

Status of U.S. Energy Policy and Outlook for the Future

Presented at: NAEMA 2012 Spring Conference and Annual Meeting

Jacksonville, Florida April 25, 2012 Ted Kury Director of Energy Studies Public Utility Research Center University of Florida

1972 40 2012 www.purc.ufl.edu

Public Utility Research Center

Research

Expanding the body of knowledge in public utility regulation, market reform, and infrastructure operations (e.g. benchmarking studies of Peru, Uganda, Brazil and Central America)

Education

Teaching the principles and practices that support effective utility policy and regulation (e.g. PURC/World Bank International Training Program on Utility Regulation and Strategy offered each January and June)

Service

Engaging in outreach activities that provide ongoing professional development and promote improved regulatory policy and infrastructure management (e.g. in-country training and university collaborations)

The Body of Knowledge on Infrastructure Regulation

The Body of Knowledge on Infrastructure Regulation <u>www.regulationbodyofknowledge.org</u> 8 New "Regulatory Challenges" on Clean Energy and Energy

Efficiency about to be Released!

- 1. In terms of broad public policy, what is the role of the sector regulator in promoting renewable energy (RE) and energy efficiency (EE)?
- 2. What are standards that regulators can use to evaluate different approaches toward promoting renewable energy development and energy Efficiency?
- 3. What are the regulatory issues presented by renewable technologies (solar, wind, biomass, geothermal, and hydropower) and what are the basic characteristics of these options?
- 4. What are the different approaches for promoting renewable energy development and the role of the regulator under each approach?
- 5. If a government decides to consider feed-in tariffs (FITs) as a tool to promote distributed generation via renewable energy, what are the regulatory steps that should be taken to these implement rules?
- 6. If the government decides to use purchase power agreements as a tool to obtain renewable energy, what are the regulatory steps that should be taken to implement rules?
- 7. What is the role of the regulator in clean energy and energy efficiency?
- 8. How have countries linked policymaking related to energy efficiency to regulatory functions?

UF Public Utility Research Center UNIVERSITY of FLORIDA 1972 Www.purc.ufl.edu

Outline

- State of Carbon Policy
- The EPA as Energy Policy Arm
- Role of Natural Gas
- Clean Energy Standards
- Nuclear Energy

Carbon Policy in the U.S.

- No further movement since Waxman-Markey and Kerry-Boxer bills died
- State of the economy has reduced the willingness of the administration to address emissions reduction through an explicit carbon tax
- Likely no movement until the economy begins to show improvement
- Likely no movement with a change in administration
- Significant long term investments are being made, making some assumption about carbon prices
- Some are going to be wrong, leading to stranded assets

6

Status of EU Emissions Trading

- EU includes air transportation this year
- Still some uncertainty about what Phase III will look like in 2013
- Decline in energy use as a result of the recession has led to surplus of allowances
- EU seems to want to hold non-EU airlines liable, as European Court of Justice Advocate General disagreed with arguments by North American airlines
 - Airlines get 85% of their allowances free in 2012, falls to 82% for Phase III
 - Obama Administration fighting the inclusion of U.S. airlines

7

Chinese government has banned its airlines from participating in ETS

Cross-State Air Pollution Rule

- Revised rule to control SO₂ and NO_x emissions, replacing CAIR
- Initial allowance allocation this past summer caused significant outcry, most notably in ERCOT
- EPA revised allowance allocation in the fall, but some states remain in significant short positions
- With stay from DC court, CAIR is still in place with CSAPR implementation now delayed from 2012 until 2014

8

States controlled for fine particles only (annual SO₂ and NO_x) (2 States)

States controlled for ozone only (ozone season NOx) (5 States)

States not covered by the Cross-State Air Pollution Rule

9

Balance between 2012 Allowance Allocation and 2010 Emissions

State

State	SO2
West Virginia	26,877
Tennessee	26,466
Alabama	7,518
North Carolina	5,540
Illinois	3,047
Iowa	278
Maryland	-433
Minnesota	-435
Nebraska	-1,736
Kansas	-4,558
New Jersey	-7,756
South Carolina	-7,808
Michigan	-18,707
New York	-19,342
Virginia	-25,403
Missouri	-32,881
Wisconsin	-33,136
Kentucky	-52,681
Georgia	-63,566
Indiana	-135,697
Pennsylvania	-140,368
Texas	-162,586
Ohio	-268,097

South Carolina	4,257
Alabama	3,618
West Virginia	3,198
Georgia	185
Tennessee	-55
New Jersey	-1,297
Minnesota	-2,196
New York	-2,859
Maryland	-3,146
Wisconsin	-3,579
Arkansas	-3,636
Indiana	-3,692
Mississippi	-4,040
Kentucky	-4,350
Louisiana	-6,040
Texas	-6,045
Virginia	-6,724
North Carolina	-7,078
Missouri	-7,426
Iowa	-7,480
Ohio	-8,319
Kansas	-9,072
Florida	-9,254
Nebraska	-15,621
Pennsylvania	-15,765
Michigan	-21,402
Illinois	-32,267
Oklahoma	-71,433

