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Abstract—We show uniform, linear prices in power exchange
markets, such as in the Amsterdam Power Exchange (APX) Day-
Ahead market or the Nord Pool Elspot market, that allow non-
convex, “fill or kill” block bids by market participants may
not result in an equilibrium in an economic sense, nor do
they maximize surplus to market participants. We propose, as
an alternative, a multi-part, discriminatory pricing mechanism
that results in a market equilibrium in an economic sense and
maximizes surplus for market participants. These multi-part
prices do not require proceeds from outside the market to be
implemented. In addition, we propose algorithms to ensure the
use of linear prices for market clearing where feasible, and if
not feasible, prices that minimize deviations from linear prices.
We also describe a simple pro rata method for implementing
the discriminatory multi-part prices, and discuss the degrees of
freedom in pricing offered by the prices proposed through the
use of simple examples.

Index Terms—Auctions, Market Design, Power System Eco-
nomics, Multi-part Pricing, Block Bidding.

I. INTRODUCTION AND BACKGROUND

ORGANIZED power exchanges have arisen to reduce the
transaction costs of trading through the determination of

market prices, usually uniform, linear prices, and to maximize
surplus or gains from trade that accrue to market participants
(achieve economic efficiency). For uniform, linear prices to
maximize surplus, given the bids submitted, they must be
“equilibrium” in an economic sense. That is uniform, linear
prices result in: (1) the quantities demanded and supplied are
optimal for every market participant given the bids submitted,
and (2) the aggregate quantity demanded is equal to the
aggregate quantity supplied.

Uniform, linear prices have many attractive qualities for use
in markets. Uniform, linear prices are easily computed as dual
variables (shadow prices) of market optimization programs and
are non-discriminatory. Decision making by market partici-
pants can be decentralized, and each participant can easily
verify why its bids were accepted or rejected. This adds to the
market’s legitimacy and transparency. Under the assumption
of convex costs, which does not hold in general for electricity
production [1], uniform, linear prices are equilibrium prices in
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the sense described above, and economically efficient in that
the surplus to market participants is maximized.

It is well understood that non-convenxities such as start-
ups, minimum run levels, and minimum run times exist in
electricity markets which implies linear market clearing prices
may not exist and these uniform, linear prices do not maximize
surplus to market participants as shown by [2], [3], [4], [5],
[6], [7], and [8].

Yet economists, with the exception of [9], [10], [11], have
tended to try to work around non-convexities and to de-
emphasize their importance since they are inconvenient and
inconsistent with many theorems in welfare economics even
though, as [11] notes, they are necessary for the existence of
firms. [11] and [10] summed up the dilemma caused by the in-
ability to find linear prices: “For a theorist, the major problem
presented by indivisibilities in production is the failure of the
pricing test for optimality or for welfare improvements...In the
presence of indivisibilities in production, [linear] prices simply
don’t do the jobs that they were meant to do.”

In organized power exchanges such as those examined in
[12], and outside of centralized unit commitment frameworks,
a way to represent operational non-convexities is to allow
market participants to use non-convex, block bids, which still
leads to potential inefficiencies and the possibility markets
will reach an equilibrium when uniform, linear prices are
used. Consequently, some sort of discriminatory mechanism
is required to maximize surplus and for markets to reach an
equilibrium in an economic sense.

Within a centralized unit commitment framework, [3] pro-
poses to use discriminatory linear prices, while [4], [6], and [7]
propose discriminatory “disincentive” or “generalized uplift”
terms that differ by market participant in order to arrive at
a single uniform, linear price that differs from the shadow
price on the contraint requiring supply be equal to demand. [3]
does not show whether their discriminatory linear prices are
equilibrium prices, and the work in [4], [6], and [7] shows their
new prices are market clearing under the assumption market
participants receive information on their respective “disincen-
tive” or “generalized uplift” functions, but are silent on how
market participants would receive this information in order
to implement the optimal market solution in a decentralized
manner.

Rather than attempting to derive linear prices to clear the
market, another option is to use muti-part prices which are
common in cost-of-service regulation [13] and competitive
markets. [2], [5], and [8] propose using discrminatory multi-
part prices to achieve a market equilibrium and economic
efficiency. While [14] provides a theory of duality in integer
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programming, it has not, to our knowledge, been used to
develop useful prices for markets with non-convexities. [8]
provides a solution to this problem deriving multi-part, dis-
criminatory prices that are equilibrium prices in an economic
sense and showing these prices exist. They do this by putting
prices not just on commodities, like electricity in a given hour,
but also, when necessary, on the discrete “commodities” or
variables such as the ones that control plant start ups, or in the
case addressed in this paper, block bid constraints. In the face
of non-convexities, market equilibrium and efficiency require
such multi-part (non-linear), discriminatory prices. It is also
possible to use these prices to verify that particular bids should
have won or should have lost in a decentralized manner in the
same manner as uniform, linear prices.

Computationally, [8] show that for any market with non-
convexities that can be modeled as a mixed integer pro-
gram (MIP), equilibrium-supporting prices can be found. The
auctioneer takes bids from market participants and finds a
solution to the MIP. The auctioneer then accepts the set of
bids that maximizes bid surplus or gains from trade and
calculates the equilibrium prices derived by [8] by solving a
linear or concave program with the optimal solution to integer
constraints inserted as equality constraints. The prices come
from the dual variables including the dual variables on the
added constraints.

In practice, modern commercial codes for solving MIPs can
solve substantial problems in reasonable times [15] alleviating
computation concerns. For example, according to [16], PJM
now uses MIP to solve its day-ahead market and estimates
efficiency improvements of $54 million per year. [17] simulate
the loss of gains from trade from the imposition of uniform,
linear prices with block bids in the Amsterdam Power Ex-
change (APX) and find the lost gains to be small, but find
in one half of the scenarios simulated, bids are rejected that
should have been accepted. This calls into question the validity
of uniform, linear prices in the presence of non-convexities as
equilibrium prices.

This paper shows the use of uniform, linear prices in power
exchange markets that allow non-convex “fill or kill” block
bids, as allowed in the Nord Pool Elspot Market [18], the
Amsterdam Power Exchange (APX) [19], [20] and other Eu-
ropean exchanges [12] neither results in a market equilibrium
as defined above nor maximizes surplus. We apply the general
result of [8] to block bidding and two-sided biding in power
exchanges, proposing a multi-part, discriminatory, pricing
mechanism that achieves a market equilibrium. We choose the
power exchange environment over the centralized unit commit-
ment context to show how the prices we derive can work to
decentralize decision making where the market operator has no
access to operational information from generators as is the case
in the literature assuming a unit commitment environment. We
also extend [8] in several ways to facilitate implementation
in today’s electricity markets. First, we account explicitly for
price responsive demand, which has been assumed away in
literature examining non-convexities in the unit commitment
context. Second, we show that prices satisfying [8] are non-
confiscatory (accepted bids will never be forced to lose money)
and revenue adequate (no compensation or payment from

outside the market is required). Third, we propose a method
to condition prices derived in the market when equilibrium
prices may not be unique. The conditioning minimizes the
deviations from linear prices to the extent possible while still
achieving a market equilibrium. Finally, we propose a simple
pro rata method to derive equilibrium prices that are easily
implementable in markets such as Nord Pool and APX, and
we discuss the degrees of freedom offered by the proposed
general pricing method.

