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American barrier options of the knock-in type involve

non-Markouian optimal stopping problems for early

exercise. They therefore cannot be priced via stan-

dard methods such as binomial or trinomial trees

and finite-difference schemes for free-boundary par-

tial differential equations.

This article provides a modified tree method to

price these options. It also develops fast and accu-

rate analytic approximations for the price and hedge

parameters.

C
omplex derivatives have become
accepted instruments to tailor risk
coverage for risk managers and
investors. Barrier-type options

have become important instruments, particu-
larly for the valuation of structured products
(see Banks [1994]). They are also widely used
in currency markets.

The holder of a barrier option acquires
option coverage on only a subset of the risky
outcomes for which a plain vaniUa option pays
off; this reduces the cost of the resulting cov-
erage so that the holder of the contract does
not have to pay for contingencies the holder
thinks are unlikely to occur. Because of this
flexibility, barrier options were traded over the
counter long before the opening of the
Chicago Board Options Exchange, and have
become some of the most commonly traded
derivative contracts. American barrier options
offer the added flexibility of early exercise but
have to be priced using numerical algorithms.

as they do not have closed-form solutions,
unlike their European-style counterparts (see
Merton [1973] and Rubinstein and Reiner
[1991]).

Naive application of the Cox-Ross-
Rubinstein binomial tree method for barrier
options has been shown by Boyle and Lau
[1994] to yield inaccurate values, even with
many steps. To address this problem, which
stems from the position of the barrier relative
to the grid, a number of variants of the tree
method have been advanced.

Ritchken [1995] implements a trinomial
tree method. Cheuk and Vorst [1996| develop
a time-dependent shift for the trinomial tree,
and Figlewski and Gao [1999[ introduce an
adaptive mesh model that grafts high-resolution
lattices around points that cause the inaccuracies
in the binomial model. In an alternative to tree
methods, Gao, Huang, and Subrahmanyam
[2000] and AitSahlia, Imhof, and Lai [2003]
extend the price decomposition approach orig-
inally developed for standard American options
by Kim [1990], Jacka [1991], and Carr, Jarrow,
and Myneni [1992] to derive analytic approx-
imations for American knock-out prices and
hedge parameters.

The sum of American knock-in and
knock-out prices does not equal the standard
American option price, as is the case for Euro-
pean barrier options. Moreover, the knock-
in option value process is non-Markovian, so
the classic binomial or trinomial tree methods
or numerical partial differential equations for

44 PKICING AND HEDGING OF AMERICAN KNOCK-IN OPTIONS SPRING 2004



standard American options cannot be applied directly to
price American knock-in options. We first explain why
this is the case, and contrast American knock-in and
knock-out options.

Then we develop a modified binomial tree method
to price and hedge American down-and-in puts. An alter-
native method is based on the price decomposition
approach for standard American options. We propose an
efficient approximation to implement this approach that
leads to analytic approximations that have penny accu-
racy. Numerical results for both approaches are provided,
and we also address the evaluation of hedge parameters.

I. AMERICAN KNOCK-IN
AND KNOCK-OUT OPTIONS

Consider an underlying asset whose price process S
follows a geometric Brownian motion with volatility a
and that pays dividends at rate gma. market environment
where the riskless rate of return is r. Let H be a barrier
for either a knock-in or a knock-out option. Let Tbe the
expiration date for any option on the asset. Let g{S, K)
denote the option's payoff when exercised at asset price
S. Then, g{S, K) = {S- K)'^ is the payoff of a call option
with exercise price K, and g{S, K) = {K- S)"̂  is the payoff
on the corresponding put. Define:

T}^ ) = inf{t <T:St<H}

T'IP = inf{t <T:St>H}

V{S)= sup
T

That is, T}f' (or T), ') is the first time the price of the
underlying asset falls below (or rises above) the barrier H.
Then, for any stopping (early exercise) time T< T:

= Es

(2)

and the prices of the corresponding American knock-in
and knock-out options are, respectively:

= sup

VO\JT{S) = sup

(3)

(4)

Since the suprema in Equations (2)-(4) are attained
at different stopping times, the price of a standard Amer-
ican option cannot be decomposed as in (1) into the sum
of the corresponding American knock-in and knock-out
options.