NOx

Mercury and Air Toxic Standards

- Apply to all coal and oil-fired units 25 MW or greater
- Compliance scheduled to begin in 2015, but state authorities can authorize an additional year
- New construction must be as effective as *any* current comparable unit
- Existing construction must be as effective as the top 12% of existing comparable units
- EPA may regulate beyond these standards

NERC Planning Regions

DOE Impact Assessment

Cumulative Coal Retirements by 2015 (Reference Case and Stringent Test Case)

DOE Impact Assessment

Cumulative Retrofitted Capacity by 2015 (Stringent Test Case)

Impact on Reserve Margins

2015 Planning Reserve Margins by NERC Region and Scenario (Reference Case and Stringent Test Case)

•••••• NEMS target planning reserve margin

15

EPA Regulation of Coal Ash

- Coal ash regulation in the wake of the 2008 containment failure at TVA's Kingston plant
- Two proposals for regulation
 - Ash as hazardous waste; provide standards for disposal
 - Ash as non-hazardous waste; supply guidelines for disposal, but states establish guidelines
- Environmental groups recently sued EPA over 'refusal' to regulate coal ash Public Utility Research Center VERSITY of FLORIDA 16

www.purc.ufl.edu

Stand 16

EPA Draft Emissions Rule for New Power Plants

- Draft rule issued on March 25
- Would limit CO₂ emissions from new power plants to 1,000 pounds per MWh
- Plants must achieve emissions standard on average over 30 years
- Criticism stems from current problems with CCS technology
- Possible precedent in new natural gas rules

Natural Gas

- U.S. now expected to become net exporter of LNG around 2016, and net exporter of all natural gas in 2021
- New rules for natural gas drilling on Federal lands could surface shortly from Department of the Interior, but were expected last fall
- Focus on chemical disclosure requirements, well integrity, and well construction
- Difficult to assess costs before rules are known, but certain to increase
- New EPA rule focuses on air pollution at well sites
 - Requires capture by 2015, allows flaring until then

Figure 2. natural gas production, 1990-2035 (trillion cubic feet)

Role of Shale Gas

- Shale gas represents roughly one third of the U.S. natural gas reserves
- U.S. has roughly 100 years' worth of reserves at current production (and consumption) rates, if reserve estimates do not change

1972 Www.purc.ufl.edu

Federal Energy Regulatory Commission • Market Oversight • www.ferc.gov/oversight

World LNG Estimated April 2012 Landed Prices

North American LNG Import/Export Terminals *Proposed/Potential*

Import Terminal

PROPOSED TO FERC

- 1. Robbinston, ME: 0.5 Bcfd (Kestrel Energy Downeast LNG)
- 2. Astoria, OR: 1.5 Bcfd (Oregon LNG)
- 3. Calais, ME: 1.2 Bcfd (BP Consulting LLC)
- **4. Corpus Christi, TX:** 0.4 Bcfd (Cheniere Corpus Christi LNG)

PROPOSED TO MARAD/COAST GUARD

 Offshore New Jersey: 2.4 Bcfd (Excalibur Energy – Liberty Natural)

Export Terminal

PROPOSED TO FERC

- 6. Sabine, LA: 2.6 Bcfd (Cheniere/Sabine Pass LNG)
- 7. Freeport, TX: 1.8 Bcfd (Freeport LNG Dev/Freeport LNG Expansion/FLNG Liquefaction)
- 8. Corpus Christi, TX: 1.8 Bcfd (Cheniere Corpus Christi LNG)

PROPOSED CANADIAN SITES IDENTIFIED BY PROJECT SPONSORS

- 9. Kitimat, BC: 0.7 Bcfd (Apache Canada Ltd.)
- 10. Douglas Island, BC: 0.25 Bcfd (BC LNG Export Cooperative)

POTENTIAL U.S. SITES IDENTIFIED BY PROJECT SPONSORS

- 11. Lake Charles, LA: 2.0 Bcfd (Southern Union & BG LNG)
- 12. Cove Point, MD: 1.0 Bcfd (Dominion Cove Point LNG)
- 13. Coos Bay, OR: 1.2 Bcfd (Jordan Cove Energy Project)
- 14. Hackberry, LA: 1.7 Bcfd (Sempra Cameron LNG)
- 15. Brownsville, TX: 2.8 Bcfd (Gulf Coast LNG Export)

