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Abstract 

The literature on renewable energy suggests that an increase in intermittent wind 

generation would reduce the spot electricity market price by displacing high fuel-cost 

marginal generation.  Taking advantage of a large file of Texas-based 15-min data, we 

show that while rising wind generation does indeed tend to reduce the level of spot prices, 

it is also likely to enlarge the spot-price variance. The key policy implication is that 

increasing use of price risk management should accompany expanded deployment of 

wind generation. 
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1. Introduction 

The existing literature on renewable energy suggests that an increase in 

intermittent wind generation offers two financial benefits. In the context of a competitive 

generation market, the benefit is a reduction in spot electricity prices due to the increase 

in wind generation displacing marginal generation with a high fuel cost (EWEA, 2009, 

2010; Woo et al., 2011a; Sensfuß et al., 2008).  From the perspective of electricity 

consumers, this benefit can be large, since the price reduction would apply to all of the 

spot-market purchases made directly by themselves or on their behalf by a local 

distribution company.
1
  In the context of an integrated utility, the benefit is that the 

increase in wind generation cuts the utility’s natural-gas purchase cost and provides a 

hedge against the fuel-price risk (Bolinger et al., 2005; Berry, 2005).  Such benefits, 

however, may come at the cost of an increase in the spot-price variance (Milstein and 

Tishler, 2011; Chao, 2011; Jacobsen and Zvingilaite, 2010; Green and Vasilakos, 2010).   

There is extensive research on spot electricity price behavior and dynamics (e.g.  

Woo et al., 2011b and the references therein).  There is, however, only limited evidence 

based on actual market-price data enabling one to study the impact of rising wind 

generation on spot electricity prices. Such a study is particularly salient at this time 

because wind generation is the primary and abundant source of renewable energy now 

being promoted by government policies in many parts of the world, including North 

America, Europe and China (Woo et al., 2011a; Lu et al., 2009; Hoogwijka et al., 2004).  

If rising wind generation has a large impact on the variance of spot-market prices, then 

expansion of wind-generation capacity should also be accompanied by an increasing use 
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of electricity price risk-management instruments and techniques (e.g., Deng and Oren, 

2006; Eydeland and Wolyniec, 2003). 

The purpose of this paper is to conduct that salient study by estimating the 

parameters of a partial-adjustment linear regression model of spot electricity (i.e., 

balancing energy) prices in Texas.  The estimated model enables a direct prediction of the 

effect of an increase in wind generation on spot electricity price level and variance, which 

provides important information useful for making electricity procurement and risk- 

management decisions (e.g., Woo et al., 2004a, 2004b, 2006).   

The Texas experience is important because of the state’s large and rising wind 

generation, and because Texas is the largest electricity-consuming state in the nation. 

And to the best of our knowledge, there is only one econometric analysis of high-

frequency market-price data, such as we employ, directed at the impact of wind 

generation on spot electricity prices.
2
  Nicholson et al. (2010, p.19) find that a 100-MWH 

increase in wind generation in Texas may reduce the four-zone Electricity Reliability 

Council of Texas (ERCOT) 15-min balancing-energy market price by $0.71/MWH in the 

Houston zone, $0.07/MWH in the North zone, $0.57/MWH in the South zone, and 

$1.18/MWH in the West zone where nearly all wind generation resides. What is not 

known is what the same 100-MWH may do to the ERCOT’s zonal price variance.  

We take advantage of a unique and rich ERCOT data base fully described in Woo 

et al. (2011b). The data comprise 15-min electricity prices in each of the four ERCOT 

zones, observed over the 41-month period of January 2007 through May 2010. Seldom 

available elsewhere, this database has four distinct features that aid our detection of the 
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price effects of wind generation (Sioshansi and Hurlbut, 2010; Woo et al., 2011b; 

Zarnikau, 2011): 

 The installed capacity of wind generation grew during the 11-year period of 1999 to 

2009 from less than 500 MW to over 7,500 MW, and now accounts for about 10% of 

ERCOT’s total generation capacity of approximately 80,000 MW.  When combined 

with the intermittence of wind generation, this feature leads to widely dispersed levels 

of wind-energy output, a requisite for statistically precise detection of its effect on 

market prices.   

 Wind generators have a tax-credit incentive to make very low, even negative supply 

bids, so as to be treated as must-run and dispatched by the ERCOT independent 

system operator. This feature helps unmask the price effects of wind generation, not 

confounded by the generators’ bidding behaviors. 