Since {S^, t> 0}and {S,,;,,(, ̂ jy t > 0} are Markov pro-
cesses, the standard American option expressed in Equa-
tion (2) and the American knock-out option in Equation
(4) are associated with Markovian optimal stopping prob-
lems. We can express Equation (4) as yQu-j^S, 0), where:

= sup

The optimal stopping problem in Equation (3) asso-
ciated with an American knock-in option, which becomes
effective only after T^ , is non-Markovian. Because of this,
we cannot apply standard algorithms such as finite-differ-
ence methods for free-boundary PDEs or binomial trees
to compute F|[^(S). Instead we use the representation:

(6)

where V{H, t) denotes the price of a standard American
option (with maturity T and strike K) at time t when
S=H.

where ^^[Xl denotes the expectation of a random variable
X conditional on the initial value SQ = S. When T = T,
Equation (1) expresses the well-known relation between
the price of a standard European option, on the left, and
the prices of corresponding European knock-in and
knock-out options, respectively, on the right.

Let Tj y denote the class of stopping times taking
values between a and b with a < b. From Karatzas [1988],
the price of a standard American option is:

II. MODIFIED BINOMIAL METHOD
FOR AMERICAN KNOCK-IN PUTS

We can compute Equation (6) using a modified
binomial tree method. Even faster analytic approxima-
tions decompose the price of a standard American option
into the sum of the corresponding European option price
and an early exercise premium.

To fix the ideas, we consider from now on the case
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of down-and-in puts. Typically investors use put options
as insurance against possible drops in the value of an asset
they are holding. A down-and-in put enables its holder to
reduce the cost of such insurance by requiring that it be
effective only after the asset price falls below a barrier H.

We modify the binomial tree method to compute
the price in Equation (6) of an American down-and-in
put with S> H. While the usual binomial tree starts from
the root node S and may not include H as a node value,
our modified binomial tree uses a lattice that includes the
barrier.

The integral in (6) involves the distribution of the
first time that the geometric Brownian motion S^ crosses
the level H. Because S^ = S exp{(r - q-G-/2)t +aB^}
under the risk-neutral measure P, where {B^} is a stan-
dard Brownian motion, and because the first-passage den-
sity of Brownian motion has a simple formula, we use the
change of variables:

2 = log 5, 7 = log iJ, A = r - Q - (7̂ (V)

The knock-in time TJf' = inf{£ > 0: S, < H} can
then be expressed as rff' - 'm({t > 0: Ẑ  < 7}, where:

(8)

is a Brownian motion with drift A. Hence the probability
distribution of r̂ -* has a density function /_ given explic-
itly by:

a single run of the backward induction program, we
approximate the Brownian motion Ẑ  (with drift A) by a
Bernoulli random walk with time increment S > Q and
space increment X. such that

(11)

Note that X. has mean X5 = E{Z^^^ — Z^ and vari-
ance a^6 = Var(Z^ ĵ— Z )̂, and that the barrier 7 belongs
to the lattice L̂  = {7 ± V§"(a- + SXY'f- j = 0, 1,2, ...}.
The backward induction algorithm of dynamic pro-
gramming yields:

(12)(or x

and is initialized at T by V{e'\ T) = (K - e^\
Note that log S may not belong to the lattice L̂ j, in

contrast to the usual binomial tree method in which S is
always the root node of the tree but the barrier may not
be a node of the tree. In AitSahlia, Imhof, and Lai |20031,
we use a similar Bernoulli random walk with absorbing
barrier 7 and increments (11) to approximate a Wiener
process with the same absorbing barrier 7 to handle the
barrier problem for knock-out options (see Boyle and
Lau [1994]).

where n(.) is the standard normal density function; see
Karatzas and Shreve [1988, p. 196].

Using Equation (9), we can express the value (6) of
an American down-and-in put [which we will denote
Pi^iS) instead of ^[^(S)] as:

PD{S) = f e-''
Jo

M

A : = l (10)

Here the approximating Riemann sum involves M + 1
equally spaced time steps t^ = 0 < t^ < • • • < t^^^j = T, with
step size 6 = T/M (so fj, = kS). To compute the M Amer-
ican o p t i o n p r i ces V{e'', t^, Vi/', t^^_^, ..., V{e'', f,) w i t h

III. FAST AND ACCURATE APPROXIMATION

Since the price V{H, t) of a standard American put
option can be decomposed as the sum of a European put
plus an early exercise premium, we can likewise decom-
pose the price (6) of an American down-and-in put as:

PD{S) = PD{S) + / e-'MH.. T - t)Mt) dt
Jo (13)

where TZ{H, T— t) is the early exercise premium of a stan-
dard American put with maturity T— t, strike price K, and
initial stock price H; /_(() is given in (9); and z = log S.

Thepp(S) in (13) is the price of a European down-
and-in put option with strike price Kand expiration date
T. In view of (1), Pj-^iS) can be expressed as the difference
between a standard European put and a European down-
and-out put, yielding the closed-form expression:
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PD{S) = -

\SK.T)) - N{di ,S,T))}
(14)

where rf, (.x, y, r) = {log(x/y) + {r-q + aV2)T} / {a.F);
d^ {x, y, T) - rf| {x, y, T) - afr, and N{x) is the standard
normal cumulative probability distribution function.