POTENTIAL CANADIAN SITES IDENTIFIED BY PROJECT SPONSORS

16. Prince Rupert Island, BC: 1.0 Bcfd (Shell Canada)

Office of Energy Projects

As of February 28, 2012

Natural Gas in Storage

Working Gas in Underground Storage Compared with 5-Year Range

Clean Energy Standards

- The mandate to produce a certain amount of electricity from renewable (alternatively clean) energy sources
- Popular market structure
 - Generators receive credits (RECs) for the production of renewable energy
 - Distributors purchase RECs from generators (and pass costs on to customers) and surrender them to the regulatory authority
- EIA Conducted a study of the Bingaman Clean Energy Standard (introduced March 1) in December
 - 45% clean energy by 2015
 - 95% clean energy by 2050
 - Fossil plants can earn 'partial' credits

EIA BCES Analysis

Figure 1. Total Net Electricity Generation

EIA BCES Analysis

Figure 2. Total Non-Hydroelectric Renewable Generation

EIA BCES Analysis

Region	2009	202	2025		2035	
		Reference	BCES	Reference	BCES	
EBCT - EBCOT AI	10.4	0.2		10.0	11.6	
ERCC ERCC All	10.4	10.2	12.0	11.0	11.0	
MROE - MRO East	9.3	7.5	7.0	73	5.9	
MROW - MRO West	7.6	6.8	8.0	6.9	8.9	
NEWE - NECC New England	15.7	13.6	12.2	13.1	14.3	
NYCW - NPCC NYC/Westchester	19.9	16.8	16.7	16.9	19.6	
NYLI - NPCC Long Island	18.1	16.7	17.4	16.6	21.8	
NYUP - NPCC Upstate NY	11.6	11.9	11.1	12.6	14.4	
RFCE - RFC East	12.2	10.7	11.7	10.9	12.4	
RFCM - RFC Michigan	9.6	8.7	9.0	9.0	11.4	
RFCW - RFC West	8.6	8.5	8.5	9.9	11.0	
SRDA - SERC Delta	7.5	7.3	7.2	7.5	9.7	
SRGW - SERC Gateway	7.8	6.5	6.7	7.0	9.6	
SRSE - SERC Southeastern	9.1	8.7	8.9	8.5	10.3	
SRCE - SERC Central	7.8	6.0	7.2	6.0	10.2	
SRVC - SERC VACAR	8.6	8.1	9.1	8.3	11.2	
SPNO - SPP North	7.9	7.6	8.9	7.5	8.9	
SPSO - SPP South	6.9	7.8	8.0	8.5	10.4	
AZNM - WECC Southwest	9.8	9.5	9.5	10.4	11.3	
CAMX - WECC California	13.3	14.6	13.1	13.2	14.0	
NWPP - WECC Northwest	7.0	4.6	6.4	5.2	8.4	
RMPA - WECC Rockies	8.2	9.0	9.4	9.4	11.1	
U.S. Average	9.8	9.0	9.4	9.4	11.3	

BCES electricity price is 10-25 percent greater than the Reference case electricity price BCES electricity price is 25 percent or more greater than the Reference case electricity price

Source: U.S. Energy Information Administration. National Energy Modeling System, runs refhall.d082611b and cesbingbk.d100611a.

Note: See Appendix C for a map of the NEMS electricity market module regions.

Employment and GDP Impact

Figure 8. BCES Impact on Employment and Real GDP, Percent Difference (BCES Difference from Reference case)

Stand Dies

Nuclear Outlook

- Fukushima Daiichi accident led to a reevaluation of nuclear energy
- Will concern over recent diesel generator failures in Virginia and Alabama in the aftermath of natural disasters lead to new safety standards
- China has announced that it plans to use nuclear generation to reduce emissions relative to growth
- Germany shut down 8 nuclear plants in March 2011
 - Announced plans to shut down all nuclear generators by 2022, but preliminary analyses show that most of this generation shortfall will be absorbed by imported nuclear and coal
 - Already changed from a net exporter to importer of nuclear energy since shutdown began
- EIA latest projections include a '60 year nuclear' scenario where prices increase 4% over reference case

Blue Ribbon Panel Preliminary Report

- Consent-based approach to siting waste management facilities (such as Sweden's)
- New organization solely dedicated to nuclear waste management
- Access to funds already collected for disposal
- Develop geologic disposal facilities
- Develop consolidated interim storage facilities
- Continued U.S. innovation in nuclear energy technology
- Active U.S. leadership in international efforts for safety, waste management, and security

Conclusions

- EPA continues to develop policy initiatives
- Uncertainty around the form that environmental regulations will eventually take
- Concern over the cost of the regulation without regard for the fact that delay costs money as well
- Flexibility and communication are essential to addressing the challenges

Stand Digg

Thank You

• Ted Kury

ted.kury@cba.ufl.edu

