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Abstract 

The extant literature on wind generation and wholesale electricity spot prices says 

little about how wind generation may affect any price differences between two inter-

connected sub-markets. Using extensive data from the four ERCOT zones of Texas, this 

paper develops a two-stage model to attack the issue.  The first stage is an ordered-logit 

regression to identify and quantify, for example, the impact of wind generation in the 

West zone on the estimated probability of a positive or negative price difference between 

the North and West zones. The second stage is a log-linear regression model that 

identifies and quantifies the estimated impact of wind generation on the sizes of those 

positive and negative price differences. It is shown that high wind generation and low 

load in the wind-rich ERCOT West zone tend to lead to congestion and zonal price 

differences, that those differences are time-dependent, and that other factors such as 

movements in nuclear generation and natural-gas prices, as well as fluctuating non-West 

zone loads, also play a role. The results have broad implications for energy policy makers 

that extend well beyond the borders of Texas and, indeed, those of the United States.  
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1. Introduction  

The debate over climate change has helped fuel interest in alternative sources of 

energy that promise low carbon emissions, including nuclear, solar, and wind energy, the 

latter of which is the focus of this paper. Renewable-energy policies in North America 

and Europe, in particular, have led to large-scale wind-energy development. In this 

regard, Texas has been the state with the most wind generation in the United States (Haas 

et al., 2008; Stahl et al., 2009; Abbad, 2010; Jacobsen and Zvingilaite, 2010; Sioshansi 

and Hurlbut, 2010).  Globally, “[2009] was a record-setting year for wind energy in the 

IEA Wind member countries, which installed more than 20 gigawatts (GW) of new wind 

capacity. This growth led to a total of 111 GW of wind generating capacity, with more 

than 2 GW operating offshore” (IEA, 2010, p.2).  

Integrating this rapidly expanding and intermittent generation from remote 

locations into electricity grids is challenging for grid operators, resources planners, and 

policy makers (Sovacool, 2009).
1
  While the physical impacts of wind generation on grid 

operations are well documented, the impact of increasing wind power on energy prices in 

wholesale markets has received less attention. That said, the displacement of generation 

sources with higher operating costs by wind power in Denmark and Germany has 

resulted in lower electricity prices (EWEA, 2010) and magnified wholesale-price 

volatility in Denmark (Jacobson and Zvingilaite, 2010). In Texas, which is the data 

source for the empirical study that follows, wind generation has occasionally led to 

negative prices in the state’s West zonal market (Lively, 2009). The West zone is one of 

the four competitive Electricity Reliability Council of Texas (ERCOT) power sub-

markets, the other three being the North, South, and Houston zones. 
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In addition to promoting wind-energy development, Australia, New Zealand, and 

parts of North America, South America, and Europe have undergone electricity-market 

restructuring to introduce competition into the wholesale market for electricity generation 

(Sioshansi and Pfaffenberger, 2006; Woo et al., 2006a; Zarnikau, 2005, 2008). Wholesale 

electricity spot-market prices are inherently volatile.
2
  The volatility, accompanied by 

occasional sharp spikes, has sparked extensive research into spot-price behavior and 

dynamics.
3
  

The rich research on wind generation and wholesale spot prices, however, says 

little about how wind generation may affect any price differences between two inter-

connected sub-markets within a larger power market. If those sub-markets are only 

geographical artifacts, then absent frictions such as transmission constraints, the law of 

one price implies that the same price will prevail in all sub-markets under least-cost 

dispatch (Hogan, 1992; ERCOT, 2004) or active competitive trading (Woo et al., 1997).  

While a grid operator can ably manage transmission congestion (Kumar et al., 2005; 

ERCOT, 2010b), frequent and large price divergences indicate an urgent need for 

transmission expansion to resolve severe congestion. Indeed, Texas has already identified 

the least-cost transmission plan to bring abundant wind resources from its West zone to 

load centers around Dallas and Houston (Sioshansi and Hurlbut, 2010; ERCOT, 2009).   

Texas, which is the largest electricity-consuming state in the nation, is a prime 

candidate for studying divergences from the law of one price.  When the state’s zonal 

market prices are paired over 15-minute time intervals, depending upon the sub-market 

pairings, the paired prices have over the past three-and-a-half years defied the law of one 

price between 15% and 17% of the time, yielding strictly positive or negative price 
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differences that can be very large in size, up to $3,500/MWh.  This particular datum has 

evolved from our access to a unique and rich ERCOT data base of 15-minute high-

frequency electricity price data observed over the 41-month period extending from 

January 2007 through May 2010.
4
 These data allow us to identify and quantify the impact 

of wind generation on those paired-price divergences. To the best of our knowledge, we 

are the first to do so.  

We accomplish this through a two-stage regression analysis of a rich sample of 

over 115,000 widely varying observations. The first stage entails the estimation of three 

ordered-logit regressions, one for the North and West zonal pairing, one for the South and 

West zonal pairing, and one for the Houston and West zonal pairing.  We obtain 

parameter estimates for three sets of binary monthly, daily, and hourly dummy variables 

and seven metric variables including zonal MWh loads, nuclear generation, natural-gas 

prices, and of greatest interest for present purposes, wind generation for the ERCOT 

system.  These estimates allow us to determine the direction and impact of wind 

generation on the probability of a positive electricity-price difference between, say, the 

North and West zones. 

The second stage entails the estimation of two log-linear regressions for each of 

the three zonal market pairings. In these regressions, the dependent variables are, on the 

one hand, the positive paired-price differences and on the other the absolute values of the 

negative paired-price differences.  The independent exogenous variables are the same 

dummy and metric variables that are employed in the ordered-logit regressions. The 

parameter estimates attached to the metric variables are directly interpretable as price 

difference elasticities.  
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Our regression analysis yields the following key findings. First, on average, rising 

wind generation increases the likelihood and size of a strictly positive paired-price 

difference between a non-West zone and the West zone in Texas. So too do an increase in 

the price of natural gas and an increase in nuclear generation in the ERCOT system. 