At this point, the early exercise premium TZ{H, T —
t) is the only piece needed to fully determine the price
of an American down-and-in put using Equation (13).
Since this quantity is the difference between standard
European and American option prices, for which various
numerical methods are available, one may choose a meth-
od according to one's preference. Nevertheless, once 71 is
determined, there remains the task of evaluating the inte-
gral in (13).

For fast and accurate approximations of the integrand
and integral in (13), first we use Ju's [1998| or AitSahlia and
Lai's |200r| method to approximate the early exercise pre-
mium 71. The method involves approximating the early
exercise boundary by a piecewise exponential function (Ju)
in the original geometric Brownian motion scale or by a
piecewise linear function (AitSahlia and Lai) in the Brow-
nian motion scale resulting from a change of variables. A
major advantage of this approach is that it leads to closed-
form approximations of the early exercise premium.

Multiplying the discounted American option pre-
mium e~"Tt{H, T— t) by the first-passage density/_(t) then
gives the value of the integrand in (13). For fast valuation,
the integral has to be approximated by a sum of m terms
with small m. We evaluate it using Gaussian quadrature
with /)) nodes and weight function^^, which results in a
weighted sum that approximates the integral in (13) (see
Press et al. [1992, Section 4.5]).

The weights w^, ..., w^^^ are determined together
with nodes t^, ..., t^^^ so that

./o k=\

for all polynomials h of degree less than 2m.
To find these nodes and weights, a first step is to

evaluate the moments

= /
./o

for fc = 0, . . . , 2m - 1

Note that Cg is exactly the probability (under the
risk-neutral measure) that the barrier is hit (i.e., knock-
in occurs) during the life of the option. Let a = z— y and
b — —A. Recalling that n{x) denotes the standard normal
density and N{x) its cumulative distribution function, we
have:

Co feci

2 2a

= JVl - ,

dt

(15)

where

= 1

a 6\/r

Similarly:

where M, = 1 and M^ = N{a/{a
(15) and (16):

exp

(16)

+ bV¥/a).From

M2) (17)

and Cj = {a/
To compute the higher moments, note that by par-

tial integration:

where

Therefore, in the case b ̂  0:

Cfc = -(cfc-i, - , k-l) + 72 Cfc-2

= O, then:
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Ck= Pk-
{2k - 1)0-2

C f c - l ''7:{H, T - t)f,{f) dt -'•'*^7r(if,T-ifc) (18)

The moments c^, .... c^ ,
0' ' 2m-l

recursively. Let

can therefore be evaluated

/

qv{t) = det
Cv t

Co

C2m-2/

N o t e that the po lynomia l s (jQ(f), •••^ ^^CO ^'^s

or thogonal wi th respect to f^{t)dt in [0, T]. T h e nodes

tp . . . , (̂^̂  are the zeros o£q^^^{t), and the weights Wp . . . ,

tf̂ ji are given by

for fe — 1, ..., m

Finally, to evaluate the integral in (13) we use the
approximation:

choosing m to be small for fast computation.

IV. NUMERICAL ILLUSTRATION

Our numerical examples for the two methods con-
sider both a short-maturity put option on a security paying
no dividend {Exhibit 1) and a long-maturity put option
on a security paying a dividend at a constant rate {Exhibit
2). The middle four columns are generated by the mod-
ified binomial algorithm in Equations (10) and (12), for
values of N equal to 1,000, 5,000, 10,000 and 20,000.
The expected convergence of the algorithm is clearly
noticeable.

The last columns in the Exhibits present the integral
approximation method with m = 2. In this case, the price
of the American knock-in put is obtained via the approx-
imation (18) of the integral in (13).

Observe that with N = 1,000, the modified bino-
mial algorithm generally yields penny accuracy, and that
the integral approximation with m — 2 nodes, which is
over ten times faster, is even more accurate. The integral
approximation involves c^ given in (17), which is equal to
the probability of ever hitting the barrier during the life
of the option, also tabulated in Exhibits 1 and 2.

Note that one could improve the accuracy of the
integral approximation by increasing the number m of
nodes, thus resulting in higher-degree polynomials 5,,,(0-

E X H I B I T 1
American Down-and-In Put Option Prices: Modified Binomial Algorithm and Integral Approximation (with m = 2)

s
75
80
85
90
85
90
95

100
95

100
105
110

H

70
70
70
70
80
80
80
80
90
90
90
90

Prob. of
Hitting Barrier

0.5821
0.3004
0.1389
0.0584
0.6271
0.3583
0.1878
0.0911
0.6636
0.4089
0.2350
0.1268

Av. CPU time (sec.)

