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Abstract This paper develops a new numerical technique to price an American
option written upon an underlying asset that follows a bivariate diffusion process. The
technique presented here exploits the supermartingale representation of an American
option price together with a coarse approximation of its early exercise surface that
is based on an efficient implementation of the least-squares Monte–Carlo algorithm
(LSM) of Longstaff and Schwartz (Rev Financ Stud 14:113–147, 2001). Our approach
also has the advantage of avoiding two main issues associated with LSM, namely its
inherent bias and the basis functions selection problem. Extensive numerical results
show that our approach yields very accurate prices in a computationally efficient
manner. Finally, the flexibility of our method allows for its extension to a much larger
class of optimal stopping problems than addressed in this paper.

Keywords American option pricing · Optimal stopping · Approximate dynamic
programming · Stochastic volatility · Doob–Meyer decomposition · Monte–Carlo

1 Introduction

The early exercise feature of an American option, which enables its holder to select
the time at which to buy (call option) or sell (put option) the underlying asset, is
the main source of its pricing challenge. In contrast, the price of the correspon-
ding European option, which can only be exercised at the option expiration, may
be determined in closed-form in a few important instances. One such example is
the classical Black–Scholes formula developed in Black and Scholes (1973), which
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results from the assumption of the underlying asset following a geometric Brownian
motion with constant coefficients. Ever since the publication of this landmark for-
mula, significant efforts have concentrated on developing computational pricing tech-
niques for models where the underlying asset follows more realistic processes that
capture empirical observations. These include leptokurtic and skewed asset returns,
the leverage effect, whereby declining asset returns are observed together with lar-
ger variations, and volatility clustering, which describes alternating, sustained per-
iods of high and low variability. Among the more popular approaches that have been
adopted, by both academics and practitioners, the stochastic volatility model of Hes-
ton (1993) stands out particularly as it possesses the features just described. It also
has the advantage of resulting in a (nearly) closed-form formula for the price of the
corresponding European option. As we shall soon demonstrate, this feature is par-
ticularly useful in our approach for American options, which relies on the super-
martingale (Doob–Meyer) decomposition of their price into a sum of the associated
European option price and the early-exercise premium. In fact, this decomposition for-
mula has been developed for both the classical version for the Black–Scholes model
(cf. Kim 1990; Jacka 1991; Carr et al. 1992) and the Heston model (Chiarella and
Ziogas 2005). The early-exercise premium involves the early exercise surface that is
notoriously difficult to evaluate. In the classical constant-coefficient set-up of Black
and Scholes (1973) and Merton (1973), there is now a well-developed efficient proce-
dure to determine the early exercise boundary via spline approximations (cf. AitSahlia
and Lai 1999, 2001). In the present paper the boundary surface is first approximated
through a coarse and fast simulation based on the Longstaff and Schwartz (2001)
algorithm and then used in the American option price decomposition formula. As an
application, when the stochastic volatility of the underlying asset follows a mean-
reverting process, we show that the approach is fast and accurate through diverse
numerical scenarios.

We remark that ever since its publication, the Longstaff and Schwartz algorithm
has been widely adopted for its simplicity and its flexibility. However, its actual
implementation requires the selection of basis functions and the set of exercisable
dates. While its theoretical convergence rests on the number of each becoming infinite
(cf. Clement et al. 2002), practical considerations restrict them to be finite obviously.
As there is little guidance for these choices (cf. Tianhai and Burrage 2003; Moreno
and Navas 2003; Zhou 2004), and given the systematic bias observed by Longstaff and
Schwartz (2001) for their algorithm, our approach is practical and avoids precisely
these issues.

This paper is organized as follows. In the next section, the stochastic volatility
model of Heston (1993) is reviewed. Section 3 develops our approximation approach
to price American options under this model. Section 4 contains a systematic numerical
evaluation of this approximation and Sect. 5 concludes.

2 Heston pricing model

In this model, the volatility of the underlying asset is assumed to be stochastic and its
square (the variance) follows a mean-reverting process that indicates its tendency to
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return to a long-term average. Specifically, denoting the underlying price process by
{S(t)} and its return volatility process (hereafter in the variance sense, as is common)
by {V (t)}, we have the bivariate specification:

d S(t) = (r − q)S(t)dt + √
V (t)S(t)dW1(t), (1)

dV (t) = κ(θ − V (t))dt + √
V (t)σv

(
ρdW1(t)+

√
1 − ρ2dW2(t)

)
, (2)

where r and q denote the risk-free rate and the dividend yield, respectively. W1 and
W2 are two independent standard Brownian motions defined on a common underlying
complete filtered probability space