II. POWER EXCHANGE DAY-AHEAD MARKET

In this section, we describe a stylized or generalized version
of a day-ahead power exchange market (PX) based on the Nord
Pool Elspot Market (NPS) or the Amsterdam Power Exchange
(APX). Market participants can submit bids in into the PX for
the 24 hours of the following day until market closure on the
day before the “dispatch day”. The PX then applies a market
clearing process for every hour of the day that results in a
single, linear market price and quantity for each hour. Below,
we describe the characteristics of the types of bids allowed, the
market clearing process used in a PX with particular attention
paid to APX, and offer reasons why this process may lead to
inefficient outcomes.1

A. Bids

A Single Bid is described by the hour t, source k, and the
minimum price for sales (maximum price for purchases) in
Euro/MWh, bkt, of a specified quantity, Qkt, in 0.1 MWh
increments. An Ordinary Bid or Spot Limit Order is a set of
single bids, i, of up to 25 steps in APX or 62 steps in NPS
so that a spot limit order can be defined by {bkit, Qkit}, i =
1, ...25 in APX or i = 1, ...62 in NPS. Single bids and spot
limit orders are flexible in that the entire bid need not be taken
in the market clearing process (qkit ≤ Qkit) and there is no
additional constraint on accepting a bid in each hour other than
that its price is less than the market price for supply bids, or
greater than the market price for demand bids.

A Block Bid or Spot Block Order as it is called in APX,
is a bid for which the participant offers to buy or sell the
same quantity of energy, Qki, for a period of t(i) consecutive
hours during the trading day, at a minimum price for sales
(maximum price for purchases) in bkit. Spot Block Orders
are inflexible and introduce a non-convexity in that they are
subject to a “fill-or-kill principle”. That is, in every period
for which the block bid is valid, qkit − Qki = 0,∀t ∈ T
if the bid is accepted. Additionally, the average price paid
(purchase) or received (sales) by the block bid must be less
than (purchase) or greater than (sales) bkit. This is known as a
Minimum Income Condition for sales or a Maximum Payment
Condition for purchases.

1Information in this section as it relates to APX can be found either at
www.apxgroup.com/index.php?id=35 or in [19]. We are grateful to APX for
access to [19] and all the help they provided in properly characterizing their al-
gorithm. Information relating to NPS can be found at www.nordpoolspot.com.
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B. Market Clearing Process

The market-clearing process we describe is the one used
in APX called Iterative Bid Matching. The process includes
a “simple matching algorithm” that determines the market
price and quantity in each hour over the day, P ∗t and Q∗t
under simplifying assumptions, and a check at each iteration
that all block bids are feasible at the market prices. If they
are not, they are eliminated. The algorithm continues until
all remaining block bids are feasible. The market clearing
algorithm concludes with an algorithm in an attempt, albeit
imperfect as we show in the example below, to ensure that
no block bids are omitted that should have been included in
the dispatch. A general representation of this process is also
shown in [12].

1) Simple Matching Algorithm: The algorithm determines
the market price in each of the day’s 24 hours. The algorithm
simply sums the quantities demanded at each price for all
demand bids in each hour and the quantities supplied at each
price for all supply bids in each hour. It treats block bids as if
they are quantity-inflexible, must-take bids. According to [12]
NPS also treats block bids in the same way for the purposes
of market clearing.

2) Feasibility Check for Block Bids: For each block bid,
the minimum income (seller) or maximum payment (buyer)
constraint is checked. This process yields a set of block bids
that do not meet the minimum income/maximum payment
constraint. Within that set, the block bid with the greatest
loss is removed from the dispatch, and the Simple Matching
Algorithm is run without it to determine a new price and
quantity. This process is repeated until there are no block bids
in the dispatch that lose money (fail to meet the minimum
income/maximum payment constraint).

For the remaining block bids that meet the minimum
income/maximum payment constraint, the quantity constraint
is checked. In the set of block bids failing to meet this
constraint, the one with the biggest difference between its
accepted quantity and its bid quantity is dropped from the
dispatch, and the Simple Matching Algorithm is run again
without the removed bid to determine a new price and quantity.
This process continues until each remaining block bid meets
its quantity constraint.

The result of the iterative matching process is a candidate
solution to the market clearing problem, with block bids, that
is used as the initial solution in the “optimization algorithm”
that the APX runs in an attempt to ensure that no block bids
were mistakenly eliminated under Iterative Bid Matching. A
full explanation of the algorithm can be found in [19]. NPS
does not employ an “optimization algorithm” as used in APX
according to [12].

C. Example of an APX-type Algorithm at Work

In general, schemes such as this one that involve sequential
round-offs are not guaranteed to find the optimal solution of
the underlying integer programming problem for optimizing
surplus. Consider the following two-period example in Table
I with two block bids, Bids 2 and 4. For a block bid to
be accepted, it must be active in all periods for which it

is valid. A negative sign signifies a bid to sell and positive
bids signify bids to buy. An asterisk (*) signifies a block bid.
Maximizing net surplus in the market while respecting the

TABLE I
TWO PERIOD BLOCK BID EXAMPLE

Bid Period 1 Period 2
Price Quantity Price Quantity

1 70 100
2 -5 125∗ -5 125∗

3 -10 60
4 -30 100∗ -30 100∗

5 -40 70 -40 160
6 90 150

block bid constraints and without concern to computing prices,
results in the block bid of Bid 4 being dispatched in both
periods. Block Bid 2 is lower cost, but it is infeasible in Period
1. The optimal solution is shown in Table II. Now consider

TABLE II
TWO PERIOD BLOCK BID OPTIMAL, FEASIBLE SOLUTION

Bid Period 1 Period 2
Price Quantity Price Quantity

1 70 100
2 -5 0 -5 0
3 -10 0
4 -30 100∗ -30 100∗

5 -40 0 -40 50
6 90 150

Surplus 4000 8500

the APX market clearing algorithm without the optimization
step alluded to above to simplify exposition. It considers block
bids 2 and 4 as quantity-inflexible, must-take bids. In the first
iteration, the price computed by the simple matching algorithm
in period 1 is 0 (there is 225 MW of must-take block bids,
100 MW of which is needed to satisfy demand is conditionally
accepted and the marginal cost to supply the next unit is 0
from the block bids assumed to be must-take). The price in
period 2 is also 0 (with 225 MW of must-take block bids, 150
MW is conditionally accepted and the marginal cost of the
next unit is 0 from the block bids). With these prices, a check
of the block bids to satisfy the minimum income constraint
shows that it is not satisfied, so the block bid with the largest
losses is eliminated. Bid 4, which has offered a price of 30,
is eliminated as opposed to Bid 2, which has offered a price
of 5, with prices of 0.

In the second iteration, the price in Period 1 is again zero
as there is more block bid offered than demand from Bid 2.
In Period 2, all of the block bid is accepted and then 25 MW
from Bid 5 is taken to satisfy demand. The minimum income
condition for Bid 2 is satisfied as (0− 5) ∗ 125 + (40− 5) ∗
125 > 0. As there are no other block bids remaining, the APX
algorithm checks the quantity constraint for Bid 2, but it is not
satisfied for period 1 as the Bid 2 quantity of 125 MW exceeds
the 100 MW demand. Bid 2 is then eliminated.