A'= 1000

17.3026
8.8797
4.0931
1.7153

12.4374
7.0680
3.6918
1.7862
6.8017
4.1201
2.3422
1.2542

0.15

Modified
^=5000

17.3007
8.8773
4.0911
1.7139

12.4362
7.0664
3.6903
1.7851
6.8011
4.1193
2.3414
1.2536

3.60

Binomial
A'= 10000

17.3005
8.8769
4.0909
1.7138

12.4361
7.0662
3.6901
1.7850
6.8010
4.1192
2.3413
1.2535

14.24

A'= 20000

17.3004
8.8768
4.0907
1.7137

12.4360
7.0661
3.6900
1.7849
6.8010
4.1178
2.3413
1.2532

58.51

Integral
Approx.

17.3003
8.8767
4.0906
1.7136

12.4346
7.0649
3.6894
1.7847
6.8050
4.1244
2.3455
1.2557

<0.01

r = 0.06, (/ = 0, (T = 0.2, T = 0.5, K = 100.

48 PRICING AND HEDGING OF AMERICAN KNOCK-IN OPTIONS Si'RING 2004



E X H I B I T 2
American Down-and-In Put Option Prices: Modified Binomial Algorithm and Integral Approximation (with m = l)

s
80
90

100
110
120
90

100
110
120
100
110
120
Av.

H

70
70
70
70
70
80
80
80
80
90
90
90

CPU

Prob. of
Hitting Barrier

0.8074
0.6161
0.4505
0.3190
0.2206
0.8320
0.6622
0.5088
0.3804
0.8512
0.6990
0.5574

time (sec.)

A^= 1000

24.4783
17.8960
12.7056
8.8116
6.0021

19.5239
14.6116
10.7227
7.7411

15.0884
11.3287
8.3962

0.13

Modified Binomial
A'=5000

24.4768
17.8933
12.7022
8.8081
5.9988

19.5226
14.6097
10.7204
7.7386

15.0871
11.3272
8.3946

3.55

A'= 10000

24.4766
17.8930
12.7018
8.8076
5.9984

19.5224
14.6094
10.7201
7.7383

15.0869
11.3270
8.3944

15.41

A? =20000

24.4765
17.8928
12.7016
8.8074
5.9982

19.5223
14.6093
10.7199
7.7381

15.0868
11.3268
8.3942
68.37

Integral
Approx.

17.8922
12.7009
8.8070
5.9978

19.5217
14.6090
10.7198
7.7381

15.0861
11.3266
8.3942
<0.01

r = 0 .06, q = 0.09, a = 0 .2, T = 3,K = 100.

Alternatively, one could achieve the same goal by dividing
the interval [0, 7] into several subintervals of the same
length, and then applying Gaussian quadrature to each
subinterval, but with corresponding orthogonal polyno-
mials of degree 2, resulting in similar formulas.

Both approaches will converge to the correct value
of the integral as the number of nodes (or subintervals)
tends to infinity. The advantage of the second approach
is that the nodes in each subinterval are easily calculated
as they are zeros of a quadratic function. For the first
approach, one must numerically determine all the zeros
of an mth-degree polynomial. Our numerical results sug-
gest that using only two nodes for the entire interval gives
very accurate results in the first place.

V. AMERICAN KNOCK-IN HEDGE PARAMETERS

From (6), it follows that the hedge parameter A is
given by;

(19)

Since z — log S, the chain rule yields:

oa J oz

Moreover, from (9), it follows that:

dz
^-z-\t\\ f-r-z-Xt

Therefore, as in (10), we can evaluate A via:

M

dz (20)

Similar expressions can be obtained for the hedge
parameters gamma and theta. Note that (20) shows that
the Bernoulli walk algorithm to compute A does not
involve numerical differentiation. Alternatively, one can
use the decomposition formula (13) to compute the hedge
parameters. For example:

A =
dS Jo

Here dp^/dS is given in closed form because of
(14), and so is df /dS. To evaluate the integral in (21),
we can also use Gaussian quadrature.

VI. SUMMARY

We have considered American knock-in options,
for which the integral defining the early exercise pre-
mium is very different from that of an American knock-
out option. Despite the non-Markovian nature of the
associated optimal stopping problem, we have been able
to develop a modified binomial algorithm to price Amer-
ican knock-in options. We have also given an alternative
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approach that makes use of the classic decomposition for-
mula for a standard American option and computes the
early exercise premium by Gaussian quadrature.

The methods presented for American down-and-in
put options can be modified for up-and-in put options and
for the corresponding call options.
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