(
Ω, (F t )t , Q

)
, where Q is the risk-neutral mea-

sure. The volatility V (t) therefore evolves as a mean-reverting square root process
with a rate of mean reversion κ , long-term mean θ and volatility of volatility σv . This
square root process specification is particularly appealing as it guarantees that V (t)
remains positive as long as 2κθ ≥ σ 2

v (cf. Feller 1951).
For illustrative purposes, we consider an American call option with strike K. Let

CA(S, v, τ ) denote its price when the underlying has price S and spot volatility v, with
τ units of time left to expiry. Using standard arbitrage arguments, CA can be shown
to satisfy the following partial differential equation

∂CA

∂τ
= vS2

2

∂2CA

∂S2 + ρσvS
∂2CA

∂S∂v
+ σ 2v

2

∂2CA

∂v2

+ (r − q)S
∂CA

∂S
+ (κ[θ − v] − vλ)

∂CA

∂v
− rCA (3)

in the region D = {0 ≤ τ ≤ T, 0 ≤ S ≤ b(v, τ ), 0 ≤ v < ∞} along with the
boundary conditions

CA(S, v, 0) = max(S − K , 0),

CA(b(v, τ ), v, τ ) = b(v, τ )− K ,

lim
S→b(v,τ )

∂CA

∂S
= 1,

lim
S→b(v,τ )

∂CA

∂v
= 0,

where b(v, t) denotes the optimal early exercise price (boundary) at time t for spot
volatility v, and λv denotes the corresponding market price of volatility risk, with λ
determined empirically. This market price of risk approach is a common way to address
the market incompleteness that is inherent in the stochastic volatility formulation
(cf. Heston 1993).

Chiarella and Ziogas (2005) use the method of Jamshidian (1992) to convert the
homogeneous PDE (3) defined in the region D above to an inhomogeneous one in an
unrestricted domain:
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Table 1 American put option prices (constant volatility) with strike = 100, σ = 0.4 and ρ = r/σ 2 = 1.22

T S0 BM SA 1k5 10k5 10k10 50k10 100k5 100k10 100k25

0.021 80 20.002 20.000 19.951 19.960 19.980 19.980 19.960 19.980 19.992

90 10.000 10.017 9.845 9.972 9.937 9.958 9.952 9.941 9.927

100 2.138 2.151 2.122 2.123 2.114 2.112 2.121 2.112 2.106

120 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.083 80 20.002 20.002 19.850 19.897 19.943 19.961 19.895 19.947 19.969

90 10.354 10.377 10.433 10.523 10.408 10.487 10.502 10.428 10.356

100 3.942 3.992 4.011 4.008 3.971 3.974 4.007 3.964 3.937

120 0.190 0.226 0.228 0.227 0.223 0.223 0.227 0.223 0.221

0.146 80 20.002 20.075 19.904 20.009 20.007 20.052 19.980 20.017 20.006

90 10.842 10.924 11.056 11.205 11.007 11.072 11.150 11.012 10.893

100 4.979 5.028 5.080 5.132 5.049 5.043 5.116 5.038 4.979

120 0.651 0.660 0.670 0.673 0.660 0.659 0.671 0.659 0.650

Columns BM and SA are, respectively, the benchmark and spline approximation values from Table 2 of
AitSahlia and Lai (1999). MkN denotes prices obtained using M × 1,000 sample paths and N time steps
in our method

∂CA

∂τ
= v

2

∂2CA

∂x2 + ρσv
∂2CA

∂x∂v
+ σ 2v

2

∂2CA

∂v2 +
(

r − q − v

2

) ∂CA

∂x

+(α − βv)
∂CA

∂v
− H(x − ln b(v, τ )){erτ (qex − r K )}, (4)

whereα ≡ κθ and β ≡ κ+λ, in the unrestricted domain −∞ < x < ∞, 0 < v < ∞,

0 ≤ τ ≤ T , subject to the boundary conditions:

CA(x, v, 0) = max(ex − K , 0),

lim
x→ln b(v,τ )

∂CA

∂x
= b(v, τ )erτ ,

lim
x→ln b(v,τ )

∂CA

∂v
= 0,

where H(x) is the Heaviside step function defined as

H(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x > 0,
1

2
, x = 0,

0, x < 0.