Second, non-West zonal loads tend to move the likelihood and size of a zonal market 

pair's strictly positive price difference. Third, a rising West zonal load tends to reduce the 

West zone's wind-energy exports, thus reducing the likelihood and size of a zonal market 

pair's strictly positive price difference. Fourth, wind generation, the natural-gas price, 

nuclear generation, and zonal loads on average have directionally opposite effects on a 

market pair’s strictly negative price difference.  Finally, price divergence is time-

dependent, reflecting the effects of month of the year, day of the week, and hour of the 

day.  From a policy-making standpoint, these findings confirm that wind generation tends 

to cause zonal prices to diverge in Texas, supporting Texas’ planned transmission 

expansion to facilitate the state’s projected rapid growth in wind generation.   

 

2. Wind generation in the Electric Reliability Council of Texas  

2.1 The ERCOT market 

Roughly 85% of the electricity needs in Texas are satisfied through the ERCOT 

market. Figure 1 portrays ERCOT’s generation mix in 1997-2009, underscoring the 

state’s rising wind generation.   
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Figure 1: Generation mix in 1997-2009 (Source: ERCOT, 2010a, p.10) 

ERCOT has undergone gradual restructuring since the mid-1990s (Baldick and 

Niu, 2005; Zarnikau, 2005; Adib and Zarnikau, 2006). Legislation enacted in 1995 

required the Public Utility Commission of Texas (PUCT) to establish rules to foster 

wholesale competition and create an Independent System Operator (ISO) to ensure non-

discriminatory transmission access, leading in the summer of 1997 to ERCOT’s 

establishment as the first operating ISO in the nation.  Sweeping reforms were introduced 

through Senate Bill 7 (SB 7) in 1999, allowing customers of the investor-owned utilities 

within ERCOT to choose among competitive retail electric providers (REPs) for retail 

supply of electricity beginning on January 1, 2002. SB 7 also enhanced the ISO's 

centralized control over, and operation of, the wholesale market, replacing ten “control 

centers” formerly operated by various utilities.  This led to the establishment of formal 

markets for ancillary services and balancing energy.   

From January 2002 until December 2010, ERCOT maintained a zonal market 

structure, containing between four and five zones.
5
 The boundaries of each zone were re-
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examined each year through ERCOT’s stakeholder process. Dynamic transmission limits 

among the zones could change between each 15-minute interval, depending upon system 

conditions. Figure 2 provides the average limits between the zones in effect in 2009.  

For the five Commercially Significant Constraints 
(CSCs), the simple average of the constraint 
quantities for all 15-minute intervals of 2009 
was:

1. South to North:  1,249 MW

2. North to South:  728 MW

3. North to Houston:  3,198 MW

4. West to North:  1,015 MW

5. North to West:  741 MW

Zones and CSCs

North
West

South
Houston

Module 2
Congestion Management

Definitions and Key Concepts

 

Figure 2.  Zones and commercially-significant transmission constraints in ERCOT 

 

Figure 3 indicates that three of the four zones have sufficient summer-peak 

resources to meet their within-zone anticipated peak demands. The exception is the 

Houston zone. While geographically large, the West zone is sparsely populated and hence 

has very little demand for electricity. 
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Figure 3.  Projected summer-peak resources and loads for 2008 (Source: ERCOT, 2007) 

 

Zonal-balancing energy market prices are determined through least-cost dispatch 

(ERCOT, 2004). Absent commercially significant transmission constraints (“CSCs”), 

balancing energy prices are equal across zones; when inter-zonal CSCs are binding, 

however, zonal market prices diverge (ERCOT, 2010b).   

 

2.2 Wind generation in Texas 

The growth in wind power in Texas has actually had little to do with concern over 

climate change (Caputo, 2007; Price, 2009). The promotion of wind energy has, however, 

proven attractive in a state with declining oil production, the largest non-hydro 

renewable-resource potential in the nation, an entrepreneurial business climate, and an 

interest in diversifying the state’s energy mix. 

Texas has a wind-resource potential of 1,901,530 MW and 6,527,850 GWh 

(NREL, 2010), which is over 17% of the nation’s total resource potential, far in excess of 

the state’s power needs. SB 7 established initial goals for renewable-energy capacity of 
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2,000 MW by 2009 and a renewable-energy credit (REC) trading program, as well as a 

process to facilitate the construction of electrical transmission facilities to interconnect an 

expanding amount of wind power.  In the 2005 legislative session, SB 20 increased the 

state’s goal for renewable energy to 5,880 MW by 2015 and 10,000 MW by 2025.   

Figure 4 indicates that Texas has already met the 2015 goal and is on track to 

meet the 2025 goal well ahead of schedule. Since 1999, ERCOT has also invested over 

$5 billion in transmission upgrades, mirroring the growth in wind generation. Figure 5 

shows that the vast majority of wind-energy development has occurred in the West zone.   
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Figure 4.  ERCOT installed wind generating capacity and transmission investment since 

1999 (Source: ERCOT, 2006, 2008, 2010) 

 

 



 10 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

West North South Houston

Wind
Hydro
CT/Peakers
Gas CCGT
Other
Coal
Nuclear

N
am

e
p

la
te

 M
W

ERCOT zone  
Figure 5.  ERCOT installed generation by zone. (Source: EIA, 2009; matched to 2010 

ERCOT zone based on the county location of generator) 

 

 

3. Descriptive analysis of the zonal paired-price differences 

3.1  Example of ERCOT price movements 

ERCOT has distinctive zonal-market price patterns, thanks to the concentration of 

wind power in the West zone, limited transmission transfer capability between zones, and 

federal production tax credits for wind power. To presage our regression results in 

Section 4, here we provide a descriptive analysis of the zonal-market paired-price 

differences between the North zone and its immediately adjacent West zone. The findings 

for the South-West and Houston-West market pairs are similar to those of the North-West 

pairing and therefore are not repeated. 

