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There are many situations in marketing in which several alternative quantitative models
may be built to model a particular marketing phenomenon or system. Few methods exist for
comparing the fit of such models if the models are not nested, especially if their performance
on each of several criteria is important.

This paper proposes a Bayesian cross-validated likelihood (BCVL) method for comparing
quantitative models. It can be used when the models are either nested or nonnested, and is
especially useful for nonnested models. A simulation based upon a typical marketing modeling
situation shows the incremental benefit of using the BCVL method rather than existing
techniques, and explores the circumstances under which BCVL works best. The applicability
of the BCVL method is demonstrated using several typical marketing modeling situations.
(Model Comparison; Cross-Validation; Marketing Models)

1. Introduction

Decision areas in marketing are seldom so well understood that only one reasonable
model may be constructed that describes the phenomena at hand. Rather, it is
generally the case that two, three, or several such models may be constructed.
Normatively, it is often argued that several alternative models should be constructed
(Wilson 1979). This is the case in empirical studies where competing hypotheses
concerning marketing phenomena are tested using the performance of models consis-
tent with those hypotheses (Bass 1969). Several models are also commonly constructed
in simulation studies. They may be compared on their ability to represent or approxi-
mate a “true” (and perhaps more complicated) process which is generating the data
(Carmone and Green 1981). Thus an important problem encountered by builders of
marketing models is that of selecting the best model from several reasonable ones.

For example, consider a typical situation in which a researcher is modelling the
effectiveness of the marketing mix. Sales (Y) is assumed to be a function of advertising
spots (X,), number of sales representatives (X,), and wholesale efficiency index (X;).
Let us suppose that the two sales prediction models below are the models under
consideration:

A

Model A: ¥ =Ag+ 4,X, + A,X, + A,X,,

R M
Model B: Y = By + B\In(X,) + B,In(X,) + B;ln(X;).
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Model A is a simple linear regression model and model B is the linear-in-logs model
(Carroll, Green and DeSarbo 1979).

Many criteria may be used to compare quantitative marketing models. These criteria
include such things as underlying assumptions, data requirements, and theoretical
implications (Larreche and Montgomery 1977; Little 1979; Mahajan and Muller 1979;
Shocker and Srinivasan 1979; Narasimhan and Sen 1983). We are concerned with
identification of the best functional or structural form for a quantitative marketing
model. Here, depending on the aims of the modeler, “best” refers to the specification
that is truly generating the data observed, or most closely represents data that will be
observed.

Such a comparison of models has been traditionally treated in terms of statistical
significance. It is usually possible using classical statistical inference to compare two
models when one model is a constrained version of the other. This perspective is of use
when the functional form of one model is a special case of a more general model, as is
the case, for example, in determining the appropriate degree of a polynomial regres-
sion. Many other such examples exist in the marketing literature (e.g., see Blattberg
and Sen 1973). This nested model approach requires that the mathematical forms
already be specified and that they be ordinally related, with one model being a more
restrictive case of the other. But often, as seen in the preceding example, the
mathematical forms of the competing models will be unrelated. In such a case the
usual statistical tests for nested models cannot be used.

This paper examines the case in which two or more models are to be compared,
where the models are quantitative descriptions of the relationships between variables
and have well-defined likelihood functions. A new method of model comparison,
termed the Bayesian Cross-Validated Likelihood (BCVL) method, is proposed. Unlike
classical statistical inference methods such as the likelihood ratio test, the BCVL
method may be used even if the competing models are nonnested.

§2 provides a brief review of recent advances in the comparison of nonnested
quantitative models. §3 introduces the BCVL method, §4 compares the BCVL method
to existing approaches, and §5 presents a simulation which explores the performance
of the BCVL under varying conditions for one potential application. §§6, 7, and 8
describe applications to marketing problems involving the aforementioned marketing
mix models, innovation of diffusion models, and a logit analysis of business failures.
§9 provides discussion and conclusions concerning usage of the BCVL method.

2. Methods of Model Comparison

Many disparate methods for comparing the structural or functional forms of
quantitative models have been proposed in the last 20 years. These methods may be
classified in terms of methodological emphasis as supermodel methods (Atkinson
1969), cross-validation methods (Mosteller and Tukey 1968), likelihood methods
(Akaike 1974), or Bayesian methods, although there is inevitably considerable overlap
and interrelation between types.