To obtain CA through Eq. (4), one still needs the knowledge of the optimal stopping
(early exercise) boundary b(v, t). In the classical context of constant volatility for the
underlying asset return, AitSahlia and Lai (1999) have shown that this boundary is
well-approximated by linear splines with very few knots, typically 3 or 4. When the
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Table 2 American call option with strike = 100, r = 0.03, q = 0.05, σ = 0.1, κ = 4.0, ρ = 0, θ = 0225

T S0 LSM 1k5 10k5 10k10 50k10 100k5 100k10 100k25

1 90 1.545 1.637 1.589 1.560 1.558 1.589 1.557 1.550

(1.536–1.554)

95 2.878 3.055 2.970 2.919 2.918 2.960 2.916 2.903

(2.865–2.89)

100 4.872 5.123 4.991 4.902 4.904 4.958 4.903 4.879

(4.855–4.888)

105 7.53 7.875 7.685 7.540 7.543 7.612 7.547 7.509

(7.511–7.55)

110 10.828 11.290 11.020 10.804 10.804 10.898 10.814 10.775

(10.805–10.851)

0.8 90 1.221 1.264 1.263 1.241 1.242 1.250 1.245 1.232

(1.213–1.228)

95 2.495 2.557 2.556 2.520 2.519 2.540 2.524 2.506

(2.484–2.506)

100 4.46 4.537 4.545 4.487 4.484 4.523 4.489 4.466

(4.445–4.475)

105 7.149 7.251 7.274 7.179 7.183 7.237 7.185 7.154

(7.131–7.168)

110 10.537 10.660 10.704 10.549 10.569 10.634 10.571 10.531

(10.515–10.558)

0.6 90 0.871 0.901 0.895 0.889 0.890 0.898 0.887 0.883

(0.865–0.877)

95 2.034 2.077 2.067 2.049 2.053 2.067 2.050 2.040

(2.025–2.043)

100 3.956 4.028 4.019 3.983 3.989 4.014 3.991 3.970

(3.943–3.969)

105 6.726 6.815 6.816 6.754 6.761 6.802 6.767 6.737

(6.709–6.742)

110 10.26 10.369 10.383 10.282 10.297 10.353 10.303 10.269

(10.241–10.28)

0.4 90 0.502 0.515 0.513 0.507 0.507 0.514 0.510 0.505

(0.498–0.506)

95 1.465 1.488 1.490 1.478 1.480 1.490 1.481 1.473

(1.458–1.472)

100 3.338 3.374 3.374 3.354 3.358 3.373 3.355 3.344

(3.327–3.349)

105 6.219 6.286 6.281 6.248 6.250 6.279 6.249 6.232

(6.205–6.234)

110 9.99 10.068 10.071 10.019 10.022 10.064 10.026 10.000

(9.973–10.007)
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Table 2 continued

T S0 LSM 1k5 10k5 10k10 50k10 100k5 100k10 100k25

0.2 90 0.139 0.141 0.140 0.139 0.139 0.142 0.140 0.140

(0.137–0.14)

95 0.746 0.753 0.753 0.749 0.749 0.756 0.750 0.747

(0.742–0.75)

100 2.455 2.478 2.477 2.466 2.466 2.477 2.467 2.459

(2.448–2.463)

105 5.579 5.618 5.616 5.598 5.598 5.614 5.597 5.586

(5.568–5.59)

110 9.784 9.841 9.832 9.809 9.810 9.831 9.809 9.797

(9.77–9.797)

Columns 1 and 2 refer to maturity and spot asset price, respectively. Column “LSM” refers to the LSM
benchmark prices generated as in Sect. 4.2 along with 95% CI. MkN denotes prices obtained using M×1,000
sample paths and N time steps in our method

volatility of the underlying asset itself follows a stochastic process as in (2) above,
Broadie et al. (2000) produced empirical evidence to suggest that the corresponding
optimal stopping surface can be well-approximated in a log-linear fashion near the
long-term variance level; i.e.:

ln b(v, τ ) ≈ b0(τ )+ vb1(τ ), for v near θ ,

thus reducing the determination of b(v, τ ) to that of b0(τ ) and b1(τ ). Under this
assumption, Chiarella and Ziogas (2005) then express the solution for the PDE (4) as
the following decomposition formula:

CA(S, v, τ ) = Se−qτ P1(S, v, τ, K ; 0)− K e−rτ P2(S, v, τ, K ; 0)

+
τ∫

0

q Se−q(τ−ξ)P1(S, v, τ − ξ, eb0(ξ);−b1(ξ))dξ

−
τ∫

0

r K e−r(τ−ξ)P2(S, v, τ − ξ, eb0(ξ);−b1(ξ))dξ, (5)

where

Pj (S, v, τ − ξ, b;w) = 1

2
+ 1

Π

∞∫

0

Re

(
f j (S, v, T − ξ ;φ,w)e−iφ ln b

iφ

)
dφ (6)
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Fig. 1 Early Exercise Boundary for American call option with T = 0.25, σ = 0.04, θ = 0.1, r = 0.03,
q = 0.05 evaluated using 1,000 (top-left), 10,000 (top-right), 100,000 (lower-left) and 1 Million sample
paths (lower-right), respectively (Number of time steps = 25)

for j = 1, 2 and

f1(S, v, τ−ξ ;φ,w)=e− ln Se−(r−q)(τ−ξ) f2(S, v, T − ξ ;φ,w)
f2(x, v, τ−ξ ;φ,ψ)=exp {g0(φ,ψ, τ−ξ)+g1(φ,ψ, τ−ξ)x+g2(φ,ψ, τ−ξ)v},

with

g0(φ,ψ, τ − ξ) = (r − q)iφ(τ − ξ)