We then proceed to the third iteration. As there are no block
bids remaining, it is easy to see the price in period 1 is 40 and
the price in period 2 is 40. In period 1, Bid 3 is dispatched
at 60 units and Bid 5 is dispatched at 40 units. In period 2,
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Bid 5 is dispatched for 150 units. The total surplus in the
candidate solution in Table III is 12300 which is less than the
surplus in the optimal solution of Table II of 12500. In the
actual APX algorithm the candidate soultion would be taken
to the “optimization algorithm”, which we are omitting here
as it is not often used in other exchanges [12]. The prices in

TABLE III
FIRST AND SECOND ITERATIONS ELIMINATE BLOCK BIDS AND THIRD

ITERATION FINDS CANDIDATE SOLUTION

Bid Period 1 Period 2
Price Quantity Price Quantity

1 70 100
2
3 -10 60
4
5 -40 40 -40 150
6 90 150

Price 40 40
Surplus 4800 7500

the candidate solution shown in Table III are not equilibrium
prices. At these prices both block bids, Bids 2 and 4, would
wish to be dispatched at those prices, but are forced not to
run and thus result in non-optimal behavior which violates one
of the conditions for a market equilibrium. No set of linear
prices achieve a market equilibrium given the block bids. For
linear prices to be equilibrium prices for both periods require
P1 ≤ 10, P2 = 40, and P1+P2 ≥ 60, where P1 and P2 are the
prices in periods 1 and 2 respectively. This set has no feasible
solution. Therefore, we need multi-part pricing to achieve a
market equilibrium. One way to reach a market equilibrium
and maximize surplus is to make a lump-sum payment to Bid
4 of 1000 at the prices P1 = 10, P2 = 40.

Next, we offer a pricing mechanism for power exchanges to
maximize the efficiency of trading and, to the extent possible,
develop a way to maximize the use of linear prices to achieve
a market equilibrium.

III. MARKET EFFICIENCY AND PRICING

This section describes a method that maximizes the value
produced by the auction by maximizing the auction surplus
and deriving prices that achieve a market equilibrium. We
also define a settlement process to satisfy market equilibrium
conditions. The actual market mechanism may have locational
aspects, but these aspects do not invalidate, and only compli-
cate the presentation. We define the following notation:

• B is the set of offers to buy;
• S is the set of offers to sell;
• LO is the set of Limit Orders;
• BO is the set of Block Orders;
• i ∈ B,S is the index of offers to buy or sell. We

emphasize i is not an index of agents;
• t is the index of time;
• t(i) is the time block in which a block bid is valid.
tstart(i) is the start time for the block and tstop(i) is the
stop time for the block bid i ∈ BO;

• bit is the bid price for bid i in period t; 2

• Qit is the maximum quantity that can be chosen for bid
i at time t with Qit > 0;

• For block bids Qit is the same value ∀t ∈ t(i), and thus
we drop the t subscript and use Qi to denote the block
bid quantity. That is Qit = Qi,∀t ∈ t(i);

• qit is the quantity chosen for bid i in period t;
• zi is a binary variable for Block Orders to indicate if a

block order is chosen, zi = 1 if it is chosen, 0 otherwise.
We have defined bids for the purpose of our presentation
as single bids as defined in Section II-A without loss of
generality.3

Daily, after bid submission, the market operator/auctioneer
chooses quantities qit and block bids to activate zi to solve the
following mixed integer program (MIP) in equations (1)-(6):

MS = max
qit

∀i∈B,S

∑
t

∑
i∈B

bitqit −
∑

t

∑
i∈S

bitqit (1)

subject to∑
i∈B

qit −
∑
i∈S

qit = 0,∀t ∈ T = {1, ..., 24} (2)

qit ≤ Qit,∀i ∈ LO,∀t ∈ T (3)
qit − ziQi = 0,∀i ∈ BO,

∀t ∈ t(i) = {tstart(i), ..., tstop(i)} (4)
zi ∈ {0, 1} (5)

qit ≥ 0,∀i, t. (6)

Let ∗ indicate an optimal solution. If q∗it > 0, the bid is
accepted in part or totally. If q∗it = 0, the bid is not accepted.
If z∗i = 1 the block bid for i is accepted, and if z∗i = 0 the
block bid for i is not accepted.

To calculate the prices paid for the settlement, we formulate
the MIP defined in (1)-(6) as a linear program (LP) with the
optimal integer solutions (z∗i ) inserted as equality constraints
as suggested by [8]. This problem is defined by (7)-(12) with
the only difference being the equality constraint in (11).

MSLP = max
qit

∀i∈B,S

∑
t

∑
i∈B

bitqit −
∑

t

∑
i∈S

bitqit (7)

subject to∑
i∈B

qit −
∑
i∈S

qit = 0,∀t ∈ T = {1, ..., 24} (λt) (8)

qit ≤ Qit,∀i ∈ LO,∀t ∈ T (βit) (9)
qit − ziQi = 0,∀i ∈ BO,

2The bids can also be represented by piecewise linear functions as follows:
Let Kt be the number of steps or breaks in the bid in period t given by
(bitk, qitk), k = 1, ,Kt. In the objective function:

∑
k
bitkqitkwitk . In

the market clearing constraint: qit =
∑

k
qitkwitk . There is an additional

constraint:
∑

k
witk = 1. Since incorporating these equations does not

change any of the important questions addressed and it complicates the
notation, we will not use them in the formulation.

3We have chosen this presentation to economize on notation. We could have
defined bids as ordinary bids as done in Section II-A, but it adds an additional
subscript to variables and an additional nested summation to optimization
programs, but does not change our results at all. It also follows the formulation
of bids in [3].
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∀t ∈ t(i) = {tstart(i), ..., tstop(i)} (αit) (10)
zi = z∗i (δi) (11)

qit ≥ 0,∀i, t (12)

Again, following [8] we define the dual to the linear program
defined in (7)-(12) to compute the dual variables. Let λt, βit,
αit, and δi be the dual variables associated with the hourly
market clearing (8), individual spot limit order (9), individual
block order (10), and block bid acceptance (11) constraints
respectively. βit and αit also represent the per MWh bid
surplus, or the difference between the submitted bid bit and the
shadow price λt for limit orders and block orders respectively
and δi the total block bid surplus summed over all hours for
which the block bid would be activated.

Thus, the dual problem described by equations (13)-(19) is

MSD = min
βit,αit,δi
∀i∈B,S

∑
t

∑
i∈LO

Qitβit +
∑

i∈BO

z∗i δi (13)

subject to

λt + βit ≥ bit,∀i ∈ LO ∩B, t (14)
−λt + βit ≥ −bit,∀i ∈ LO ∩ S, t (15)

λt + αit = bit,∀i ∈ BO ∩B, t ∈ t(i) (16)
−λt + αit = −bit,∀i ∈ BO ∩ S, t ∈ t(i) (17)

δi −
∑

t∈t(i)

Qiαit = 0 (18)

βit ≥ 0;αit, δi unrestricted, ∀i, t (19)

Theorem 1: Surplus Equivalence. The value of the objec-
tive function MS in (1) is equal to the value of the objective
function MSLP in (7) and is equal to the value of the
objective function MSD in (13) which is greater than or equal
to zero: MS = MSLP = MSD ≥ 0.
Proof: Since by construction fixing variables at their optimal
values and resolving does not change the optimal solution
value, MS = MSLP . Since the objective function in (7) is
the objective of a linear program, by strong duality, MSLP =
MSD. Since qit = 0 is a feasible solution ∀i, t with MS = 0,
any other solution must result in MS ≥ 0. QED

A. Properties of an Optimal Solution

From here on, the value of the variables will be optimal
unless otherwise noted. We describe the optimal solution for
buyers’ and sellers’ spot orders and buyers and sellers with
block orders below respectively.