 ERCOT’s marginal generation in the non-West zones is likely to be natural-gas fired 

and dispatchable, offering ample opportunity for spot-price reductions through its 

displacement by wind generation. If the marginal generation were must-run and non-

dispatchable (e.g., nuclear or run-of-river hydro), wind generation might not have a 

detectable price effect because the marginal supply bid and the resulting market-

clearing price would have been close to zero.  

 ERCOT’s 15-min zonal loads are price-insensitive and therefore can be used as 

exogenous variables to delineate market price movements due to fluctuating demands 

(ERCOT, 2004). This feature leads us to suggest that a detected price effect of wind 

generation could not have been biased by the possible price response of zonal loads.   
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As will be shown, the ERCOT data base enables us to confirm that while rising 

wind generation tends to reduce the level of spot prices, it also tends to enlarge the spot-

price variance. The key policy implication is that increasing effort in price risk 

management should accompany expanded deployment of wind generation. 

 

2. Model 

The focus of our attention is the 15-min balancing-energy market price within 

each of the four ERCOT zonal markets. Suppressing a subscript to delineate the 

individual zones, let Yt denote that zonal market price in a particular zone during time 

interval t. The price Yt, which is the dependent variable in a linear regression model with 

partial adjustment, is driven by a set of seven numeric metric variables, denoted xrt (r = 

1,…, 7), the lagged price, Yt-1, which gives the model its partial-adjustment character, and 

a set of three time-dependent binary indicators that account for month of the year (Mit), 

day of the week (Wjt), and hour of the day (Hkt), with i = 1, ..., 11; j = 1, ..., 6; k = 1, ..., 

23.  Letting t denote a normally-distributed disturbance term, the model is written as:   

Yt =  + rrxrt +  Yt-1 + iiMit + jjWjt + kkHkt + t.     (1) 

In equation (1), t is assumed to follow a stationary AR(1) process: t =  t-1 + t, with 

|| < 1 and t = white noise (Kmenta, 1984, pp.528-536).  The coefficients to be 

estimated are , {r}, , {i}, {j}, {k} and .  

Four sets of coefficients are estimated, one for each ERCOT zone, based on 

samples of approximately 116,000 observations.  As will be seen, our AR(1) assumption 

is validated for all four regressions. The estimated model will ultimately be used to 
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explore the impact of changes in wind generation on the levels and variances of the zonal 

market prices.  

The seven metric variables are as follows:  

 x1t is the 15-min wind generation of the ERCOT system, which is largely at the mercy 

of random wind conditions. We hypothesize that rising wind generation reduces 

market price, which translates into the hypothesis: 1 < 0. 

 x2t is the 15-min MWh nuclear generation in the ERCOT system. We do not use the 

15-min data on dispatchable generation (i.e., hydro, coal, and natural gas), because 

they are endogenous as a result of ERCOT’s least-cost dispatch decisions (ERCOT, 

2004).  Nuclear generation is baseload and non-dispatchable. Reducing nuclear output 

due to maintenance, repair or refuel is expected to raise the market price. This 

translates into the hypothesis: 2 < 0.   

 x3t is the daily Henry Hub natural-gas price. Because of Texas’s vast thermal- 

generation fleet, we use the exogenous Henry Hub price, which is almost perfectly 

correlated with the Houston Ship Channel price (R = 0.99), to quantify what we 

hypothesize to be the positive price effect of the marginal fuel (natural gas) on the 

electricity market price. This translates into the hypothesis: 3 > 0.   

 x4t, x5t, x6t, x7t are 15-min exogenous MWh loads in ERCOT’s Houston zone, North 

zone, South zone, and West zone, respectively. Rising loads tend to raise market 

prices; hence, (4, ..., 7) are hypothesized to be positive. 

 An increase in the lagged price likely raises the current price, with its effect 

dampening over time (Woo et al., 2007).  This translates into the hypothesis: 0 < 

. The size of  measures the speed of adjustment such that 1/(1 - ) is the number 



 7 

of 15-min intervals required to achieve the equilibrium state of Yt = Yt-1, implying  ≡ 

1/(1 - ) is the “full” price effect of wind generation. 

The binary indicators aim to capture the spot price’s residual time-dependence 

that may exist after controlling for the influence of the aforementioned metric variables. 

