2

16

)
1√
vi

− 3κ
√

vi

2

]
(σ1w1 + σ2w2)h

+1

4
σ 2

1 (w2
1 − h) + 1

4
σ 2

2 (w2
2 − h) + 1

2
σ1σ2w1w2,

where w1 and w2 are independent normal random variables with mean 0 and stan-
dard deviation

√
h and ε is a random variable independent of w1 and w2 such that

P{ε = h} = P{ε = −h} = 1/2.

123



F. AitSahlia et al.

For the purpose of our study, we initialize the asset price to be the index value on the
current day and volatility to be either the spot volatility or the long-term mean estimate
that we obtained from the calibration above. Then successive values of (si , vi ) are
generated with each sampling of the random variables w1, w2 and ε. Once the sample
paths have thus been generated, we then compute the cash flows at every time step in
{0, h, 2h, . . . , T } going backwards in time, in the same manner as in Longstaff and
Schwartz (2001), followed by the sample average of discounted cash flows to compute
the option price.

6.1 Options classification

A usual practice is to classify options according to maturity(T , in days) and money-
ness (x), which for a put option is defined as x = K/S −1. In our analysis, short-term
options are those for which T < 45; mid-term options have 45 ≤ T < 90 and those
with T ≥ 90 are labeled long-term options. With respect to moneyness, we classify
options with x > 0.05 as deep-in-the-money (DITM), those with x ∈ (0.02, 0.05)

as in-the-money (ITM), those with x ∈ (−0.02, 0.02) as at-the-money (ATM), those
with x ∈ (−0.05,−0.02) as out-of-the-money (OTM), and those with x > −0.05 as
deep-out-of-the-money (DOTM).

6.2 Pricing accuracy criteria

We compare the stochastic volatility and constant volatility models according to out-of-
sample mean relative-pricing errors and absolute-pricing errors, following the option
classification described below. For the i th option in a given group of n, we let C M

i and
Ci denote the observed market and model prices, respectively. Then the mean relative
pricing error for the group is defined as

MRE = 1

n

n∑
i=1

(C M
i − Ci )

Ci

and its mean absolute relative pricing error as:

MAE = 1

n

n∑
i=1

|C M
i − Ci |

Ci
.

MRE is an indicator of the pricing bias whereas MAE evaluates the magnitude of
mispricing. The results in Tables 3, 4, 5 and 6 are obtained by computing these averages
for each moneyness-maturity group. Since we have a choice in setting the initial
volatility, namely the spot volatility or the long-term mean θ , we chose to consider
both as displayed in these tables.

6.3 Analysis

Tables 3 and 4 report out-of-sample mean relative pricing error for constant volatility
(CV) and stochastic volatility (SV) models, with standard deviations in parentheses.
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Table 3 Out-of-sample mean relative pricing errors (initial volatility = spot volatility)

Maturity

Moneyness Model Short-term Mid-term Long-term Overall

DITM CV 0.008 (0.002) 0.054 (0.004) 0.064 (0.005) 0.042 (0.004)

SV 0.002 (0.001) 0.019 (0.002) 0.019 (0.003) 0.013 (0.002)

ITM CV 0.183 (0.024) 0.356 (0.009) 0.395 (0.014) 0.311 (0.016)

SV 0.133 (0.006) 0.241 (0.006) 0.228 (0.011) 0.201 (0.007)

ATM CV 1.124 (0.099) 0.935 (0.021) 0.799 (0.042) 0.953 (0.054)

SV 0.991 (0.032) 0.699 (0.014) 0.479 (0.016) 0.723 (0.021)

OTM CV 2.278 (0.092) 1.649 (0.031) 1.121 (0.042) 1.683 (0.055)

SV 2.049 (0.049) 1.217 (0.026) 0.660 (0.025) 1.309 (0.034)

DOTM CV 1.648 (0.065) 1.477 (0.043) 1.05 (0.046) 1.392 (0.051)

SV 1.411 (0.054) 0.969 (0.025) 0.411 (0.029) 0.931 (0.036)

Overall CV 1.048 (0.056) 0.894 (0.022) 0.686 (0.029) 0.876 (0.036)