For both buyers and sellers who submit spot limit orders,
if a bid is accepted, qit > 0. By complementary slackness,
for buyers, bit − λt = βit and for sellers, λt − bit = βit.
Since βit ≥ 0, for buyers, λt ≤ bit, the market price is less
than or equal to the bid (willingness to pay). In addition, since
βit ≥ 0, for sellers, λt ≥ bit, the market price is greater than
or equal to the bid (willingness to accept). For both buyers
and sellers, the bid surplus or profit, βitqit ≥ 0, is always
non-negative.

For both buyers and sellers who submit spot limit orders,
if 0 < qit < Qit, then by complimentary slackness βit = 0
and λt = bit. The bid sets the linear price and is said to be

marginal. If qit = Qit, by complementary slackness, βit ≥ 0
and the bid is said to be inframarginal.

For both buyers and sellers who submit spot limit orders, if a
bid is not accepted, qit = 0, and by complementary slackness,
βit = 0. For buyers, λt ≥ bit, the market price is greater
than or equal to the bid (willingness to pay), and for sellers,
λt ≤ bit, the market price is less than or equal to the bid
(willingness to accept).

For buyers who submit block orders, from (16) bit − λt −
αit = 0 so that

∑
t∈t(i)(bit − λt − αit)Qi = 0. Substituting

(18) we obtain δi = Qi

∑
t∈t(i)(bit−λt). δi is bid surplus for

block bids from uniform, linear prices λt.
For sellers who submit block orders, from (17) λt − bit −

αit = 0 so that
∑

t∈t(i)(λt − bit − αit)Qi = 0. Substituting
(18) we obtain δi = Qi

∑
t∈t(i)(λt − bit). δi is bid surplus

(profit) for block bids from uniform, linear prices λt.
For block bids in general, if δi ≥ 0, the bid surplus under

uniform, linear prices is nonnegative. If δi < 0, the bid surplus
under uniform, linear prices is negative. If a block order is
accepted, qit = Qi,∀t ∈ t(i) and δi ≥ 0, then linear prices
are non-confiscatory in the sense of Definition 2 below. If a
block order is accepted, qit = Qi,∀t ∈ t(i) and δi < 0,
then linear prices are confiscatory in the sense of Definition 2
below.

If a block order is not accepted, qit = 0,∀t ∈ t(i), and
δi ≥ 0, then linear prices improperly signal acceptance of the
bid. This indicates that for some t ∈ t(i), 0 < qit < Qi, the
bid would be accepted but the fill-or-kill requirement does not
permit it. If the block order is not accepted, qit = 0,∀t ∈ t(i)
and δi ≤ 0, then linear prices properly signal rejection of the
bid.

B. Conditions for Linear Equilibrium Prices

Definition 1: Linear Equilibrium Prices. The set of
linear prices λt for t = 1, ..., 24 are equilibrium prices given
submitted bids if for hours t = 1, ..., 24:

1) ∀i ∈ LO ∩ B, qit > 0 implies λt ≤ bit and qit = 0
implies λt ≥ bit;

2) ∀i ∈ LO ∩ S, qit > 0 implies λt ≥ bit and qit = 0
implies λt ≤ bit;

3) ∀i ∈ BO ∩ B, qit > 0 implies
∑

t∈t(i)(−λt + bit) ≥ 0
and qit = 0 implies

∑
t∈t(i)(−λt + bit) ≤ 0;

4) ∀i ∈ BO∩S, qit > 0 implies
∑

t∈t(i)(λt− bit) ≥ 0 and
qit = 0 implies

∑
t∈t(i)(λt − bit) ≤ 0;

5)
∑

i∈S qit =
∑

i∈B qit.

Conditions 1) and 2) are optimizing conditions for individ-
ual bidders submitting Limit Orders which state that bidders
must have non-negative surplus to be dispatched in the market.
3) and 4) are optimizing conditions for individual bidders
submitting Block Orders stating that the block bids must gain
non-negative surplus if they are to be activated in equilibrium.
5) is the market clearing condition.

Our definition says that any market bidder with positive
purchases or sales, regardless of the type of bid, must have
non-negative surplus under uniform, linear prices. Any market



WORKING PAPER, JANUARY 2006, REVISED JULY 2007 6

bidder with quantities of zero would necessarily have non-
positive surplus under uniform, linear prices if their bids were
activated. This says that market-clearing prices result in sellers
being paid at least what they bid and buyers paying no more
than what they bid. This leads us to the following result that
shows when uniform, linear prices are sufficient to clear the
market.

Theorem 2: Linear Price Equilibrium Theorem. Linear
prices λt for hours t = 1, ..., 24, from an optimal solution
are equilibrium prices given the submitted bids if and only
if δi =

∑
t∈t(i)Qiαit ≥ 0, when zi = 1,∀i ∈ BO, and

δi =
∑

t∈t(i)Qiαit ≤ 0, when zi = 0,∀i ∈ BO.
Proof: First, we show that if δi ≥ 0 when zi = 1, and δi ≤ 0
when zi = 0,∀i ∈ BO, linear prices λt are market clearing.

Conditions 1), 2), and 5) from our definition of market
clearing are satisfied in a straightforward manner from the
constraints of the linear program and its dual defined in (7)-
(12) and (13)-(19) respectively. We must show that 3) and 4)
from our definition hold. We will first show sufficiency, then
necessity.

If δi ≥ 0 and zi = 1, we know
∑

t∈t(i)Qiαit ≥ 0, and thus∑
t∈t(i) αit ≥ 0. From (16) in the dual problem, λt + αit =

bit,∀t ∈ t(i), thus
∑

t∈t(i)(λt − bit) ≤ 0, satisfying the first
part of condition 3) of our definition.

If δi ≤ 0 and zi = 0, we know
∑

t∈t(i)Qiαit ≤ 0 and thus∑
t∈t(i) αit ≤ 0. From (16) in the dual problem, λt + αit =

bit,∀t ∈ t(i), thus
∑

t∈t(i)(λt−bit) ≥ 0, satisfying the second
part of condition 3) of our definition.

Analogously for sellers, if δi ≥ 0 and zi = 1, we know∑
t∈t(i)Qiαit ≥ 0, and thus

∑
t∈t(i) αit ≥ 0. From (17)

in the dual problem, −λt + αit = −bit,∀t ∈ t(i), thus∑
t∈t(i)(λt − bit) ≥ 0, satisfying the first part of condition

4) of our definition.
If δi ≤ 0 and zi = 0, we know

∑
t∈t(i)Qiαit ≤ 0 and thus∑

t∈t(i) αit ≤ 0. From (17) in the dual problem, −λt +αit =
−bit,∀t ∈ t(i), thus

∑
t∈t(i)(λt − bit) ≤ 0, satisfying the

second part of condition 4) of our definition.
Now we show that if linear prices, λt, are market clearing,

δi ≥ 0 when zi = 1, and δi ≤ 0 when zi = 0,∀i ∈ BO.
From 3) in our definition of market clearing, ∀i ∈ BO ∩

B, qit > 0 implies
∑

t∈t(i)(λt − bit) ≤ 0, and ∀i ∈ BO ∩
B, qit = 0 implies

∑
t∈t(i)(λt−bit) ≥ 0. ∀i ∈ BO∩B, qit > 0

implies zi = 1, and qit = 0 implies zi = 0.
From (16) of the dual problem, λt + αit = bit,∀t ∈ t(i).