They are: (a) Mit = 1 for i = 1 (January), …, 11 (November), and is zero otherwise; (b) Wjt 

= 1 for  j = 1 (Sunday),…, 6 (Friday), and is zero otherwise; and (c) Hkt = 1 for k = 1 (an 

hour ending at 1:00), ..., 23 (an hour ending at 23:00), and is zero otherwise. 

 

3. Data 

Table 1 presents the descriptive statistics for the approximately 116,000 

observations used in our regression analysis. It shows that 15-min zonal prices are highly 

volatile, have large spikes (e.g., up to $4500/MWH for the North zone), and can be 

negative (e.g., -$1,536/MWH for the Houston zone). Reflecting capacity growth and 

output intermittency, the 15-min wind-generation output has a range of zero to 1,703 

MWH, with an average of 444 MWH. The 15-min nuclear generation tends to be close to 

full capacity, as evidenced by the average output of 1,159 MWH and maximum output of 

1298 MWH. The daily Henry Hub natural-gas-price data has a wide range of $1.8 to 

$13.3/MMBTU, with an average of $6.4/MWH.  Finally, the 15-min zonal loads are 

volatile with large spikes. For example, the North zone’s maximum load of 6555 MWH 

is almost twice the average load of 3357 MWH).   
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Table 1: Descriptive statistics for the sample period of January 2007 to May 2010.   

Variable Mean 

Standard 

deviation Minimum Maximum 

15-min Houston zone price 

($/MWH) 50.9 95.4 -1536.0 3806.0 

15-min North zone price 

($/MWH) 47.2 73.2 -999.0 2383.0 

15-min South zone price 

($/MWH) 51.0 110.1 -2293.0 4515.0 

15-min West zone price 

($/MWH) 42.5 77.7 -1982.0 2321.0 

15-min wind generation 

output (MWH) 444.7 339.1 0.0 1703.0 

15-min nuclear output 

(MWH) 1159.0 201.6 0.0 1298.0 

Daily Henry Hub natural gas 

price ($/MMBTU) 6.4 2.4 1.8 13.3 

15-min Houston zone load 

(MWH) 2413.0 558.4 1278.0 4416.0 

15-min North zone load 

(MWH) 3397.0 859.2 1714.0 6555.0 

15-min South zone load 

(MWH) 2379.0 589.3 1344.0 4491.0 

15-min West zone load 

(MWH) 589.0 99.1 382.7 974.1 

Note: The Phillips-Perron unit-root test results indicate that all zonal market prices are  

stationary, thus obviating our concern of spurious regressions (Davidson and MacKinnon, 

1993, Chapter 19). 

 

 

Figures 1-4 are scatter plots to presage the effects of wind generation on zonal 

market prices. They indicate statistically-significant (α ≤ 0.01) negative but weak 

correlations (-0.0842 > R > -0.2336) between wind generation and prices.  For the non-

West zones, the price dispersion does not seem to depend on wind generation.  For the 

West zone, it seems to diminish with wind generation.   
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Figure 1: ERCOT wind generation vs. Houston zonal price for the sample period of 

January 2007 to May 2010. 

 

 

 
 

Figure 2: ERCOT wind generation vs. North zonal price for the sample period of January 

2007 to May 2010. 
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Figure 3: ERCOT wind generation vs. South zonal price for the sample period of January 

2007 to May 2010. 

 

 

 
 

Figure 4: ERCOT wind generation vs. West zonal price for the sample period of January 

2007 to May 2010. 
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While these figures hint at the effect of an increase in wind generation on the 

spot-price level and variance, they do not paint a clear picture of what that effect may be 

because of other influencing factors (e.g., zonal load variations) not captured in the 

figures.  As a result, our identification and estimation of rising wind generation’s price 

effect will come from the zonal market-price regressions reported in the next section. 

 

4 Results 

4.1 Zonal market-price regressions 

Table 2 presents the maximum likelihood estimates of equation (1) for each of the 

four zones. For a very large sample size of N ≈ 116,000, each regression’s R
2
 ≈ 0.4 

suggests a quite credible fit to the data, given the substantial amount of noise resulting 

from the high frequency of the observations. Although smaller than the standard 

deviations for zonal spot prices in Table 1, the root-mean-squared-errors (RMSE) remain 

large, ranging from $60/MWH to $80/MWH.   
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Table 2: Zonal market-price regression results obtained by applying the method of 

maximum likelihood.  For brevity, this table does not report the coefficient estimates for 

the intercept and binary indicators that indicate statistically-significant time-dependence 

of the 15-min market prices (α ≤ 0.01). Values in (  ) are standard errors of the coefficient 

estimates and “*” denotes “significant at the 1% level”.   