+ α

σ 2

{

(β−ρσ iφ+D2)(τ − ξ)−2 ln

[
1 − G2(ψ)eD2(τ−ξ)

1 − G2(ψ)

]}

,

g1(φ,ψ, τ − ξ) = iφ,

g2(φ,ψ, τ − ξ) = iψ + β − ρσ iφ − σ 2iψ + D2

σ 2

[
1 − eD2(τ−ξ)

1 − G2(ψ)eD2(τ−ξ)

]

,

D2
2 ≡ (ρσ iφ − β)2 + σ 2φ(φ + i),

G2(ψ) ≡ β − ρσ iφ − σ 2iψ + D2

β − ρσ iφ − σ 2iψ − D2
.
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Fig. 2 Early Exercise Boundary for American call option with T = 0.25, σ = 0.04, θ = 0.1, r = 0.03,
q = 0.05 evaluated using 25 (top-left), 20 (top-right), 10 (lower-left) and 5 time steps (lower-right),
respectively (Number of sample paths = 10,000)

In order to determine approximately the terms b0(τ ) and b1(τ ) for every τ , we shall
rely on a coarse implementation of the least-squares Monte-Carlo (LSM) algorithm of
Longstaff and Schwartz (2001). This flexible method uses a combination of Monte-
Carlo simulation with least-squares regression to evaluate American option prices. In
our adaptation of this approach, we shall estimate b0(τ ) and b1(τ ) over a finite subset
of discrete dates τ1, τ2, . . . , τN , with N very small, typically between 5 and 10, and a
small number M of sample paths, just a few thousands, compared to simulation runs
several orders of magnitude larger required for accurate results through Monte-Carlo.
In fact, our approach is motivated in part by the constant volatility results, which indi-
cate that the exact knowledge of the boundary for the integral representation expression
is not critical for the accuracy of the option price calculation (cf. AitSahlia and Lai
2001). In addition, Glasserman (2004) also shows that a simulation-based valuation
of American option prices does not critically depend on an accurate evaluation of the
optimal exercise strategy.

3 Boundary evaluation

In this section we detail the steps of the approach described above. In particular, we
show how the early exercise surface is approximated numerically. Then in the next
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section we use this approximation through numerical integration in the American
option pricing decomposition formula. For our purposes, the early exercise surface
will be approximately determined by the LSM method. As a Monte-Carlo based tech-
nique, it will generate discrete sample values Ŝi and V̂i of the stock and its variance,
respectively, by discretizing the associated stochastic differential Eqs (1)–(2). A natu-
ral choice for this purpose is the Euler scheme:

Ŝi+1 = Ŝi + µŜi∆t +
√

V̂i St∆W1,

V̂i+1 = V̂i + κ(θ − V̂i )h +
√

V̂iσv

(
ρ∆W1 +

√
1 − ρ2∆W2

)
,

where∆W1 and∆W2 are independent standard normal random variables with variance
h, which is defined as the time mesh-size. However, we follow Glasserman (2004) who
suggests that the second-order scheme of Milstein (1978) and Talay (1982) given below
has a better convergence (less bias) for option pricing applications:

Ŝi+1 = Ŝi

(
1 + rh +

√
V̂i∆W1

)
+ 1

2
r2 Ŝi h

2

+
⎛

⎝
[

r + ρ − κ

4

]
Ŝi

√
V̂i +

[
κθ

4
− 1

16

]
Ŝi√
V̂i

⎞

⎠∆W1h

+1

2
Ŝi

(
V̂i + ρ

2

)
(∆W 2

1 − h)+ 1

4

√
1 − ρ2 Ŝi (∆W2∆W1 + ξ),

Vi+1 = κθh + (1 − κh)V̂i +
√

V̂i

(
ρ∆W1 +

√
1 − ρ2∆W2

)
− 1

2
κ2(θ − V̂i )h

2

+
⎛

⎝
[
κθ

4
− 1

16

]
1

√
V̂i

− 3κ

2

√
V̂i

⎞

⎠
(
ρ∆W1 +

√
1 − ρ2∆W2

)
h

+1

4
ρ2(∆W 2

1 − h)+ 1

4
(1 − ρ2)(∆W 2

2 − h)+ 1

2
ρ
√

1 − ρ2∆W1∆W2,

where ξ is a random variable independent of ∆W1 and ∆W2 such that P{ξ = h} =
P{ξ = −h} = 1/2.