Since
∑

t∈t(i)(λt − bit) ≤ 0 for qit > 0,
∑

t∈t(i) αit ≥
0. Multiplying by Qi gives us δi ≥ 0. Similarly, since∑

t∈t(i)(λt − bit) ≥ 0 for qit = 0,
∑

t∈t(i) αit ≤ 0 yielding
δi ≤ 0.

From 4) in our definition for market clearing, ∀i ∈ BO ∩
S, qit > 0 implies

∑
t∈t(i)(λt − bit) ≥ 0, and ∀i ∈ BO ∩

S, qit = 0 implies
∑

t∈t(i)(λt−bit) ≤ 0. ∀i ∈ BO∩S, qit > 0
implies zi = 1, and qit = 0 implies zi = 0.

From (17) of the dual problem, −λt+αit = −bit,∀t ∈ t(i).
Since

∑
t∈t(i)(λt − bit) ≥ 0 for qit > 0,

∑
t∈t(i) αit ≥

0. Multiplying by Qi gives us δi ≥ 0. Similarly, since∑
t∈t(i)(λt − bit) ≤ 0 for qit = 0,

∑
t∈t(i) αit ≤ 0 yielding

δi ≤ 0. ♣

IV. MULTI-PART, DISCRIMINATORY PRICES AS
EQUILIBRIUM PRICES

A. A Simple Example Revisited

In spite of knowing the optimal solution, the auctioneer
cannot pay less than a bid to sell or charge more than the
bid to buy. We must find a way to satisfy this non-confiscation
requirement and maintain optimality. Moreover, the auctioneer
must also ensure that block bids that have bids less than λt,
but are quantity infeasible receive negative surplus. Multi-part
or discriminatory pricing is required for efficient pricing to
maintain optimality. Next we show an example.

Consider a market where demand is fixed (perfectly inelas-
tic). If there were a block bid seller that was activated such that
δi =

∑
t∈t(i) αitQi < 0, a discriminatory price/payment for

bidder i equal to −δi would make the overall bid surplus zero
for supplier i, and would result in non-confiscatory prices. This
can easily be seen in the APX two-period example shown in
Tables I, II, and III of Section II. For Bid 4, the only quantity
feasible block bid in that example, at energy prices of P1 = 10
and P2 = 40 that would exist if Bid 4 were the only block bid,
Bid 4 loses 1000. A simple discriminatory payment of 1000,
collected from demand, to Bid 4 in addition to the prices of 10
and 40 will result in an overall surplus of zero for Bid 4 and
is non-confiscatory. For Bid 2, the issue is different. It would
wish to be dispatched at prices greater than 5 but it is quantity
infeasible. To ensure that Bid 2 does not self-dispatch itself
in a manner different from its block bid, it could be forced
to pay back the positive surplus it would gain by dispatching
itself. In the example in Tables I, II, and III in Section II, a
payment to the market greater than or equal to 40 for each
MWh it produces would keep Bid 2 from dispatching in a
manner different from its bid. Such prices also preserve the
optimality of the solution as well since demand is assumed to
be perfectly inelastic.

B. Defining Multi-part Prices with Price Responsive Demand
in the Market

The case of inelastic demand is easy to handle because the
discriminatory payment can be collected from demand in any
manner without affecting efficiency. Including price responsive
demand, as we do here, is more complicated. If z∗i = 0, the
market settlement is zero for those block bids not accepted.
For z∗i = 1, we split the block orders into two groups, those
with positive bidding surplus and those with negative bidding
surplus at the marginal cost of delivering one more unit to the
market, λt. Define the set of positive surplus block orders as
BO+ = {i : δi ≥ 0 and z∗i = 1}
and the set of negative surplus block orders as
BO− = {i : δi < 0 and z∗i = 1}.

We define β′it, α
′
it, and δ′i as redistribution variables or

prices for the settlement. The inclusion of β′it, α
′
it, and δ′i in

the settlement along with λt creates a discriminatory pricing
scheme. The redistribution variables, or prices, must be non-
confiscatory and revenue neutral as defined below.

Definition 2: Non-confiscation. Non-confiscation requires
that a seller, if its bid is accepted, will receive at a minimum
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its bid cost. It requires that a buyer, if its bid is accepted, pay
no more than its bid. Mathematically, this requires

qitβit ≥ qitβ′it ≥ 0, i ∈ LO; (20)

δi =
∑

t∈t(i)

Qiαit ≥ δ′i =
∑

t∈t(i)

Qiα
′
it ≥ 0, i ∈ BO+; (21)

0 > δi =
∑

t∈t(i)

Qiαit ≥ δ′i =
∑

t∈t(i)

Qiα
′
it, i ∈ BO−; (22)

δ′i > 0 is a discriminatory (or non-linear) payment to the
market, and δ′i < 0 is a discriminatory (or non-linear) payment
received from the market.

Definition 3: Revenue Adequacy. Revenue adequacy re-
quires the amounts collected from bids equal or exceed the
payments made to bids.∑

i∈LO

∑
t∈t(i)

qitβ
′
it +

∑
i∈BO+

∑
t∈t(i)

z∗iQiα
′
it +

∑
i∈BO−

∑
t∈t(i)

z∗iQiα
′
it =

∑
i∈LO

∑
t∈t(i)

qitβ
′
it +

∑
i∈BO+

z∗i δ
′
i +

∑
i∈BO−

z∗i δ
′
i ≥ 0. (23)

Definition 4: Market Settlement. Each limit order bid i at
time t is settled by payment sit. Each block order bid i valid
∀t ∈ t(i) is settled by payment si,t(i). If sit or si,t(i) < 0,
the settlement is a payment to bid i. If sit or si,t(i) > 0, the
settlement is a payment from bid i.
A discriminatory and revenue neutral market settlement for
limit orders at time t is, ∀i ∈ LO and qit > 0,

1) sit(λt, β
′
it, qit) = qit(λt + β′it), i ∈ LO ∩B;

2) sit(λt, β
′
it, qit) = −qit(λt − β′it), i ∈ LO ∩ S.