Variable: coefficient Dependent variable: Zonal market price 

Houston North South West 

Total R
2
 0.41 0.34 0.46 0.40 

Mean squared error: MSE 5345 3543 6492 3609 

Root mean squared error: 

RMSE 

73.1 59.5 80.6 60.1 

15-min wind generation 

output (MWH): 1 

-0.0039* 

(0.0006) 

-0.0061* 

(0.0005) 

-0.0032* 

(0.0006) 

-0.0153* 

(0.0005) 

15-min nuclear output 

(MWH): 2  

-0.0057* 

(0.0011) 

-0.0048* 

(0.0010) 

-0.0047* 

(0.0013) 

-0.0070* 

(0.0010) 

Daily Henry Hub natural 

gas price ($/MMBTU): 3 

1.8999* 

(0.1065) 

1.8217* 

(0.0913) 

1.5985* 

(0.1169) 

1.0731* 

(0.0956) 

15-min Houston zone load 

(MWH): 4 

0.0097* 

(0.0011)  

0.0072* 

(0.0009) 

0.0090* 

(0.0012) 

0.0053* 

(0.0010) 

15-min North zone load 

(MWH): 5 

0.0017 

(0.0008)  

0.0055* 

(0.0007) 

0.0008 

(0.0009) 

0.0045* 

(0.0007) 

15-min South zone load 

(MWH): 6 

0.0039* 

(0.0011) 

-0.0008 

(0.0009) 

0.0046* 

(0.0012) 

-0.0001 

(0.0010) 

15-min West zone load 

(MWH): 7 

0.0250* 

(0.0050) 

0.0252* 

(0.0043) 

0.0252* 

(0.0056) 

0.0225* 

(0.0046) 

Lagged 15-min price 

($/MWH):  
0.7113* 

(0.0025) 

0.6221* 

(0.0031) 

0.7540* 

(0.0023) 

0.6527* 

(0.0030) 

AR(1) parameter:  

-0.2649* 

(0.0034) 

-0.2030* 

(0.0039) 

-0.2651* 

(0.0033) 

-0.1492* 

(0.0040) 

 

The coefficient estimates in Table 2 are conditional on the lagged 15-min price 

and lead to the following observations: 

 The statistically-significant estimates for 1 indicate that 100-MWH increase in wind 

generation reduces market price by 100 x 0.0039 = $0.39/MWH in the Houston zone, 

$0.61/MWH in the North zone, $0.32/MWH in the South zone, and $1.53/MWH in 

the West zone, thus corroborating the price effects found by Nicholson et al. (2010), 

and supporting our first hypothesis.  
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 The statistically-significant estimates for 2 indicate that a 1000-MWH drop in 

nuclear-generation output can cause the zonal prices to increase by $5/MWH to 

$7/MWH (e.g., 1000 x 0.0070 in the West zone), and support our second hypothesis.   

 The statistically-significant estimates for 3 indicate that a $1/MMBTU increase in 

the price of natural gas leads to a $1/MWH to $2/MWH zonal price increase, and 

support our third hypothesis. 

 The statistically-significant estimates for 4 to 7 support our fourth hypothesis that 

rising zonal loads tend to raise zonal market prices. Their price effects, however, are 

uneven. A 100-MWH load increase in non-West zones has less than a $1/MWH 

effect.  In contrast, the same 100-MWH load increase in the West zone may reduce 

zonal prices by as much as $2.5/MWH.  

 The statistically-significant estimates for  support our fifth hypothesis, indicating 

that a $1/MWH change in the lagged price can raise the subsequent price by 

$0.62/MWH to $0.75/MWH. As 1/(1 - ) measures the speed of adjustment, a range 

of 0.62 to 0.75 for the  estimates implies that the zonal prices can rapidly adjust to 

their equilibrium state within one hour (i.e., three to four 15-min intervals).  