The supermodel approach involves the building of a more general model, for which
each competing model is a special case. This general approach is similar in form to
discrete mixtures in distribution theory (Johnson and Kotz 1977) and to supermodels
in applied probability (Stacey 1962).

Atkinson (1969, 1970) proposed that if f(x) and g(x) are competing models, then a
new function A(x) should be defined, such that:

h(x)=f(x) g(x)' ™ 2
When A = 1, h(x) reduces to f(x) and when A =0, h(x) reduces to g(x). Inferences
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about A would then seem to imply conclusions about the relative acceptability of the
two models.

Atkinson also mentioned a natural, intuitively appealing alternative to the above
exponential formulation:

h(x) =M(x) + (1 = A)g(x). ©)

This formulation was rejected by Atkinson since A less than zero or greater than one
might result. Rust (1981) constrained A to the [0, 1] interval, and used Kuhn-Tucker
nonlinear optimization to obtain the parameter estimate. Unfortunately, the A value
arising from the exponential approach is difficult to interpret (Atkinson 1969) and this
linear approach is difficult to implement. Also, it is difficult to use these methods when
the researcher is interested in the models’ performance on more than one criterion.

Traditionally, split-half cross-validation has been a widely used method of model
comparison, estimating the competing models on one sample, and then compiling error
statistics on the other (Mosteller and Tukey 1968; Stone 1974). It is an easy method to
implement and its results are easily understandable. Mosteller and Tukey (1968)
discuss some of the shortcomings of split-half cross-validation and describe alternative
cross-validation methods that involve breaking up the sample into several groups, and
then using each group sequentially as a holdout sample. At the extreme, the groups
hold just one case, and the result is a jackknife-like cross-validation. Stone (1974, 1977)
details cross-validation methods of this type. The disadvantage of jackknife-like
cross-validation is that in many situations it is overwhelmingly time consuming to run
the required number of analyses.

With these methods the choice of a particular quantity whose prediction is to be
cross-validated is also important. The natural quantities to choose vary with the
desired prediction from the model. Consequently, when the approach will be used to
make several kinds of predictions (e.g., using a model of brand choice to forecast both
overall market share and also the most preferred brand for each of a set of individuals)
the appropriate quantity to validate may not be obvious. Clearly, several quantities
might be selected and used to cross-validate competing models. But for these results to
identify one model as “best” requires two difficult decisions. First, all important
criteria (i.e., quantities to validate) must be identified. And second, unless one model
dominates on all evaluation dimensions, the relative importance of the criteria must be
specified.

Likelihood approaches to the comparison of nonnested models were first proposed
by Cox (1961, 1962). His methods were applicable to only a limited set of cases, and
thus were not widely applied. However, Akaike (1973, 1974) introduced a likelihood
method of startling simplicity in application. Derived from information theoretic
assumptions, the Akaike criterion of model comparisons is (using the notation of Stone
1979):

A = log(maximum likelihood) — (number of estimated parameters). @)

Here, larger values of A indicate more preferred models.

This method penalizes models having a large number of parameters and is very easy
to apply whenever the maximum likelihood estimation procedure is applicable. Re-
cently, Akaike’s criterion for model selection has been applied in a wide variety of
settings, including ARMA time series (Akaike 1974, 1979; Shibata 1976; Neftci 1982),
regression (Gorman and Toman 1966; Stone 1977), conjoint analysis (Takane 1982),
multi-sample cluster analysis (Bozdogan and Sclove 1982), multidimensional scaling
(Takane 1981) and in the detection of outliers (Kitagwa 1979). It has also been
proposed for choosing among models in meteorology (Jones 1977).
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In addition to its simplicity, Akaike’s information criterion has another remarkable
property. Inagaki (1977) has shown how a model’s total error can be expressed as the
sum of a “modelling error” component and an “estimation error.” Modelling errors
refer to the discrepancy between the general parametric model being estimated (e.g.,
the linear or linear-in-logs model in the introduction) and the true model which is
operating. Estimation error stems from the fact that the particular parameter values
which are used in a model must be estimated from a dataset. Both of these errors are
based on Kullback-Liebler information measures. As the sample size is increased the
estimation error for a model may be decreased to any desired level, but the modelling
error cannot be reduced in this way. Using an incorrect parametric form (i.e.,
introducing modelling error) means that there will always be a discrepancy between
the estimated model and the true process, regardless of the sample size. When
compared with parsimonious models, complex models which include more effects (and
more parameters) will generally have a smaller modelling error and a larger estimation
error. Inagaki shows that Akaike’s information criterion is a Bayes solution for trading
off these modelling and estimation errors in choosing models. A special case of the
method proposed in this paper is asymptotically equivalent to Akaike’s criterion.