3.1 Boundary evaluation through LSM

Once stock and volatility paths are generated, the LSM method consists of approxima-
ting the expected value of continuation by least squares. Specifically, LSM assumes
that the option can be exercised at one of N dates, t1, t2, . . . , tN = T , along each
of M sample paths generated by Monte-Carlo. In order to calculate the boundary, we
perform the following steps for every date (starting from tN = T and going backwards
through tN−1, tN−2, . . . t1).
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Table 3 American call option with strike = 100, r = 0.03, q = 0.05, σ = 0.1, κ = 4.0, ρ = 0, θ = 0.09

T S0 LSM 1k5 10k5 10k10 50k10 100k5 100k10 100k25

1 90 5.484 5.599 5.590 5.531 5.492 5.523 5.497 5.476

(5.477–5.491)

95 7.514 7.652 7.634 7.575 7.519 7.558 7.517 7.497

(7.506–7.523)

100 9.911 10.097 10.080 9.994 9.911 9.953 9.915 9.894

(9.902–9.920)

105 12.674 12.888 12.902 12.796 12.669 12.725 12.686 12.656

(12.664–12.685)

110 15.778 16.038 16.042 15.952 15.782 15.863 15.792 15.765

(15.767–15.789)

0.8 90 4.505 4.570 4.573 4.536 4.518 4.537 4.519 4.504

(4.498–4.511)

95 6.445 6.537 6.544 6.480 6.456 6.483 6.456 6.440

(6.438–6.452)

100 8.809 8.911 8.926 8.857 8.821 8.861 8.817 8.798

(8.800–8.817)

105 11.583 11.724 11.737 11.653 11.595 11.642 11.593 11.569

(11.574–11.593)

110 14.743 14.890 14.956 14.833 14.746 14.800 14.753 14.729

(14.732–14.753)

0.6 90 3.397 3.433 3.442 3.410 3.412 3.429 3.412 3.400

(3.392–3.402)

95 5.212 5.263 5.276 5.228 5.229 5.251 5.226 5.210

(5.206–5.218)

100 7.519 7.585 7.598 7.531 7.535 7.558 7.532 7.512

(7.512–7.527)

105 10.309 10.374 10.410 10.319 10.323 10.344 10.320 10.299

(10.300–10.317)

110 13.551 13.633 13.692 13.569 13.565 13.589 13.560 13.538

(13.541–13.560)

0.4 90 2.142 2.158 2.161 2.147 2.150 2.162 2.148 2.143

(2.138–2.146)

95 3.743 3.769 3.771 3.752 3.754 3.771 3.754 3.745

(3.738–3.747)

100 5.961 6.002 6.006 5.972 5.973 5.992 5.947 5.962

(5.955–5.967)

105 8.792 8.837 8.853 8.801 8.807 8.827 8.808 8.792

(8.785–8.799)
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Table 3 continued

T S0 LSM 1k5 10k5 10k10 50k10 100k5 100k10 100k25

110 12.182 12.250 12.254 12.187 12.204 12.227 12.201 12.183

(12.174–12.190)

0.2 90 0.768 0.776 0.775 0.772 0.773 0.777 0.772 0.771

(0.767–0.770)

95 1.936 1.951 1.951 1.944 1.945 1.952 1.944 1.941

(1.933–1.939)

100 3.977 3.993 3.998 3.983 3.985 3.997 3.985 3.978

(3.973–3.981)

105 6.938 6.964 6.968 6.948 6.949 6.964 6.950 6.941

(6.933–6.943)

110 10.693 10.722 10.733 10.705 10.709 10.725 10.710 10.700

(10.687–10.699)

Columns 1 and 2 refer to maturity and spot asset price, respectively. Column “LSM” refers to the LSM
benchmark prices generated as in Sect. 4.2 along with 95% CI. MkN denotes prices obtained using M×1, 000
sample paths and N time steps in our method

1. For each sample path ω and at every date tk , we calculate the exercise cash flow{
C(ω, t j ; tk, T ) : k + 1 ≤ j ≤ N

}
as in Longstaff and Schwartz (2001). How-

ever, in our context of stochastic volatility, we approximate the conditional expec-
ted value of continuation F(S(tk;ω), V (tk;ω), tk) as

F(S(tk;ω), V (tk;ω), tk) ≈ C (k)
0 + C (k)

1 L0

(
S

K

)
+ C (k)

2 L1

(
S

K

)

+C (k)
3 L0

(
S

K

V

θ

)
, (7)

where the argument (tk;ω) is omitted from S and V on the right hand side, and K
and θ are, respectively, the strike and the long-run mean of the variance in Heston’s
model. The basis functions for the above regression estimate are Laguerre poly-
nomials L0(X) = exp

(− X
2

)
and L1(X) = exp

(− X
2

) × (1 − X). The coeffi-

cients C (k)
0 ,C (k)

1 ,C (k)
2 and C (k)