 The statistically-significant estimates for  are between -0.15 to -0.26, indicating that 

the zonal price series have moderate first-order negative autocorrelation and affirm 

the validity of our AR(1) assumption. Thus, a past random shock would have an 

oscillating and dampening effect on the current prices.   
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4.2 Cross-hedging 

A useful application of the estimates for 3 and  in Table 2 is to find the 

minimum-variance (MV) hedge ratio of 3/(1 - ) MMBTU per MWH for using NYMEX 

monthly natural-gas futures to cross-hedge against the effect of natural-gas price 

volatility on spot electricity price volatility (Woo et al., 2011c).  The hedge-ratio 

estimates thus found are (a) Houston zone: 6.58; (b) North zone: 4.82; (c) South zone: 

6.50; and (d) West zone: 3.09. Because the West zone has nearly all of the state’s wind 

generation, we infer that rising wind generation tends to reduce the MV cross-hedge 

ratios.  

 

4.3 Some additional considerations 

Before engaging in our exploration of the impacts of changes in wind generation, 

we take a minor detour into some additional modeling considerations. 

Although a double-log specification would better characterize the skewed spot-

price distributions, the presence of negative prices prevents us from using that ostensibly 

desirable alternative to our linear model.    

We do, however, test for whether the daytime (07:00 - 19:00) price effect of wind 

generation differs from its nighttime (19:00 - 07:00) price effect. We do so by re-

estimating the four regressions after adding an interaction explanatory variable formed by 

the nighttime binary indicator multiplied by the wind-generation variable. The t-statistics 

for the coefficient estimates for this additional variable show that it is not statistically 

significant (α = 0.01), Hence, we fail to reject the hypothesis that the daytime and 

nighttime price effects are equal. 
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We also re-estimated the price regressions assuming an AR(2) process for t.  The 

resulting estimates for 1 to 7 and  are not materially different from those in Table 2, 

and are not reported here. 

Finally, we re-estimated the price regressions after making alternative 

assumptions regarding the error term’s stochastic process: AR(1)/GARCH(1, 1), 

GARCH(1, 1), AR(1)/ARCH(1), and ARCH(1) (Alexander, 2001, Chapter 4).  The 

estimated processes are non-stationary.  Moreover, the new regressions show a 

statistically-significant (α = 0.01) but counter-intuitive result that rising nuclear 

generation tends to raise market prices. Hence, we conclude that these assumptions are 

inappropriate for quantifying the price effects of an increase in wind generation. 

 

5 Predicting the price effects of rising wind generation in Texas 

The second row of Table 3 reports the estimates of  ≡1/(1 - ) by zonal market. 

These estimates indicate that the “full” effect of a 100-MWH increase in wind generation 

are price reductions of 100 x 0.0137 ≈ $1.4/MWH in the Houston zone, $1.6/MWH in the 

North zone, $1.3/MWH in the South zone, and $4.4/MWH in the West zone.  
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Table 3: The zonal price effects of a 10% increase in wind generation’s installed capacity 

in Texas.  Values in (  ) are standard errors of the coefficient estimates for  ≡1/(1 - ) 
and “*” denotes “significant at the 1% level”.  The price and wind-generation output 

means and variances are based on the 15-min data in the 12-month period of June 2009 - 

May 2010.  The mean for wind generation is G = 600.5 MWH and variance V = 155,946 

MWH.   

Variable 

Zonal market 

Houston North South West 

Estimates of  ≡1/(1 

- )   

-0.0137* 

(0.0019) 

-0.0162* 

(0.0013) 

-0.0128* 

(0.0025) 

-0.0441* 

(0.0015) 

Price mean  35.1 33.1 36.2 29.7 

Price standard 

deviation  63.7 39.1 89.8 34.5 

Price variance  4057.7 1528.8 8064.0 1190.3 

Price change -0.82 -0.97 -0.77 -2.65 

Price change as 

percent of price mean  -2.34 -2.94 -2.12 -8.91 

Price variance change 6.5 8.8 6.0 63.8 

Price variance change 

as percent of price 

variance  0.16 0.57 0.07 5.36 

Note: The standard errors in (  ) are found by a Taylor series approximation (Mood et al., 

1974, p.181). 

 

We use the following easily implemented five-step process to predict the spot 

price effects triggered by a 10% increase in the installed capacity of wind generation in 

Texas: 

 Step 1: Compute the mean and variance of the 15-min price and wind data for the 

most recent 12 months in our data base, which are June 2009 through May 2010. 