The upper panel of Figure 6 shows the 15-minute electricity spot-price 

movements in the ERCOT West and North zones for one sample month, April 2009, 



 11 

when prices are mostly identical across the zones and range from $15/MWh to 45/MWh. 

There are, however, a few hours when North-zone prices spike up for 15 minutes to one 

hour, before returning to the typical range of $15/MWh to $45/MWh. West-zone prices 

follow North prices during some of these spikes, but remain low in others, suggesting that 

transmission constraints prevent an export response from the West to the price spikes in 

the North. Still further, prices in the West diverge from those in the North and even dip 

into negative territory during a limited number of hours. Negative wholesale electricity 

prices in west Texas occur because federal production-based tax credits motivate wind- 

energy producers to make negative price bids in order to have their output dispatched into 

the grid (Lively, 2009).   

The lower panel of Figure 6 compares ERCOT's wind generation and the West 

zone's load. Sustained dips in West-zone prices appear to occur more frequently when 

wind output is high, such as during the April 25-27 three-day span. High wind output 

alone, however, is not the only cause for the zonal price divergence (e.g., April 1-2), 

suggesting that there exist other influencing factors. 
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Figure 6.  15-minute zonal prices, West-zone load and wind generation in April 2009 

(Source: hhttp://www.ercot.com/mktinfo/services/bal/index) 

 

 

Figure 7 plots the paired-price differences between the North and West zones for 

the entire 3.5 years of 15-minute data for our more than 115,000 observations, with the 

West-zone prices being subtracted from those in the North. This figure shows a noisy 

data pattern, with over 80% of the paired observations having a zero price difference. 

While to the naked eye wind output and the contemporary paired-price difference would 

seem to be positively related, this relationship would also appear to be quite weak, 

corroborating the intuitively plausible notion that wind generation is not the sole cause of 

zonal price divergences. 
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Figure 7.  Plot of 15-minute interval ERCOT wind output from January 2007 to May 

2010 compared to the paired-price differences between the North and West zones 

 

 

To explore how system conditions might influence any zonal-market price 

differences, Figures 8.A through 8.C contain descriptive statistics for four of our metric 

independent variables, notably: 15-minute wind generation; 15-minute nuclear 

generation; 15-minute zonal loads; and daily Henry Hub natural gas prices. As discussed 

below, these variables are considered exogenous and, subject to statistical verification, a 

priori useful for explaining any deviations from the law of one price (i.e., any non-zero 

paired-price differences). These figures suggest that wind generation tends to be higher 

when there are strictly positive paired-price differences between the North and West 

zones. The West-zone load appears to be slightly higher when there are strictly negative 

paired-price differences between the two zones. To untangle the less-than-clear influence 

of the remaining variables on the paired-price differences, however, it is necessary to use 
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the regression analysis detailed in Section 4. 
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Figure 8.A: Box plot of generation, zonal load, and gas price, conditional on a positive 

paired-price difference, when the West-zone price is less than that in the North 
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Figure 8.B: Box plot of generation, zonal load, and gas price, conditional on a zero price 

difference, when the West-zone price equals that in the North 
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Figure 8.C: Box plot of generation, zonal load, and gas price conditional on a negative 

price difference, when the West-zone price exceeds that in the North 



 15 

 

Finally, Figure 9 reveals that the distribution of the zonal paired-price differences 

is rather skewed to the left with the mean price difference falling well above the median 

difference.  The distribution of the natural logarithms of the differences is more 

symmetric, a property that serves us well in our log-linear regression model of the size of 

the price difference.  
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Figure 9: Distribution of positive zonal paired-price differences (y) vs. distribution of the 

natural-logarithms of the paired-price differences (ln y)   

 

4. Regression analysis of the zonal paired-price differences 

Consider the electricity spot-market paired-price difference yt in time interval t 

between a non-West ERCOT zone (e.g., Houston, North, or South) and the West zone.  

For over 80% of the 15-minute observations for each zonal market pair, yt  = 0, rendering 

ordinary least squares (OLS) unsuitable for estimating the effect of such variables as 

wind generation on the pair's price difference (Maddala, 1983). In addition, up to 4% of 

the observations have yt < 0, and 14% have yt > 0. The presence of many observations 
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with yt < 0 precludes using a censored regression (e.g., Tobit) to estimate the wind-

generation effect on yt, even though the technique is well-suited to a data file with many 

zeroes and some strictly positive values for the dependent variable, as in an outage-cost 

analysis (e.g., Woo and Train, 1988; Hartman et al., 1991). Thus, we adapt the 

generalized econometric models with selectivity in Lee (1983) to formulate a two-stage 

approach that accounts for the peculiar features of the ERCOT zonal paired-price 

difference data. Notwithstanding the highly noisy data described in Section 3, this 

approach proves to be fruitful in delineating the effect of wind generation on the zonal-

market paired-price differences. 

In the first stage of this approach, we estimate an ordered-logit regression model 

in which the natural logarithms of the odds of a positive paired-price difference, a non-

negative difference, and a negative difference comprise the dependent variable. In the 

second stage, the natural logarithm of the size of the price difference is the dependent 

variable in a log-linear regression.  In either stage, the independent explanatory variables 

comprise a single set of binary monthly, weekly, and hourly dummy variables, as well as 

a single set of metric variables that we might plausibly expect to influence both the 

probability of a positive or negative paired-price difference, and the magnitudes of those 

differences.  

 

4.1 The independent variables 

 The following variables and corresponding notation enter both regression formats. 