3 in (7) are obtained by regressing the continuation
cash flows against the basis functions, with the superscript (k) indicating that the
regressions are effected at each time step. As noted earlier, the choice of the basis
functions may be debatable for the full-blown implementation of the LSM algo-
rithm, but it is a non-issue for our approach as our goal is to find an approximation
to the early exercise surface, the exact determination of which has been shown to
matter little.
For each sample path at a given time step, the expected cash flow from continua-
tion is calculated and compared with the current payoff. The option is then exer-
cised if the current payoff is greater than the expected payoff from continuation.
This is done for all M stock prices (one for each sample path) at this time step.
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Table 4 American call option with strike = 100, r = 0.03, q = 0.05, σ = 0.1, κ = 4.0, ρ = 0, θ = 02

T S0 LSM 1k5 10k5 10k10 50k10 100k5 100k10 100k25

1 90 11.1305 11.655 11.579 11.420 11.305 11.311 11.307 11.326

(11.094–11.167)

95 13.536 14.181 14.115 13.922 13.774 13.788 13.770 13.794

(13.496–13.576)

100 16.192 16.950 16.903 16.670 16.477 16.493 16.481 16.501

(16.149–16.235)

105 19.019 19.947 19.925 19.654 19.396 19.410 19.418 19.436

(18.973–19.065)

110 22.0765 23.148 23.157 22.863 22.539 22.571 22.562 22.587

(22.028–22.125)

0.8 90 9.749 10.039 10.052 9.891 9.832 9.824 9.845 9.837

(9.715–9.783)

95 12.1195 12.455 12.512 12.311 12.224 12.217 12.242 12.234

(12.082–12.157)

100 14.7255 15.151 15.247 15.003 14.884 14.888 14.904 14.898

(14.685–14.766)

105 17.5975 18.098 18.240 17.952 17.800 17.808 17.818 17.816

(17.554–17.641)

110 20.682 21.250 21.468 21.145 20.953 20.957 20.977 20.976

(20.636–20.728)

0.6 90 8.0765 8.223 8.241 8.127 8.132 8.140 8.141 8.131

(8.047–8.106)

95 10.3565 10.536 10.581 10.425 10.433 10.445 10.444 10.432

(10.323–10.39)

100 12.943 13.158 13.235 13.033 13.040 13.061 13.051 13.041

(12.906–12.98)

105 15.813 16.075 16.186 15.939 15.941 15.966 15.948 15.943

(15.773–15.853)

110 18.9825 19.250 19.409 19.122 19.115 19.141 19.120 19.119

(18.94–19.025)

0.4 90 7.1375 6.116 6.139 6.087 6.093 6.106 6.100 6.089

(6.069–6.13)

95 8.2345 8.286 8.319 8.241 8.252 8.268 8.261 8.247

(8.206–8.263)

100 10.7425 10.832 10.878 10.766 10.784 10.802 10.794 10.778

(10.711–10.774)

105 13.623 13.737 13.798 13.650 13.673 13.690 13.681 13.664

(13.588–13.658)

110 16.82 16.974 17.052 16.867 16.891 16.911 16.897 16.882

(16.782–16.858)
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Table 4 continued

T S0 LSM 1k5 10k5 10k10 50k10 100k5 100k10 100k25

0.2 90 3.451 3.547 3.469 3.458 3.460 3.465 3.463 3.458

(3.435–3.467)

95 5.3295 5.459 5.356 5.338 5.342 5.349 5.345 5.339

(5.31–5.349)

100 7.7095 7.889 7.759 7.732 7.738 7.745 7.742 7.735

(7.686–7.733)

105 10.614 10.818 10.663 10.623 10.632 10.640 10.636 10.628

(10.587–10.641)

110 13.95 14.199 14.024 13.968 13.981 13.991 13.985 13.977

(13.92–13.98)

Columns 1 and 2 refer to maturity and spot asset price, respectively. Column “LSM” refers to the LSM
benchmark prices generated as in Sect. 4.2 along with 95% CI. MkN denotes prices obtained using M×1, 000
sample paths and N time steps in our method

(In practice, however, Longstaff and Schwartz (2001) suggest that only in-the-
money paths be considered for computational efficiency, which we do as well.)