 Step 2: Assume a scalar  > 1 so that 100( - 1) is the percent increase in wind 

generation’s installed capacity (e.g.,   = 1.1 implies a 10% increase in installed 

capacity).  For the period of June 2009 through May 2010, the mean generation over 

all 15-min intervals is G = 600.5 MWH.  Thus, a projected 10% increase in the mean 

wind generation is ( - 1)G = 0.1 x 600.5 = 60.05 MWH. 
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 Step 3: Compute the variance of wind generation after the capacity addition.  Thus, in 

the present instance the original variance is V = 155,946 MWH and the new variance 

is 2
V = 1.21 x 155,946 = 188,695 MWH.  

 Step 4: Compute the price change given by b( - 1)G, where b is the estimate of  in 

the second row of Table 3. Focusing on the Houston zone, the price change is given 

by -0.0137 x 0.1 x 600.5 = -0.82, as shown the sixth row of Table 3. 

 Step 5: Apply the forecast variance formula in Feldstein (1971, p.56) to predict the 

change in the spot price variance.  Under the assumption that wind generation is 

statistically independent of other drivers in the spot price regressions, the predicted 

variance change is (2
 - 1) [G

2
 var(b) + b

2
 V + var(b) V], where var(b) = variance of 

b.
3
  For Houston, var(b) is (-0.0019)

2
 = 0.00000361; and the predicted change in 

variance is 0.21 x [360,600.3 x 0.00000361 + 0.00018769 x 155,946 + 0.00000361 x 

155,946] = 6.5, as shown in the eighth row of Table 3. 

Table 3 thus shows the price effects of a 10% increase in the installed capacity of 

wind generation by zonal market.  The computations confirm the commonly postulated 

price reductions, which range from 2% in the non-West zones to almost 9% in the West 

zone. They also show increases in the price variance of less than 1% in the non-West 

zones and about 5% in the West zone. Hence, the price effects of increasing wind 

generation tend to be relatively small in the non-West zones and relatively large in the 

West zone. 
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6. Conclusions 

Using the large ERCOT data base, we estimate four zonal price regressions to 

confirm that while increases in wind generation tend to reduce the level of electricity spot 

prices they also tend to enlarge the spot-price variance. Thus, as more wind-generation 

capacity is installed in an electrical system and utilities increasingly rely on wind 

generation, that increasing reliance would have serious implications for both expected 

electricity spot prices and their variances. Policy makers and market agents, as well as 

consumers, will welcome the prospect of lower prices, and many environmentalists will 

likely support the increasing reliance on this price-reducing source of renewable energy. 

These benefits, however, are accompanied by an additional challenge for policy makers 

and utility managers: notably, dealing with the increased price risk implied by the 

increased price variance that is inseparable from increased reliance on what is an 

inherently intermittent source of generation.  

To meet that challenge, the principal actors will need to expend increased effort in 

risk management and become increasingly familiar, in particular, with the financial 

instruments that have proved their worth in the financial sector. The expectation, in this 

context at least, is that familiarity will breed increasing comfort with using those 

instruments to the ultimate benefit of consumers. 
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Endnotes 

                                                 
1
 The spot price decline, however, could discourage investment in thermal generation 

(Traber and Kemfert, 2011; Steggals et al., 2011), which might in turn cause spot price 

spikes during hours of low wind generation (Milstein and Tishler, 2011). 

2
 This is based on our literature search done at scholar.google.com on January 22 2011, 

using the following keywords: "spot electricity", "price volatility", "wind energy". 

3
  This assumption reflects our view that rising wind generation should not have any 

effect on nuclear generation and Henry Hub natural-gas prices.  While wind generation 

and zonal loads are negatively correlated, we decided not to include this correlation in 

our computation for the following reasons.  First, the correlation is weak, with R between 

-0.15 to -0.22 for the period of June 2007 – May 2010.  Second, its inclusion would only 

magnify our estimated change in variance.  This is because a random increase in wind 

generation, when coupled with correlated decreases in zonal loads, would enlarge the 

price reduction due to the wind generation increase alone.  Finally, its inclusion vastly 

complicates the computation (see Feldstein, 1971, p.56, equation (4)).  Although this 

additional complication is manageable, it makes the process somewhat less “easily 

implemented” and detracts from the exposition, without adding materially to our 

understanding of the fundamental issues at hand.  