 Binary variables 
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The month-of-the-year, day-of-the-week, and hour-of-the-day binary indicators aim to 

capture that both the probabilities of a positive or negative paired-price difference and the 

magnitudes of those differences may be time-dependent for any time period, t, after 

controlling for the influence of the exogenous metric variables listed below.  After 

suppressing the subscript that would distinguish between zonal pairs, these binary 

variables are: (a) Mit = 1 for i = 1 (January), …, 11 (November), and is zero otherwise; (b) 

Wjt = 1 for  j = 1 (Sunday),…, 6 (Friday), and is zero otherwise; and (c) Hkt = 1 for k = 1 

(an hour ending at 1:00), ..., 23 (an hour ending at 23:00), and is zero otherwise. 

 Metric variables 

 The following numeric metric variables also enter all regressions: (a) x1t = 15-

minute wind generation of the ERCOT system, which is largely at the mercy of random 

wind conditions; (b) x2t = Daily Henry Hub natural-gas price; (c) x3t = 15-minute MWh 

nuclear generation in the ERCOT system;
6
  (d) x4t = 15-minute MWh load in ERCOT’s 

Houston zone; (e) x5t = 15-minute MWh load in ERCOT’s North zone; (f) x6t = 15-

minute MWh load in ERCOT’s South zone; and (g) x7t = 15-minute MWh load in 

ERCOT’s West zone.   

 

4.2 Stage 1: Ordered-logit model 

 As each paired-price difference can only belong to one of the three mutually-

exclusive ordered categories (i.e., strictly positive, zero, or strictly negative), our first-

stage estimation uses an ordered-logit regression model (Greene, 2003, pp. 736-739). 

Specifically, and still suppressing a paired-zone subscript, as well as subscripts to 

delineate month, day, and hour, let p1t denote the probability of a positive paired-price 
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difference in time period t, let p2t denote the probability of a zero price difference in that 

time period, and let p3t = 1 - p1t - p2t denote the probability of a negative difference. Then, 

the odds of a positive paired-price difference in t are given by: 

    O1t = p1t/(1 - p1t). 

Similarly, the odds of a non-negative paired-price difference are given by: 

    O2t = (p1t + p2t)/(p3t). 

The odds of a negative paired-price difference are defined accordingly. The logits 

that define the dependent variable in the regression are given by the natural logarithms of 

the odds, or L1t = ln(O1t) and L2t = ln(O2t). Since the probabilities sum to unity, it is not 

necessary to define a third logit, which can be inferred from the first two.  

The logit regression’s parametric specification that incorporates the above-listed 

variables may be written as 

Lpt = p + iMit + jjWjt + kkHkt + rrxrt           (1) 

for p = 1, 2; i = 1, ..., 11; j = 1, ..., 6; k = 1, ..., 23; r = 1,…, 7. Thus, a single set of slope 

parameters is estimated, and two intercepts are simultaneously estimated such that 2 ≥ 

1, since the odds of a non-negative outcome must be at least as great as the odds of a 

positive outcome. Our hypotheses as to the impact of the exogenous variables on the odds 

and consequent probabilities directly translate into testable hypotheses as to the signs of 

the regression coefficients. 

 

4.2.1 Hypotheses 

We have no a priori basis for speculating as to directions and magnitudes of, or 

indeed as to whether there are any, time factors that impact the probabilities of positive, 



 19 

zero, and negative paired-price differences. Rather, we include the time-related dummy 

variables to allow for any impact that month, day, or hour might have on those 

probabilities. The metric variables, however, are another matter. 

Based on the underlying hypothesis that wind generation congests the ERCOT 

grid, we expect x1t to have a positive marginal effect on the probability of a positive 

paired-price difference, implying a coefficient of 1 > 0. 

 The exogenous Henry Hub natural-gas price, x2t, is highly correlated (R = 0.99) 

with the Texas natural-gas price at Houston Ship Channel. Since most of the thermal 

generation is outside the West zone, we would expect a rising Henry Hub price to  

magnify the marginal generation cost and hence the probability of a positive paired-price 

difference, thus implying a coefficient of 2 > 0. 

Nuclear generation in the ERCOT system, x3t, is exogenous, reflecting the fact 

that variations in nuclear generation are unrelated to wind generation.  Since nuclear 

generation is outside the West zone, rising nuclear generation limits the West zone's wind 

exports, suppresses prices in the West zone, and therefore raises the probability of a 

positive paired-price difference, which implies a coefficient of 3 > 0. 

We contend that the MWh load in ERCOT’s Houston zone, x4t, is exogenous, and 

that it is largely determined by the weather and time of use (e.g., the hour, the day, and 

any holiday and seasonal factors).
7
 Our contention is corroborated by ERCOT’s zonal-

market price determination that assumes a price elasticity of zero (ERCOT, 2004). 

Because the non-West zones in ERCOT are inter-connected, we do not know a priori the 

direction in which a rising load in Houston might move the probability of a positive price, 

and hence we do not speculate as to the sign of 4.   



 20 

We expect x5t and x6t, the 15-minute MWh loads in ERCOT’s North and South zone, 

respectively, to have marginal effects on the probability of a positive price, but hesitate to 

speculate on their directions and hence the signs of 5 and 6. 

This is not, however, the case with the MWh load in ERCOT’s West zone in which a 

rising load reduces wind-generation exports.  Hence, we hypothesize x7t to have a 

negative marginal effect on the probability of a positive price, which implies a coefficient 

of 7 < 0.
8
 

 

4.3 Stage 2: Log-linear regressions for the size of the paired-price difference 

The second stage begins with an OLS log-linear model for the size of the paired-

price differences, either strictly positive or negative, to be explained by the now familiar 

sets of dummy and metric variables included in the ordered-logit model as independent 

variables. The parameter estimates attached to the seven metric variables are then directly 

interpretable as paired-price-difference elasticities. In the following discussion we focus 

on the positive paired-price-difference regression because it analogously applies to its 

negative paired-price counterpart.  