2. As volatility can theoretically attain any value on the set of positive reals, compu-
tational considerations lead to partition them into classes C1,C2, . . . ,Cnv , with
nv to be fixed. In this way, at every time step tk , (S(tk), V (tk)) ∈ C j for some
1 ≤ j ≤ nv if V (tk) ∈ (Vj , Vj+1), where Vj ( j = 1, . . . , nv) are equidistant
values of volatility, with V0 ≡ vMin and Vnv ≡ vMax,

Vj = V0 + j
Vnv − V0

nv
∀ j = 1, . . . nv,

vMin and vMax are given approximate values according to the distribution of
volatility in Eq. (1) for Heston’s process. The values nv , vMin, and vMax clearly
depend on the stochastic volatility model and can be set in advance in a number of
different ways. In our particular case, we ran numerical simulations of the volatility
process alone ahead of the pricing calculations and determined that vMin could
be set to its natural value of 0, as it is a variance, and vMax was set to 0.70, which
is a conservative estimate as observed variance values are overwhelmingly less
0.06. Numerical experiments were performed as “dry runs” for the fine-tuning
of nv which was then set to 10. We again observe that the fine selection of such
parameters does not materially affect the option value thanks to the empirically
observed phenomenon of its insensitivity to the fine accuracy of the corresponding
exercise surface.

3. For a given time step tk , the boundary values B1(tk), B2(tk), . . . , Bnv (tk) associa-

ted with volatilities v̄1, v̄1, . . . , v̄nv , where v̄ j = Vj + Vj+1
2 ), are obtained as

B j (tk) =
{

max{si |(si , vi ) ∈ C j } for put option,

min{si |(si , vi ) ∈ C j } for call option.
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In this way, we are able to obtain boundary value estimates for different volatility
ranges at each time step.

4. Finally, given the empirically supported approximation lnb(v, t) ≈ b0(t)+vb1(t),
for v near θ (cf. Broadie et al. 2000), our objective now is to determine b0(tk) and
b1(tk) in the equation

ln B j (tk) ≈ b0(tk)+ v̄ j b1(tk). (8)

For this purpose, B1(tk), B2(tk), . . . , Bnv (tk) are then regressed against the mid-
points of v̄1, v̄1, . . . , v̄nv .

4 Numerical implementation

With given parameters for the Heston model, the price of an American call option is
computed by using in (5) the values of b0(τ ) and b1(τ ) obtained from the previous
section. As can be seen in this expression, in order to evaluate the price of the option,
we need to proceed with some numerical integration. The outer integrals for the early
exercise premium need to account for the fixed times where the boundary is estimated
and are therefore computed using Simpson’s rule. However, within these integrals
and for the calculations of the European option, which involves Fourier inversion,
additional numerical integration is required, over unbounded intervals. We proceed
with the use of Gauss-Laguerre quadrature, with our code based on readily available
routines from the QuantLib library (http://quantlib.org).

4.1 A constant volatility test

Before we proceed with the validation of our proposed approach on the stochastic
volatility model of Heston (1993), we first evaluate it on the well-known constant
volatility for which efficient and accurate numerical techniques are available. In this
case, our approach is simplified as there is no need to partition the volatility dimension.
Table 1 refers to results in Table 2 of AitSahlia and Lai (1999), particularly their last
three rows, which correspond to an entire class of American option pricing problems
such that r/σ 2 = 1.22 and q = 0, with their canonical time scale s defined as
s = −σ 2T . For illustrative purposes, we set σ = 0.4 and the strike K = 100, thus
capturing their columns with spot prices equal to 80, 90, 100, and 120, respectively.
The benchmark values (BM) in Table 1 are theirs re-expressed for our spot prices and
are obtained via their converging Bernoulli algorithm. As indicated through this table,
our approximation is well within acceptable accuracy for the constant volatility test
case.

4.2 Stochastic volatility test

In this case, the benchmark values against which to compare those generated through
the proposed numerical approach are computed according to the following two steps:
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1. Apply LSM algorithm to estimate the early exercise surface.
2. Stop simulated finer paths at this boundary to obtain option price.

In step 1, we first simulate the stock price paths following the second-order scheme
described in Sect. 3. LSM is then applied to these simulated paths to calculate the
boundary using the procedure given in 3.1. The calculated values of the boundary are
stored for the next step. Step 2 generates a fresh set of sample paths and stops them
at the boundary to get the price for each path. In order to check if a particular path
can be stopped at a specific time, we must first determine the volatility class of the
corresponding stock price and volatility. The benchmark boundary is then generated
using 1,000,000 sample paths and time increments of 0.01 year each. Prices are subse-
quently calculated by generating a fresh set of 10,000,000 sample paths and stopping
them at the boundary obtained in the previous step, with the same number of time
steps. We should note that the benchmark values thus obtained are not necessarily the
most accurate prices for the American option prices but are good (tight) lower bounds.
As shown in Clement et al. (2002), in order to obtain complete convergence of the
LSM algorithm to the correct American option price, the number of basis functions,
that of the sample paths, and that of exercisable dates all have to become very large.

In our numerical experimentation, the parameter values are set as T = 0.25,
ρ = 0.0, κ = 1.0, θ = 0.09, σ = 0.1 and various combinations of sample
sizes with number of time steps are considered. In addition, different maturities
τ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and spot prices are used. For each value of τ , spot prices
s0 are taken from the set {90, 95, 100, 105, 110}.