SV 0.917 (0.029) 0.629 (0.014) 0.359 (0.017) 0.635 (0.019)

For each entry of constant volatility (CV) and stochastic volatility (SV), we report the average pricing error
relative to the observed market price with corresponding standard errors in parentheses

Table 4 Out-of-sample mean relative pricing errors (initial volatility = long-term average θ )

Maturity

Moneyness Model Short-term Mid-term Long-term Overall

DITM CV −0.007 (0.001) 0.017 (0.002) 0.023 (0.004) 0.011 (0.002)

SV −0.009 (0.001) 0.000 (0.001) 0.003 (0.002) −0.002 (0.001)

ITM CV 0.095 (0.005) 0.208 (0.005) 0.242 (0.008) 0.182 (0.006)

SV 0.072 (0.004) 0.146 (0.004) 0.139 (0.008) 0.119 (0.005)

ATM CV 0.784 (0.028) 0.576 (0.009) 0.455 (0.012) 0.605 (0.016)

SV 0.697 (0.021) 0.449 (0.008) 0.288 (0.009) 0.478 (0.013)

OTM CV 1.233 (0.028) 0.867 (0.014) 0.581 (0.016) 0.894 (0.019)

SV 1.149 (0.027) 0.688 (0.014) 0.347 (0.014) 0.729 (0.018)

DOTM CV 0.487 (0.036) 0.328 (0.018) 0.103 (0.025) 0.306 (0.026)

SV 0.484 (0.034) 0.226 (0.016) −0.071 (0.019) 0.213 (0.023)

Overall CV 0.518 (0.019) 0.399 (0.010) 0.281 (0.013) 0.399 (0.014)

SV 0.479 (0.018) 0.302 (0.009) 0.141 (0.011) 0.307 (0.012)

For each entry of constant volatility (CV) and stochastic volatility (SV), we report the average pricing error
relative to the observed market price with corresponding standard errors in parentheses

Correspondingly, Tables 5 and 6 are for the same evaluations in absolute value this
time. Given that in-sample performance of stochastic volatility model was better than
the less complex constant volatility model, one may argue that by virtue of overfitting,
SV would fare less well than CV out-of-sample. However, it is evident from the results
in Tables 3, 4, 5 and 6 that stochastic volatility (SV) performs better than the CV model
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Table 5 Out-of-sample mean absolute relative pricing errors (initial volatility = spot volatility)

Maturity

Moneyness Model Short-term Mid-term Long-term Overall

DITM CV 0.024 (0.002) 0.058 (0.004) 0.066 (0.005) 0.049 (0.004)

SV 0.019 (0.001) 0.028 (0.002) 0.029 (0.003) 0.026 (0.002)

ITM CV 0.185 (0.023) 0.356 (0.09) 0.395 (0.014) 0.312 (0.015)

SV 0.136 (0.006) 0.241 (0.006) 0.228 (0.011) 0.202 (0.008)

ATM CV 1.126 (0.099) 0.932 (0.023) 0.798 (0.051) 0.952 (0.058)

SV 0.991 (0.032) 0.699 (0.014) 0.479 (0.016) 0.723 (0.021)

OTM CV 2.283 (0.073) 1.636 (0.031) 1.169 (0.043) 1.696 (0.049)

SV 2.048 (0.049) 1.217 (0.026) 0.660 (0.025) 1.309 (0.034)

DOTM CV 1.684 (0.062) 1.492 (0.042) 1.074 (0.043) 1.417 (0.049)

SV 1.419 (0.053) 1.002 (0.023) 0.514 (0.022) 0.979 (0.033)

Overall CV 1.060 (0.052) 0.895 (0.022) 0.885 (0.030) 0.947 (0.035)

SV 0.923 (0.028) 0.638 (0.014) 0.382 (0.016) 0.648 (0.019)

For each entry of constant volatility (CV) and stochastic volatility (SV), we report the average absolute
pricing error relative to the observed market price with corresponding standard errors in parentheses

Table 6 Out-of-sample mean absolute relative pricing errors (initial volatility = long-term average θ )

Maturity

Moneyness Model Short-term Mid-term Long-term Overall

DITM CV 0.014 (0.000) 0.028 (0.002) 0.036 (0.004) 0.026 (0.002)