Following Lee (1983, p.511), the log-linear form of the regression may be written 

as follows: 

ln( yt | yt > 0) = 0 + ii Mit + jjWjt + kkHkt + rrxrt +  ct + t.  (2) 

In equation (2), ct is a term to correct any OLS bias due to sample selection,
9
 and 

t is a time-independent, normally-distributed, heteroskedastic random error with zero 

mean and finite variance (Lee, 1983, p.509).  We use OLS to consistently estimate the 

intercept 0 and coefficients attached to the dummy and metric variables.  
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4.3.1 Hypotheses 

The coefficient r for r = 1, ..., 7, is the elasticity of yt > 0 with respect to variable 

xrt. In accordance with the discussion of the stage-1 estimation and our hypotheses, we 

now hypothesize that rising wind generation magnifies the size of the positive paired-

price difference, which implies 1 > 0.  The same is true of the Henry Hub price, which 

translates into 2 > 0 and nuclear generation, which translates into 3 > 0.  How rising 

non-West zonal loads may affect the size and signs of their related coefficients of 4, 5 

and 6, is a question to be answered empirically.  Nonetheless, we do expect a rising West 

load to reduce a positive paired-price difference due to declining wind exports to other 

zones, which translates into 7 < 0.   

The coefficient  helps determine if a sample selection of observations with yt > 0 

matters when using OLS to estimate equation (2).  If  = 0, then ignoring sample 

selection by excluding ct as an explanatory variable does not bias the OLS coefficient 

estimates. If, however,  < 0, an unobserved factor that increases the likelihood of a 

positive paired-price difference enlarges the size of that difference.
10

 

 

4.4 Results 

4.4.1 The probability of a strictly positive paired-price difference 

Table 1 reports the ordered-logit regression results for the three zonal market pairs 

of interest: North-West, South-West, and Houston-West. Considering the large size of 

our sample, our regressions have a relatively good fit, with a pseudo-R
2
 of 0.15 to 0.26 
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(McFadden, 1974), indicating a log-likelihood increase of 15% to 26% attributable to the 

explanatory variables other than the intercepts.
11 

While too numerous to be included in Table 1, the coefficient estimates for the 

binary indicators confirm that the odds of a positive paired-price difference are time-

dependent (p < 0.01), in regard to month, day, and hour, even though not all coefficients 

are statistically significant.  The estimates of  and  which for the North-West 

pairing are b1 = 0.0030, b2 = 0.0295, and b3 = 0.0006, suggest that in the first case rising 

wind generation increases the estimated odds of a paired-price difference, as do increases 

in nuclear generation and the natural-gas price in the second two cases, all of which 

accord with our hypotheses. The analogously-interpreted estimates of b4 = 0.0005, b5 = 

0.0009, and b6 = -0.00019 indicate that higher zonal loads in the Houston and North 

zones increase the estimated odds of a positive paired-price difference between the North 

and West zones, whereas higher zonal loads in the South zone reduce those odds.  

Finally, the coefficient estimate of b7 = -0.0007, along with its associated p-values, 

suggests that rising West load has a statistically-significant negative impact on the 

estimated odds of a positive paired-price difference between the North and the West. For 

the other two price pairings, however, b7 = 0.00001 and is statistically insignificant. 

Thus, our hypothesis on the effect of West load is supported for the North-West pairing, 

but the data are inconclusive regarding the other two pairings. 

Finally, although the proportional-odds assumption of ordered logit, which forces 

fixed slope coefficients across the ordered strata is rejected (p = 0.001), from a practical 

standpoint this is not necessarily a problem (Kim, 2003).  In point of fact, when we 

estimated a generalized logit model that allows for different slope-parameter estimates 
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across the different strata (Williams, 2006), the resulting estimates, even when they differ 

in value, nevertheless lead to the same inferences with regard to the impacts of the 

variables on the probability of a positive or a negative paired-price difference.  

 

Table 1: Ordered-logit regressions estimates for a strictly positive price difference (yt > 0) 

and a positive price difference (yt ≥ 0); p-values in (  ); odds ratios in [  ].  This table does 

not report the numerous estimates for the binary indicators, which are available from the 

corresponding author. 

Variable Zonal market pair 

North-West South-West Houston-West 

Number of observations with 

yt > 0 

12,394 15,636 16,087 

Number of observations with 

y = 0 

99,127 99,106 99,109 

Number of observations with 

yt < 0 

4,823 1,602 1,148 

Pseudo R
2
 (= percent increase 

in the log likelihood due to the 

covariates) 

0.154 0.259 0.257 

1: Intercept for yt > 0 -4.761 

(<0.001) 

-10.138 

(<0.001) 

-10.258 

(<0.001) 

2: Intercept for yt ≥ 0 1.539 

(<0.001) 

-2.244 

(<0.001) 

-2.105 

(<0.001) 

1: Coefficient for x1t = 15-

minute wind generation of the 

ERCOT system.   

0.0030 

(<0.001) 

[1.003] 

0.0041 

(<0.001) 

[1.004] 

0.0039 

(<0.001) 

[1.004] 

2: Coefficient for x2t = the 

daily Henry Hub natural-gas 

price.   

0.0295 

(<0.001) 

[1.030] 

0.2961 

(<0.001) 

[1.345] 

0.2710 

(<0.001) 

[1.311] 

3: Coefficient for x3t = 15-

minute nuclear generation of 

the ERCOT system.  

0.0006 

(<0.001) 

[1.001] 

0.0010 

(<0.001) 

[1.001] 

0.0010 

(<0.001) 

[1.001] 

4: Coefficient for x4t = 15-

minute MWh loads in 

ERCOT’s Houston zone.   