In order to study the effect of changing the number of sample paths, we evaluate
the boundary surface using 10 K, 50 K, 100 K and 1,000 K sample paths, keeping the
number of time steps constant at 25. As shown in Fig. 1, starting with 1,000 sample
paths, the approximated boundary surface becomes progressively better. In fact, there
is little noticeable difference between the one generated with 100,000 sample paths
and that which is generated with 1 million.

To study the effect of changing the number of time steps, the boundary surface is
again evaluated using 5, 10, 20, 50 time steps, keeping the number of sample paths
constant at 100 K and the set of parameters as in the previous setting. The obtained
boundaries are plotted in Fig. 2, which shows that piecewise linear approximations
with only a few time steps and sample paths are warranted.

Next, we compute option prices according to our method. The column heading
“MkN” in Table 2 indicates that prices are calculated on the basis of an approximate
boundary obtained with N time steps and M×1, 000 sample paths. The column labeled
“LSM” refers to prices computed according to the two steps described in Sect. 4.2
above, together with the corresponding 95% confidence intervals.

To assess the accuracy of our approach, for each column we determine whether
a price falls in the 95% benchmark confidence interval (CI). If it misses the CI, we
record the amount by which it misses and an average is taken for the corresponding
column. Tables 2, 3, 4 display the prices obtained for values of θ = 0.0225, 0.09, and
0.2, respectively, with all the other parameters remaining the same as above. Tables 5,
6, 7 list the corresponding summary results. It is important to note that all the prices
generated by our method are higher than those labeled LSM. This is a good indication
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Table 5 Summary results for θ = 0.0225

1k5 10k5 10k10 50k10 100k5 100k10 100k25

Max distance from CI of LSM 0.439 0.169 0.029 0.028 0.076 0.026 0.030

Average distance from CI of LSM 0.084 0.058 0.008 0.010 0.040 0.011 0.002

Percentage in CI of LSM 0 4 16 12 0 12 68

Average computation time (s) 0.08 0.32 0.56 2.98 3.04 6.6 16.8

Table 6 Summary results for θ = 0.09

1k5 10k5 10k10 50k10 100k5 100k10 100k25

Max distance from CI of LSM 0.784 0.432 0.099 0.011 0.035 0.015 0.002

Average distance from CI of LSM 0.174 0.115 0.012 0.004 0.019 0.007 0.000

Percentage in CI of LSM 0 0 24 32 8 16 76

Average computation time (s) 0.08 0.32 0.56 2.98 3.04 6.6 16.8

Table 7 Summary results for θ = 0.2

1k5 10k5 10k10 50k10 100k5 100k10 100k25

Max distance from CI of LSM 1.023 1.032 0.738 0.414 0.446 0.437 0.462

Average distance from CI of LSM 0.301 0.314 0.156 0.092 0.103 0.101 0.100

Percentage in CI of LSM 4 0 10 12 16 20 24

Average computation time (s) 0.08 0.32 0.57 2.97 3.08 6.63 16.77

of the accuracy of our method as LSM-generated prices are tight lower bounds of the
correct American option prices. Thus, it can be observed that the proposed method
works generally well, and even better for low standard volatility values (i.e. when
the long-run mean of the volatility θ is low). Therefore, the results for θ = 0.0225
are better than those with θ = 0.09, which are in turn better that the ones with
θ = 0.2. However, θ = 0.09 corresponds to a volatility of 30% which by itself is
a fairly common market volatility value. For each instance of θ , we observe that the
price estimate improves as the number of sample paths and the number of time steps
increase, as expected.

Also reported in Tables 5, 6, 7 are the average computation times for each column.
All computations were performed using a Pentium M processor (1.60 GHz) and 512
MB of RAM. It is clear that a reduction in computation time comes at the cost of
increasing error. However it is evident that good computation speed is achieved with
very little loss in accuracy, even for the small values of sample paths and time steps.

5 Conclusion

In this paper we presented a novel and efficient numerical technique to price American
options when the underlying asset follows a diffusion process indexed by a volatility
that itself follows a stochastic process. Extensive numerical tests indicate that this

123



American option pricing under stochastic volatility

approach is very efficient and accurate. This method significantly improves upon the
LSM algorithm of Longstaff and Schwartz (2001) by reducing both computational
time and pricing bias. Further work is under way to extend it to stochastic volatility
models with random jumps, where the underlying price process also is subject to
random shocks (as a result, for example, of unforseen economic developments.) In
fact, since the method relies on the combination of a very general result regarding
optimal stopping (the Doob–Meyer decomposition of Snell envelopes) together with a
very flexible Monte-Carlo approach, further expansions into larger classes of problems
is envisioned.
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