A discriminatory and revenue neutral market settlement for
block orders is ∀i ∈ BO and ∀t ∈ t(i),

3) si,t(i)(λt, α
′
it, qit) = z∗i

∑
t∈t(i)(λt + α′it)Qi;

si,t(i)(λt, δ
′
i, qit) = z∗i (

∑
t∈t(i)(λtQi)+δ′i), i ∈ BO∩B;

4) si,t(i)(λt, α
′
it, qit) = −z∗i

∑
t∈t(i)(λt − α′it)Qit;

si,t(i)(λt, δ
′
i, qit) = −z∗i (

∑
t∈t(i)(λtQi)−δ′i), i ∈ BO∩

S.
This settlement can be characterized as a two-part settlement
consisting of a linear price (λt) that is independent if bid i, a
discriminatory, non-linear, lump-sum payment, qitβ′it, for limit
orders, and a discriminatory, non-linear, lump-sum payment,
z∗i

∑
t∈t(i) α

′
itQi = z∗i δ

′
i, for block orders that are specific to

bid i.
Definition 5: Equilibrium Multi-part Prices. The set of

linear prices λt for t = 1, ..., 24 and non-anonymous market
payments β′it and δ′i are equilibrium prices given submitted
bids if for hours t = 1, ..., 24:

1) Buyers and sellers who submit limit orders and have
their bids accepted, ∀i ∈ LO, qit > 0 implies (λt +
β′it) ≤ bit, i.e. the multi-part price is less than or equal
to the bid for buyers; and (λt−β′it) ≥ bit, i.e. the multi-
part price is greater than or equal to the bid for sellers;

2) Buyers and sellers who submit limit orders and have
their bids rejected, ∀i ∈ LO, qit = 0 implies β′it = 0,

λt ≥ bit, i.e. the multi-part market price is greater than
or equal to the bid for buyers, and λt ≤ bit, i.e. the
multi-part market price is less than or equal to the bid
for sellers;

3) For buyers and sellers who submit block orders and
have their bids accepted, ∀i ∈ BO, qit = Qi∀t ∈ t(i)
implies for buyers the sum of the multi-part prices over
all periods the block bid is in force is less than or equal
to the sum of the bid over all periods the block bid is
in force, i.e.

∑
t∈t(i)(λt + α′it) ≤

∑
t∈t(i) bit, and for

sellers the sum of the multi-part prices over all periods
the block bid is in force is greater than or equal to the
sum of the bid over all periods the block bid is in force,
i.e.

∑
t∈t(i)(λt + α′it) ≥

∑
t∈t(i) bit;

4) For buyers and sellers who submit block orders and
have their bids rejected, ∀i ∈ BO, qit = 0∀t ∈ t(i)
implies for buyers the sum of the multi-part prices over
all periods the block bid is in force is greater than or
equal to the sum of the bid over all periods the block bid
is in force, i.e.

∑
t∈t(i)(λt +α′it) ≥

∑
t∈t(i) bit, and for

sellers the sum of the multi-part prices over all periods
the block bid is in force is less than or equal to the sum
of the bid over all periods the block bid is in force, i.e.∑

t∈t(i)(λt + α′it) ≤
∑

t∈t(i) bit;
5)

∑
i∈S qit =

∑
i∈B qit.

Conditions 1) and 2) are optimizing conditions for indi-
vidual limit orders while ensuring the redistribution is non-
confiscatory. Condition 1) assures accepted individual limit
orders will have non-negative surplus, and Condition 2) as-
sures rejected limit orders see prices that indicate why they
have been rejected, how bids would need to be changed to be
accepted, and that no surplus redistribution takes place. Condi-
tions 3) and 4) are optimizing conditions for block orders and
assures that the redistribution is non-confiscatory. Condition
3) assures accepted block orders obtain non-negative surplus,
while Condition 4) assures rejected block orders see why they
were rejected with the multi-part price informing the bidder of
the minimum amount that the bid would need to be changed
to be accepted, and that no surplus re-distribution takes place.
Condition 5) balances supply and demand.

Theorem 3: Multi-part Price Equilibrium Theorem
There exists a set of revenue adequate, non-confiscatory, multi-
part prices for limit orders (λt, β

′
it) and block orders (λt, α

′
it)

or (λt, δ
′
i), for all i and t that can be constructed from the

optimal dual problem defined in (13)-(19) such that they form
an equilibrium as defined in Definition 5 that maximizes gains
from trade.
Proof: See Appendix.

V. CONDITIONING METHOD FOR FINDING LINEAR PRICES
OR MINIMIZING DEVIATIONS FROM LINEAR PRICES

We start with the assumption that it is desirable to transfer
as much of the surplus as possible through linear prices
while maintaining optimality. We also note the market surplus
maximization problem may not have a unique, non-degenerate
solution, nor will the dual problem. Consequently, prices may
not be unique. From the dual problem defined by equations
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(13)-(19), we obtain the surplus values using only linear prices
over all hours for which a block bid is in effect, δi, for buyers
and sellers respectively:

δi −
∑

t∈t(i)

Qi(λt − bit) = 0,∀i ∈ BO ∩B (24)

δi −
∑

t∈t(i)

Qi(−λt + bit) = 0,∀i ∈ BO ∩ S. (25)

We can condition the dual solution to find linear prices, if they
exist, by adding the following constraints to the dual problem
in (13)-(19):

δi ≥ 0,∀z∗i = 1 (26)
δi ≤ 0,∀z∗i = 0. (27)

If a feasible solution exists to the conditioned dual problem
defined by (13)-(19) and (26)-(27), then the entire settlement
can conducted using linear prices. However, if no solution
exists, as is quite possible with block bids, we can condition
the dual solution to choose prices that maximize the transfer
of surplus through linear prices, while recognizing non-linear
prices are necessary to clear the market.

We now define y+ and y− to be the sum of surplus values
on accepted and non-accepted block bids respectively. The
solution to the following problem maximizes the transfer of
surplus in the entire market through linear prices, or stated
differently, minimizes the sum of discriminatory payments
made in the market.

max
y+,y−

y+ − y− (28)

subject to

y+ −
∑

i:z∗
i
=1

δi ≤ 0, (29)

∑
i:z∗
i
=0

δi − y− ≤ 0, (30)

MSD =
∑

t

∑
i∈LO

Qitβit +
∑

i∈BO

z∗i δi (31)

λt + βit ≥ bit,∀i ∈ LO ∩B, t (32)
−λt + βit ≥ −bit,∀i ∈ LO ∩ S, t (33)

λt + αit = bit,∀i ∈ BO ∩B, t ∈ t(i) (34)
−λt + αit = −bit,∀i ∈ BO ∩ S, t ∈ t(i) (35)

δi −
∑

t∈t(i)

Qiαit = 0 (36)

βit ≥ 0;αit, δi unrestricted, ∀i, t (37)

(31)-(37) ensure a dual optimal solution from (13)-(19). More-
over, this problem differs from the problem defined by (13)-
(19) and (26)-(27) in that a solution will always exist and the
problem will result in linear prices when linear prices clear
the market.

An alternative formulation to (28)-(37) is to minimize
the largest discriminatory payment rather than minimizing
the total discriminatory payments made in the market. This
formulation only requires changing the constraints in (29) and

(30) to, respectively

y+ − δi ≤ 0; (38)
δi − y− ≤ 0. (39)

VI. PRACTICAL MATTERS IN COMPUTING MULTI-PART
PRICES TO CLEAR THE MARKET

Theorem 3 does not provide a prescription for redistributing
the surplus to clear the market, but simply states it is possible
to do so while maintaining non-confiscation and revenue
neutrality. The algorithm for conditioning prices to minimize
the deviations from linear prices provides some direction, but
does not provide a full prescription for redistributing surplus
to derive market clearing prices. Consequently, the prices and
settlement rules we have defined leave degrees of freedom to
account for local market culture and customs.