0.0005 

(<0.001) 

[1.001] 

0.0010 

(<0.001) 

[1.001] 

0.0017 

(<0.001) 

[1.002] 

5: Coefficient for x5t = 15-

minute MWh load in 

ERCOT’s North zone.   

0.0009 

(<0.001) 

[1.001] 

-0.0011 

(<0.001) 

[0.999] 

-0.0009 

(<0.001) 

[0.999] 

6: Coefficient for x6t = 15-

minute MWh load in 

ERCOT’s South zone.   

-0.0019 

(<0.001) 

[0.998] 

0.0015 

(<0.001) 

[1.001] 

0.0007 

(<0.001) 

[1.001] 
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7: Coefficient for x7t = 15-

minute MWh load in 

ERCOT’s West zone.   

-0.0007 

(0.004) 

[0.999] 

0.00001 

(0.960) 

[1.000] 

0.00001 

(0.968) 

[1.000] 

 

4.4.2 Size of the strictly positive price differences 

Part A of Table 2 reports the results for the OLS log-linear regressions for strictly 

positive paired-price differences for each of three zonal-market pairs. The F-statistics are 

all statistically significant (p ≤ 0.001), and the regressions have eminently satisfactory 

adjusted R
2
 values that range between 0.15 and 0.35 for a large sample of 12,000 to 

16,000 15-minute observations.  

Since the error term is heteroskedastic, the p-values for the coefficient estimates 

in Table 2 are based on the regression's heteroskedasticity-consistent covariance matrix 

(White, 1980).  The coefficient estimates for the binary indicators, which in the interests 

of parsimony are omitted from the table, confirm the generally, although not uniformly, 

statistically-significant (p ≤ 0.001) time-dependence of the paired-price differences for all 

zonal pairings. This time-dependence, however, does not have a clear and systematic 

pattern across the three market pairs.  

The coefficient estimates in Table 2 indicate that rising wind generation tends to 

increase the positive paired-price differences, with estimated coefficients ranging from 

0.210 to 0.907.  In particular, the 0.907 elasticity estimate for the North-West market pair 

suggests that a 1% increase in wind generation can lead to an almost 1% increase in the 

pair’s positive price difference when the North-West transmission congests.  

The estimated coefficients for nuclear generation and the natural-gas price are 

positive and statistically-significant estimates (p < 0.001).  They support our hypotheses 
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that rising nuclear generation and a rising natural-gas price tend to magnify a market-

pair’s positive price difference, albeit with relatively inelastic effects. 

A market pair’s positive difference depends on non-West loads.  Moreover, a 

rising West load tends to reduce the difference for the South-West and Houston-West 

pair, but it is statistically insignificant for the North-West pair.   

Finally, the estimate for  is negative and statistically significant (p < 0.001) for 

all market pairings, indicating that if an unobserved factor increases the likelihood of a 

strictly positive paired-price difference, it also enlarges the size of that difference. 

 

Table 2: OLS log-linear regressions for the size of a paired-price difference (yt ≠ 0); p-

values in (  ).  This table does not report the numerous estimates for the binary indicators, 

which are available from the corresponding author. 
Variable Part A 

Strictly positive price difference (yt > 0) 
Part B 

Strictly negative price difference (yt < 0) 

North-West South-West Houston-

West 

North-West South-West Houston-

West 

Number of 

observations  

12,391 15,636 16,087 4,823 1,599 1,145 

Mean of ln size of yt 3.278 3.473 3.477 0.416 3.083 3.252 

Root-mean-squared-

error 

1.381 1.138 1.142 1.661 1.647 1.762 

F-statistic 138.91 

(<0.001) 

70.10 

(<0.001) 

60.47 

(<0.001) 

56.80  

(<0.001) 

9.37 

(<0.001) 

7.32 

(<0.001) 

Adjusted R
2
  0.348 0.175 0.151 0.357 0.201 0.2096 

0: Intercept  -14.182 

(<0.001) 

-13.061 

(<0.001) 

-11.3 

(<0.001) 

-13.235 

(<0.001) 

2.162 

(0.699) 

-16.229 

(0.041) 

1: Coefficient for ln 

x1t = natural log of 

15-minute wind 

generation of the 

ERCOT system.   

0.907 

(<0.001) 

0.230 

(<0.001) 

0.210 

(<0.001) 

-0.287 

(<0.001) 

0.003 

(0.960) 

0.045 

(0.415) 

2: Coefficient for ln 

x2t = natural log of 

the daily Henry Hub 

natural-gas price.   

0.976 

(<0.001) 

0.651 

(<0.001) 

0.676 

(<0.001) 

-0.448 

(<0.001) 

-0.260 

(0.596) 

-1.424 

(0.017) 

3: Coefficient for ln 

x3t = natural log of 

15-minute nuclear 

generation of the 

ERCOT system.   

0.661 

(<0.001) 

0.316 

(<0.001) 

0.197 

(<0.001) 

-0.559 

(0.025) 

-0.126 

(0.658) 

0.368 

(0.438) 

4: Coefficient for ln 

x4t = natural log of 

-0.727 

(0.012) 

1.005 

(<0.001) 

0.943 

(<0.001) 

1.158 

(0.006) 

1.392 

(0.118) 

8.644 

(<0.001) 



 26 

15-minute MWh 

loads in ERCOT’s 

Houston zone.   

5: Coefficient for ln 

x5t = natural log of 

15-minute MWh 

load in ERCOT’s 

North zone.  

0.578 

(0.012) 

2.175 

(<0.001) 

2.261 

(<0.001) 

1.642 

(<0.001) 

-4.605 

(<0.001) 

-5.910 

(<0.001) 

6: Coefficient for ln 

x6t = natural log of 

15-minute MWh 

load in ERCOT’s 

South zone.  