SV 0.015 (0.000) 0.017 (0.001) 0.019 (0.001) 0.017 (0.001)

ITM CV 0.099 (0.004) 0.208 (0.005) 0.242 (0.017) 0.183 (0.009)

SV 0.079 (0.004) 0.147 (0.004) 0.140 (0.007) 0.122 (0.005)

ATM CV 0.784 (0.028) 0.576 (0.009) 0.455 (0.012) 0.605 (0.016)

SV 0.697 (0.022) 0.449 (0.008) 0.288 (0.009) 0.478 (0.013)

OTM CV 1.233 (0.028) 0.867 (0.014) 0.581 (0.016) 0.894 (0.019)

SV 1.149 (0.027) 0.689 (0.014) 0.347 (0.014) 0.729 (0.018)

DOTM CV 0.589 (0.028) 0.485 (0.011) 0.377 (0.013) 0.484 (0.017)

SV 0.571 (0.027) 0.394 (0.009) 0.281 (0.011) 0.416 (0.016)

Overall CV 0.544 (0.018) 0.433 (0.008) 0.338 (0.012) 0.438 (0.013)

SV 0.503 (0.016) 0.339 (0.007) 0.215 (0.009) 0.352 (0.011)

For each entry of constant volatility (CV) and stochastic volatility (SV), we report the average absolute
pricing error relative to the observed market price, with corresponding standard errors in parentheses

while both tend to underestimate the actual market price. The latter is likely due to
the LSM approach, which is applied to both models, and which is known to have
a downward bias (cf. Longstaff and Schwartz 2001.) However, these results are in
line with the European option results obtained by Zhang and Shu (2003) and do not
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necessarily point to any systematic bias due to model misspecification as supported
by a comparison between relative and absolute errors.

A few additional observations emerge as well. First, we note that for all scenarios
SV results are less variable than those of CV. Second, in contrast to Zhang and Shu
(2003) we also assess the effect of using the long-term average (θ ) as the volatility
estimate when pricing. As shown in Tables 4 and 6, this choice induces a significant
reduction in error, both relatively and absolutely, as compared to using the spot volati-
lity. Third, the SV model improves upon the CV model on both criteria, particularly for
deep-in-the-money (DTIM)) and deep-out-of-the-money (DOTM) options, with mid-
to long-term maturities. In fact, whereas Zhang and Shu (2003) note that significant
improvement is mostly for deep-in-the-money European options, our study points out
that a similar pattern emerges for both deep-in-the-money and out-of-the-money or
deep-out-of-the money American-style options. The former was to be expected, given
the immediate early exercise opportunity, but the latter can also be explained by the
fact that stochastic volatility may lead to an early exercise opportunity despite the
option currently being out-of-the-money or deep-out-of-the-money. In conclusion, we
stress that the improvement provided by the Heston model is relative. In an absolute
sense (i.e., in direct comparison with actual prices), both the Black–Scholes and Hes-
ton models are significantly off the mark, particularly for out-of-the-money options.
Fortunately, a better improvement, both relatively and absolutely, is noticeable with
respect to hedging as discussed next.

7 Hedging performance

In this section, we compare single instrument hedging errors for the CV and SV
models, in which only the underlying asset is used for the two models. An argument
supporting this strategy is given in Bakshi et al. (1997). For the SV model, our aim
is to hedge a short position in the put option with τ periods to expiration. Let X S(t)
be the number of shares of stock (index) to be purchased and X0(t) be the residual
cash, resulting in a time-t portfolio value X0(t) + X S(t)S(t). Adapting formula (21)
from Bakshi et al. (1997) to our setting with no jump, the standard minimum variance
hedging problem under the SV model yields:

X S(t) = �S(t, τ ) + 1

S
ρη�V (t, τ ) (15)

where �S(t, τ ) and �V (t, τ ) are the delta and vega parameters, which are estimated
using backward finite differences. The resulting cash position is then

X0(t) = C(t, τ ) − X S(t)S(t), (16)

where C(t, τ ) is the (observed) time-t price of an option expiring at time t + τ .
Formula (15) shows that if volatility is stochastic and correlated with the underlying
asset returns, then the position in the asset is governed not only by the impact of asset
price changes but also by volatility changes. For the CV model we need only consider
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the first term on the right hand side of formula (15), corresponding to the classical
delta-hedge in the Black-Scholes context.