A. A Simple Rule for Implementing Market Clearing Prices

We offer a simple pro rata market rule. Define the “uplift”
needed to make settlements to block bid non-confiscatory
individually and in aggregate by (40), and define the surplus
available for uplift individually and in aggregate as (41). The
redistribution prices are then determined by (42), (43), and
(44).

ui = z∗i δi, i ∈ BO−, U =
∑

i∈BO−

ui (40)

si = qitβit, i ∈ LO, si = z∗i δi, i ∈ BO+

S =
∑

i

si, (41)

z∗i (δi + δ′i) = 0, i ∈ BO− (42)
z∗i δ
′
i = siU/S, i ∈ BO+ (43)

qitβ
′
it = siU/S, i ∈ LO. (44)

In this simple rule, all market participants with positive surplus
contribute something to the payments made to block orders
requiring additional payments. However, as stated previously,
there are many degrees of pricing freedom to derive market-
clearing, multi-part prices to fit local market culture and
custom. For example, one could easily change the pricing rule
above so that only demand bids make lump-sum payments
to supply block bids while only supply bids make lump-sum
payments to demand block bids. There generally is not a
unique set of market-clearing prices.

B. Example from Section II-C Showing Pricing Degrees of
Freedom

Consider the optimal solution from the example in Section
II-C, with multi-part prices as shown in Table IV. Negative
bids are bids to supply, and negative surpluses are losses to
that bidder. Recall that in the optimal solution Bid 4 had losses
of 1000, and with a lump sum payment of δ′4 = 1000 it can
be made whole. Under our proposed pro rata rule, Bid 1 and
Bid 6 have positive surplus to cover the loss of Bid 4. The
allocations under the pro rata rule would be Bid 1 pays 444.45,
or β′11 = 4.4445 and Bid 6 pays 555.55, or β′62 = 3.7
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TABLE IV
MULTI-PART PRICES UNDER PROPOSED Pro Rata RULE THAT CLEAR THE

MARKET FROM SECTION II-C

Bid Period 1
bit Qit β or α β′ δ′ or β′qit

1 70 100 60 4.4445 β′11q11 = 444.45
2 -5 0 0 0 δ′2 > 5000
3 -10 0 0 0 0
4 -30 100∗ -20 0 δ′3 = −1000
5 -40 0 0 0 0
6
λt 10

Surplus 4000
Bid Period 2

bit Qit β or α β′ δ′ or β′qit
1
2 -5 0 0 0 0
3
4 -30 100∗ 10 0 0
5 -40 50 0 0 0
6 90 150 50 3.7 β′62q62 = 555.55
λt 40

Surplus 8500

However, it may be the case that the local market culture
calls for surplus to be transferred, where possible, only in the
hours in which the loss is sustained for Bid 4. In this case,
Bid 1 would pay for the loss out of its surplus. The lump-sum
payment to Bid 4 is collected from Bid 1 in this case would
be β′11 ∗Q11 = 10 ∗ 100.

Having compensated Bid 4 with a payment of 1000 from
Bid 1 and Bid 4 does not complete the pricing problem. At
prices λ1 = 10 and λ2 = 40, Bid 2 will want to be dispatched
as it has only offered a bid of 5. The reason Bid 2 is not
dispatched is that it is quantity infeasible in Period 1. In order
to ensure Bid 2 does not self dispatch, it must be sent a
discriminatory price of δ′2 ≥ 5000 in order to signal to Bid
2 it should not dispatch due to its quantity infeasible block
bid. In equilibrium, δ′2 does not play any role in redistributing
surplus in the market, but the price signal is crucial to ensure
the dispatch can be decentralized through the prices.

In short, the degrees of freedom in pricing afforded by
the proposed multi-part prices leave a continuum of potential
prices that may clear the market. The mechanism by which
multi-part prices are determined will undoubtedly have to be
agreed upon by the stakeholders participating in the market,
just as any mechanism used to determine linear prices as a
second-best solution to maximizing surplus would have to be.

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

We have shown how, given the bids in a power exchange
framework such as APX, one can find the optimal dispatch
and calculate revenue adequate, non-confiscatory prices that
support the optimal dispatch as a decentralized dispatch. These
prices may be non-linear and non-anonymous. However, we
have provided a method to maintain uniform, linear prices
when feasible, and a method to minimize the deviations
from uniform, linear prices when they are not market-clearing
while maintaining efficiency. Moreover, we have also shown a
practical method by which the proposed discriminatory, multi-
part prices can be implemented and have shown through a

simple example the pricing degrees of freedom that exist. The
framework presented here can be easily extended to include
bids for start-up costs and with minimum load restrictions.
Also, markets can include all of the constraints imposed by
the transmission network. Investments or resource adequacy
markets can be designed similarly as is done in [21].

However, the pricing degrees of freedom allowed here
may create incentives for unexpected or undesirable bidding
behavior that are beyond the scope of this paper. Hence, future
work should address market power concerns and bidding
incentives resulting from the introduction of non-convex bids
that allow market participants more opportunities (degrees of
freedom), through increased bidding parameters, to truthfully
represent or misrepresent their actual costs. Also in the context
of market power and bidding incentives, future work should
address the incentive properties for bidding under pricing
mechanisms similar to the mechanism proposed here and
addressed generally by [22].

APPENDIX

PROOF OF THEOREM 3

Multi-part Price Equilibrium Theorem
There exists a set of revenue adequate, non-confiscatory,
multi-part prices for limit orders (λt, β

′
it) and block orders

(λt, α
′
it) or (λt, δ

′
i), for all i and t that can be constructed

from the optimal dual problem defined in (13)-(19) such that
the gains from trade are maximized, and the market settlement
is revenue adequate and an equilibrium in multi-part prices
as defined in Definition 5.

Proof: First, by construction the linearized primal problem as
defined in (7)-(12) and its dual problem defined in (13)-(19)
of Section III maximizes the gains from trade. Moreover, (8)
in the linearized primal problem is identical to Condition 5
in Definition 5 ensuring the market clears.

Step two is to show there is enough market surplus to
derive revenue adequate, non-confiscatory prices. We know
the market surplus is greater than or equal to zero from the
objective function in the dual problem in (13):

MS =
∑

i∈LO

∑
t∈T

qitβit +
∑

i∈BO

∑
t∈t(i)

z∗iQiαit =

∑
i∈LO

∑
t∈T

qitβit +
∑

i∈BO

z∗i δi ≥ 0. (45)

Partitioning the accepted block orders into positive and neg-
ative surplus block orders, dropping z∗i since the surplus is
only non-zero for z∗i = 1 and simplifying notation as done in
Subsection IV-B, (45) can be restated as

MS =
∑

i∈LO

∑
t∈T

qitβit +
∑

i∈BO+

δi +
∑

i∈BO−

δi ≥ 0. (46)

Rearranging (46) by getting negative surplus values on the
right-hand side shows there is enough positive surplus avail-
able to compensate accepted block bids with negative surplus:∑

i∈LO

∑
t∈T

qitβit +
∑

i∈BO+

δi. ≥ −
∑

i∈BO−

δi (47)
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This shows that we can derive revenue adequate prices in the
sense of Definition 3. Inserting the prices β′it and δ′i that satisfy
non-confiscation as defined in Definition 2 into (47) yields∑
i∈LO

∑
t∈T

qit(βit − β′it) +
∑

i∈BO+

(δi − δ′i) ≥ −
∑

i∈BO−

(δi − δ′i). (48)

Since βit ≥ β′it ≥ 0 from (20), δi ≥ δ′i ≥ 0,∀i ∈ BO+ from
(21), and 0 ≥ δi ≥ δ′i,∀i ∈ BO− from (22) in Definition
2, setting δi = δ′i,∀i ∈ BO− satisfies non-confiscation
and ensures (48) holds thus showing revenue adequate,
non-confiscatory prices exist. Stated another way, the set of
prices that satisfy (48) must satisfy (23) in Definition 3.