0.884 

(0.008) 

-1.187 

(<0.001) 

-0.908 

(<0.001) 

-2.941 

(<0.001) 

1.227 

(0.188) 

-3.729 

(0.002) 

7: Coefficient for ln 

x7t = natural log of 

15-minute MWh 

load in ERCOT’s 

West zone.  

0.061 

(0.791) 

-0.605 

(<0.001) 

-1.095 

(<0.001) 

4.018 

(<0.001) 

3.388 

(0.013) 

5.330 

(0.007) 

 Coefficient for ct 

= term to correct 

OLS bias due to 

sample selection

-0.411 

(<0.001) 

-0.220 

(<0.001) 

-0.223 

(<0.001) 

-1.354 

(<0.001) 

-0.587 

(0.074) 

-1.609 

(<0.001) 

 

 

4.4.2 Size of the strictly negative paired-price differences 

Part B of Table 2 reports the OLS results for the natural-log of the size of a 

strictly negative paired-price difference for each of three zonal market pairs, and the 

statistically-significant (p < 0.001) results have adjusted R
2
 values in a similar range of 

0.20 to 0.37.   

Based on the regression's heteroskedasticity-consistent covariance matrix, the p-

values in Table 3 for the binary indicators' coefficient estimates, once again omitted from 

the table, indicate that the negative paired-price difference's time-dependence is generally 

statistically significant (p < 0.01).  This time-dependence, however, does not have a clear 

pattern of the month-of-year, day-of-week and hour-of-day effects. 

Consistent with our earlier hypothesis, if an increase in a metric variable like wind 

generation tends to magnify the size of a positive price difference, it likely shrinks the 
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size of a negative price difference.  Based on this line of reasoning, we expect the 

coefficient estimates for (x1t, ..., x7t) in Table 3 to have opposite signs as those in Table 2.  

The coefficient estimates in Table 3 indicate that rising wind generation reduces 

the size of a strictly negative paired-price difference for the North-West pair. Its effect for 

the other pairs is positive, but statistically insignificant.  The table also shows the 

statistically-significant result (p < 0.01) that a rising natural-gas price tends to reduce the 

sizes of strictly negative paired-price differences for the North-West pair; but its negative 

effect on the other price pairs is statistically insignificant.  Rising nuclear generation 

tends to reduce size of a negative price difference for the North-West but not the other 

two market pairs, even though these nuclear generation’s effects are not statistically 

significant.  Moreover, the size of the negative price difference depends on non-West 

loads. A rising load in the West zone, however, tends to reduce the size of a negative 

price difference, because it reduces wind-generation exports from the West.  Again, these 

results lend general support for our hypotheses.  Finally, the negative coefficient estimate 

for  indicates that if an unobserved factor increases the likelihood of a negative paired-

price difference, it also tends to enlarge the size of that difference.  This effect, however, 

is statistically significant only for the North-West and the Houston-West pairs, but not the 

South-West pair.   

 

4.4.3 Remarks 

We would be remiss if we failed to remark that the variance inflation factors 

(VIF) for the binary indicators in the log-linear regressions are mostly around 2, 

reflecting their orthogonal nature.  The VIFs for wind generation, the Henry Hub natural-

gas price, nuclear generation, and the OLS bias-correction term are between 2 to 5, which 
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are also satisfactory.  Those for the zonal loads, however, are between 8 and 27, due 

largely to the correlated weather-dependence of zonal loads in Texas.  While these VIF 

levels suggest variance-inflating multicollinearity, the coefficient estimates for the load 

variables in Tables 2 and 3 are mostly significant (p < 0.01) and pass the test of 

plausibility, which diminishes the likelihood that we have failed to detect an important 

and statistically-significant relationship, or incorrectly ascribed statistical significance to 

a relationship when one is unmerited.  Hence, we decided not to modify the log-linear 

regression's specification by deleting one or more of the zonal-load variables. 

Based on Figure 9, we recognized that the empirical distribution of the natural 

logarithms of the sizes of the paired-price differences is skewed and can have outliers. 

Hence, we re-estimated the log-linear equations using a robust-regression approach 

(Huber, 1973). The resulting coefficient estimates for the metric variables do not 

qualitatively alter our findings regarding the dependence of the paired-price differences 

on wind generation, nuclear generation, the Henry Hub natural-gas price, and zonal loads. 

Hence, our results are quite robust across alternative estimation approaches.   

 

5.   Conclusions 

There is a vast and growing literature on the physical impacts of increasing wind 

generation upon the reliability and operation of power grids. Environmental concerns 

have further stimulated interest in wind generation as an environmentally-friendly 

alternative energy source. Despite these related and mutually-supportive interests, far too 

little attention has been paid to the potential price effects of this important but 

intermittent resource in a competitive electricity market. The research that we have 
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conducted on a huge and unique database accumulated in the largest energy-consuming 

state in the United States - Texas - and the results of that research described herein, 

represent our contribution to this literature and our effort to focus attention on a critical 

aspect of the renewable-energy debate. 

To be sure, our most salient finding - namely, that high wind generation and low 

load in the wind-rich West ERCOT zone tend to lead to congestion and zonal price 

differences during any given time period - is based strictly on what has transpired within 

a single geographic region.  Nonetheless, our results provide traction for our belief that 

they can be readily generalized, inasmuch as the results are not simply plausible, but also 

support our hypotheses and prior expectations, where such have been framed and set out.   

In addition to wind generation, as one would expect, other factors contribute to 

divergences in zonal prices at any given time, even if the directions of their impacts may 

not be “clear” a priori.  These factors include movements in nuclear generation and 

natural-gas prices, as well as fluctuating non-West loads, and the “timing effects” of 

month, day, and hour.  When positive paired-price differences occur up to 14% of the 

time and can be as great as $3,500/MWh, they clearly signal the need for further 

investment in network infrastructure. Happily, this is what ERCOT is doing now with its 

ambitious transmission expansion plans. 