Whereas the hedging strategy (15) assumes continuous rebalancing in response to
changing market conditions, it is clear that in practice such rebalancing can only be
effected at discrete intervals, say of length �t . We can then construct a self-financing
portfolio as follows. At time-t short the put and go long X S(t) shares of the asset, with
the remainder X0(t) in a risk-free asset with rate R(t). At time t + �t the resulting
hedging error is

H(t + �t) = X S(t)S(t + �t) + X0(t)e
R(t)�t − C(t + �t, τ − �t) (17)

Proceeding in the same manner at times t +2�t, t +3�t, . . . , t +τ , yields a collection
of hedging errors H(t + j�t), for j = 1, . . . , M , where M is an integer such that
M�t = τ , which are averaged as

H(�t) = 1

M

M∑
j=1

|H(t + j�t)|.

To obtain the hedging results in Table 7, we use day t − 1 data to determine the
model parameters, which are then used on day t with the current day’s index and
interest values to construct the desired hedge as given in Eq. (15) (for both CV and
SV models.) Finally, since we are rebalancing the hedge daily, the hedging error is
computed on day t + 1 for this strategy. These steps are repeated for each option and
every trading day in the month of January 2006. The average absolute hedging errors
for each moneyness-maturity group are reported in Table 7.

Based on the results in Table 7, the SV model is the better of the two for all groups
except for short-term deep-in-the-money options. But even in this case, SV model is
essentially doing better since in the CV model the option is immediately exercised and
thus no hedge is created, which leads to a reported zero hedging error. In contrast, in
the SV model the option is allowed additional exercise opportunities till maturity in
most cases, thus resulting in higher profits.

8 Conclusions

In this paper we assessed the performance of a stochastic volatility model to price
American-style options on the basis of actual market data. Using S&P 100 index
options data we compared the pricing and hedging accuracy of the stochastic volatility
model of Heston (1993) against the widely adopted model of Black and Scholes
(1973). The specification of the unobservable volatility as a stochastic process leads
to the challenge of estimating its associated parameters, which we address through
the use of a two-step procedure of indirect inference and non-linear optimization for
calibration. The additional complexity of American option pricing is then tackled
through the adaptation of the least-squares Monte-Carlo algorithm of Longstaff and
Schwartz (2001) to our context.
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Table 7 Out-of-sample average
single instrument hedging errors

For the CV model, this strategy
is the usual delta hedge. For the
SV model, the strategy involves
both delta and vega parameters
(cf. formula (15))

Maturity

Moneyness Model Short-term Mid-term Long-term Overall

DITM CV 0.284 0.492 0.437 0.404
SV 0.328 0.238 0.161 0.242

ITM CV 0.607 0.682 0.624 0.637
SV 0.552 0.572 0.593 0.572

ATM CV 0.487 0.423 0.385 0.432
SV 0.462 0.397 0.353 0.404

OTM CV 0.214 0.249 0.207 0.223
SV 0.194 0.218 0.171 0.194

DOTM CV 0.046 0.0663 0.059 0.057
SV 0.029 0.045 0.038 0.037

Overall CV 0.328 0.382 0.342 0.351
SV 0.313 0.294 0.263 0.290

Using criteria that pertain to both bias and mispricing magnitude, our study shows
that the Heston model is a better alternative for both pricing and hedging purposes,
particularly for out-of-the-money and deep-out-of-the-money options. The latter is
clearly attributable, when volatility is stochastic, to the early exercise opportunity that
may materialize for American-style options, in contrast to European-style exercise.

This study can be further extended in a number of different ways: (i) by including
more parameters in the model to account for features such as jumps and stochastic
interest rates; (ii) by conducting the empirical assessment using other underlying assets
and options; and (iii) by additional comparisons with alternative stochastic volatility
models such as those of Hull (1987), Scott (1987), and Stein and Stein (1991).
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