Step three is to show the prices used in the settlement
in Definition 4 satisfy revenue adequacy. Summing all
settlement payments in Definition 4 over all buyers and
sellers results in∑
i∈LO∩B

[qit(λt + β′it)] +
∑

i∈BO∩B

[z∗i
∑

t∈t(i)

(λt + α′it)Qi] +

∑
i∈LO∩S

[−qit(λt − β′it)] +
∑

i∈BO∩S

[−z∗i
∑

t∈t(i)

(λt − α′it)Qi]. (49)

We note that for all accepted block bids ∀t ∈ t(i), qit = Qi

and z∗i = 1 for accepted bids. We can rearrange (49) to get

λt[
∑
i∈B

qit −
∑
i∈S

qit] +
∑

i∈LO

qitβ
′
it +

∑
i∈BO

∑
t∈t(i)

qitα
′
it. (50)

From Condition 5 in Definition 5,
∑

i∈B qit −
∑

i∈S qit = 0,
so all that remains is∑

i∈LO

qitβ
′
it +

∑
i∈BO

∑
t∈t(i)

qitα
′
it. (51)

For revenue adequacy, we must show (51) is non-negative. Par-
titioning the accepted block orders into positive and negative
surplus block orders, and simplifying notation as in Section
IV-B, (51) can be restated as∑

i∈LO

qitβ
′
it +

∑
i∈BO+

∑
t∈t(i)

qitα
′
it +

∑
i∈BO−

∑
t∈t(i)

qitα
′
it

=
∑

i∈LO

qitβ
′
it +

∑
i∈BO+

δ′i +
∑

i∈BO−
δ′i (52)

(52) restates (23) in Definition 3, and because prices are
revenue adequate, (52) is non-negative.

The fourth step is to show that prices (λt, β
′
it), for limit

orders, and (λt, α
′
it) or (λt, δ

′
i) for block orders ∀i, t are

equilibrium prices. We proceed by examining limit orders
first, then block orders. The proof relies on the properties of
the optimal solution to the problems defined by the linearized
primal problem in (7) - (12), its dual problem defined in (13)
- (19), and our definitions of β′it, α

′
it, and δ′i.

For both buyers and sellers who submit spot limit orders, if
a bid is accepted, qit > 0. By complementary slackness, for
buyers, bit−λt = βit; and for sellers, λt−bit = βit. From our
non-confiscation requirement on β′it from (20), βit ≥ β′it ≥ 0.

Consequently, for buyers, λt + β′it ≤ bit, i.e. the multi-
part market price is less than or equal to the bid; for sellers
λt−β′it ≥ bit, i.e. the multi-part market price is greater than or
equal to the bid. Thus, Condition 1) in Definition 5 is satisfied.

For both buyers and sellers who submit spot limit orders, if
a bid is rejected, qit = 0, and by complementary slackness
βit = 0. For buyers, the bid (willingness to pay) is less than
the market price bit ≤ λt; and for sellers the bid (willingness
to accept) is greater than the market price, bit ≤ λt. Thus,
Condition 2) in Definition 5 is satisfied.

For buyers who submit block orders, or i ∈ BO ∩ B,
we have from (16) in the dual problem∑
t∈t(i)

(bit − λt − αit)Qi =
∑

t∈t(i)

(bit − λt)Qi − δi = 0. (53)

For a buyer block order that has been accepted, Qi =
qit,∀t ∈ t(i) with non-negative surplus, i.e. i ∈ BO+ ∩ B,∑

t∈t(i) αitQi = δi ≥ 0 and from (21)∑
t∈t(i)

Qiαit −
∑

t∈t(i)

Qiα
′
it ≥ 0; (54)

δi − δ′i ≥ 0. (55)

Subsitituting (53) into (54), cancelling terms, and dropping Qi

yields ∑
t∈t(i)

bit ≥
∑

t∈t(i)

λt + α′it. (56)

For a buyer block order that has been accepted, Qi = qit,∀t ∈
t(i) with negative surplus, i.e. i ∈ BO−∩B,

∑
t∈t(i) αitQi =

δi ≤ 0 and from (22),

0 ≥
∑

t∈t(i)

Qiαit −
∑

t∈t(i)

Qiα
′
it; (57)

0 ≥ δi − δ′i. (58)

Subsitituting (53) into (57), cancelling terms, and dropping Qi

yields ∑
t∈t(i)

bit ≥
∑

t∈t(i)

λt + α′it. (59)

Thus, Condition 3) of Definition 5 is satisfied for buyers.
For buyers with block orders that are rejected,
qit = 0∀t ∈ t(i), there are no non-confiscation and
revenue adequacy constraints on α′it as no transfers take
place since qit = 0. α′it must be set such that the bid
price is less than or equal to the multi-part price, i.e.∑

t∈t(i) bit ≤
∑

t∈t(i) λt + α′it. Thus, Condition 4) of
Definition 5 is satisfied for buyers.

For sellers who submit block orders, or i ∈ BO ∩ S,
and have them accepted Qi = qit,∀t ∈ t(i). From (17) in the
dual problem,∑
t∈t(i)

(−bit + λt − αit)Qi =
∑

t∈t(i)

(−bit + λt)Qi − δi = 0. (60)
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For a seller block order with non-negative surplus, i.e. i ∈
BO+ ∩ S,

∑
t∈t(i) αitQi = δi ≥ 0 and from (21),∑

t∈t(i)

Qiαit −
∑

t∈t(i)

Qiα
′
it ≥ 0; (61)

δi − δ′i ≥ 0. (62)

Subsitituting (60) into (61), cancelling terms, and dropping Qi

yields ∑
t∈t(i)

bit ≤
∑

t∈t(i)

λt − α′it. (63)

For a seller block order with negative surplus, i.e. i ∈ BO−∩
S,

∑
t∈t(i) αitQi = δi ≤ 0 and from (22),

0 ≥
∑

t∈t(i)

Qiαit −
∑

t∈t(i)

Qiα
′
it; (64)

0 ≥ δi − δ′i. (65)

Subsitituting (53) into (57), cancelling terms, and dropping Qi

yields ∑
t∈t(i)

bit ≤
∑

t∈t(i)

λt − α′it. (66)

Thus, Condition 3) of Definition 5 is satisfied for sellers.
For sellers with block orders that are rejected, qit = 0
∀t ∈ t(i), there are no non-confiscation and revenue adequacy
constraints on α′it as no transfers take place since qit = 0. α′it
must be set such that the bid price is greater than or equal to
the multi-part price, i.e.

∑
t∈t(i) bit ≥

∑
t∈t(i) λt +α′it. Thus,

Condition 4) of Definition 5 is satisfied for sellers.
QED
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