The Texas experience has broader implications that extend throughout the United 

States and well beyond its borders. Given the emergence of China and India as the 

leading sources of growth in energy consumption with unabated appetites in the near 

future, as well as the specter of climate change and unwelcome carbon emissions looming 

large and ominously, it is incumbent upon policy makers the world over to direct 
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attention to alternative and climate-neutral sources of energy, such as wind generation, in 

particular. In doing so, it is also incumbent upon them to be aware of the wide array of 

consequences, both good and bad, that taking advantage of those alluring alternative 

generation options can have for competitive electricity markets. This paper is intended to 

point the way, and indeed to lead the way in that regard.   
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Footnotes 

1
 On-going research in connection to wind generation includes: (a) renewable-energy 

benefits (Mosey and Vimmerstedt, 2009); (b) renewable-energy policy (Resch et al., 

2005; Carlioz and Naseem, 2007; Haas et al., 2008; Schmalensee, 2009; Pollitt, 2010); 

(c) wind-energy integration (Buckley et al., 2005; CEC, 2007; Millborrow, 2009; Parsons 

et al, 2009; PNNL, 2010); (d) market design (Mitchell et al., 2006; IPA, 2008; Kirby and 

Milligan, 2008; Sioshansi and Hurlbut, 2010; Newberry, 2010; Vandezande et al., 2010); 

(e) transmission planning and cost recovery (Hiroux, 2005; Orans et al., 2007; Barroso et 

al., 2007; Scott, 2007; Decker, 2008; Fulli et al., 2009; Mills et al., 2009; Olson et al., 

2009; Fraias et al., 2010;  Mills et al., 2010; OPA, 2010); (f) marginal cost of renewable 

energy (Mahone et al., 2009); and (g) renewable-energy contract design (Johnston et al., 

2008).   

2
 Well-known factors contributing to price volatility include: (a) daily fuel-cost 

variations, especially for the natural gas that is now widely used in combined-cycle gas 

turbines; (b) weather-dependent demands with intra-day and inter-day fluctuations that 

must be met in real time by generation and transmission already in place; (c) changes in 

available capacity caused by planned and forced outages of electrical facilities; and (d) 

lumpy capacity additions that can only occur with a long lead time (Li and Flynn, 2006; 

Tishler et al., 2008). Exacerbating the spot-price volatility are poor market designs and 

market-power abuse by generators (Borenstein, 2002; Borenstein et al., 2002; Woo et al., 

2003; Trebilcock and Hrab, 2005). 

3
 Some examples of this research are Johnsen (2001), Bessembinder and Lemmon (2002), 

Goto and Karolyi (2004), Longstaff and Wang (2004), Knittel and Roberts (2005), 
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Haldrup and Nielsen (2006), Mount et al. (2006), Park et al. (2006), Guthrie and 

Videbeck (2007), Woo et al. (2007), Benth and Koekebakker (2008), Karakatsani and 

Bunn (2008), Marckhoff and Wimschulte (2009) and Redl et al. (2009).  Useful 

applications of the research results include: risk management (Woo et al., 2004a, 2004b, 

2006b; Kleindorfer and Li, 2005; Deng and Oren, 2006; Huisman et al., 2009); pricing of 

electricity options, futures, forwards, and generation assets (Deng et al., 2001; Woo et al., 

2001; Kamat and Oren, 2002; Lucia and Schwartz, 2002; Eydeland and Wolyniec, 2003; 

Fleten and Lemming, 2003; Keppo and Lu, 2003); forward contracting of locational price 

spreads (Woo et al., 1998; Marckhoff and Wimschulte, 2009; ERCOT, 2010b); detection 

of market-power abuse and price manipulation (Borenstein et al., 2002; Joskow and 

Khan, 2002; Helman, 2006); investigation of generation-investment behavior (Neuhoff 

and De Vries, 2004); assessment of wholesale-market integration (De Vany and Walls, 

1996; Woo et al., 1997; Park et al., 2006); and assessment of how retail competition may 

affect forward-contract pricing (Green, 2003). 

4
 Price and load data are available on ERCOT’s public website.  We obtained 15-minute 

generation data by generator type directly from ERCOT. 

5
 In some years, a Northeast zone was carved out of the North zone.  Beginning 

December 1, 2010, ERCOT will have a nodal wholesale-market structure. 

6
 We do not use the 15-minute data on hydro, coal, and natural-gas generation to explain 

the probability of a positive paired-price difference, because as a result of ERCOT’s 

least-cost dispatch they are endogenous (ERCOT, 2004).   



 43 

 
7
 The average own-price elasticity for the aggregated block of all energy consumers in 

ERCOT with interval data recorders is very small, about -0.000008 (Zarnikau and 

Hallett, 2008). 

8
 In addition to these seven variables, we included the 15-minute dynamic ratings of 

inter-zonal transmission in our initial set of explanatory variables. Our preliminary 

regression results indicated, however, that a rising load in the West zone has a 

statistically significant (p ≤ 0.01) and positive impact on the probability of a strictly 

positive paired-price difference, a counter-intuitive result. Moreover, these ratings are 

endogenous (HEC, 2009, p.iii).  Hence, we exclude the dynamic ratings from our final set 

of explanatory variables. 

9
 Based on Lee (1983, p.508) and ignoring the subscript t for notational simplicity, c = 

(z) / p1, where (z) is a density function for a standard normal variate z = 
-1

(p1) = 

transformed value of p1, and (z) is a  normal density function (e.g., z = -1.65 for p1 = 

0.05). 

10
 Equation (3.7) of Lee (1983, p.511) shows  = -, where  is the standard deviation 

of the error for the size regression, and  is the correlation between the errors of the 

probability and size regressions.  As  > 0,  < 0 implies  > 0. 

11
 This pseudo-R

2 
measure is the most conservative of such measures of the goodness of 

fit for logit regressions (Hu et al., 2006). 