Another simple likelihood method was proposed by Schwarz (1978). A measure
theoretic argument resulted in the criterion:

B = log(maximum likelihood) — (4logn) X (number of estimated parameters), (5)

where n is the number of independent observations. Like the Akaike criterion, the
Schwarz criterion severely penalizes models with large numbers of parameters. A
critical discussion of the asymptotic properties of the Akaike and Schwarz criteria is
given in Stone (1979). Hauser (1978) proposed a likelihood method for comparing
probabilistic choice models which was based upon information theoretic criteria.
Unlike the Akaike and Schwarz approaches this method makes no allowance for
model parsimony.

Bayesian methods of model comparison are used to provide posterior probabilities
for the competing models. These posterior probabilities are roughly interpretable as
probabilities of model correctness (given that the correct model is known to be a
member of the specified set).

Bayesian estimates as an alternative to least squares estimates in the General Linear
Model have been developed (Box and Tiao 1973; Lindley and Smith 1972; Smith
1973; Zellner 1971), and the application to the calculation of posterior probabilities for
competing regression models has been reported by Atkinson (1978). Atkinson’s Bayes-
ian method assumes the specification of a multivariate prior distribution for the
coefficients, a requirement that limits its practical utility. Other Bayesian methods
arising from Econometrics are reviewed by Gaver and Geisel (1974).

Applications of Bayesian methods for the comparison of marketing models include
work by Blattberg and Sen (1975) and Barry and Wildt (1977). Blattberg and Sen
employed Bayesian model discrimination (BDIS) techniques (Zellner 1971) to compare
stochastic brand choice models, while Barry and Wildt demonstrated that for some
decision-making situations Bayesian techniques could be developed which bypass the
model selection process.

The interrelatedness of the above categories of methods is exemplified by the fact
that using Bayesian arguments Smith and Spiegelhalter (1980) obtained criteria closely
related to those of Akaike and Schwarz. The method proposed in the next section
combines advantages of the general cross-validation, likelihood and Bayesian ap-
proaches, so it may be helpful to review the relative strengths that each of these
methodologies brings to our BCVL procedure.

As in cross-validation the criterion here will be computed on a holdout sample. This

Copyright © 2001 All Rights Reserved



24 ROLAND T. RUST AND DAVID C. SCHMITTLEIN

usually means that the researcher is more concerned with choosing a model that will
perform well with future datasets rather than picking one which perfectly mirrors the
underlying process. In other words simpler models with less estimation error may be
chosen over more complex, and more correct, models. This use of cross-validation is
appropriate in most marketing situations where the chosen model is to be used for
making actual managerial decisions (e.g., designing products, setting advertising bud-
gets, selecting salespeople).

But models are also used to test theories about marketing phenomena, with statisti-
cal significance serving as the criterion for rejecting theories. Here, errors in estimation
of parameters are not used as a criterion. Instead, more complex models are chosen if
they significantly reduce modelling error. This is as it should be, and we do not
propose the model selection method below as an alternative to statistical significance
tests where those tests both should be used (i.e., in testing theories) and may be used.
However, as noted earlier, the common tests for statistical significance apply only to
nested models. When those significance tests cannot be performed, we argue that the
approach proposed here, based on cross-validation, is a reasonable alternative. Simula-
tion results in §5 show that our approach is effective in identifying the true underlying
model among several nonnested competitors, at least when the models are of roughly
equal complexity.

The advantages which the likelihood and Bayesian methodologies bring to our
proposed method are somewhat interrelated. As described in the next section, cross-
validation of the likelihood is appealing in itself, is equivalent in large samples to
Akaike’s criterion, appears also to be similar to Akaike’s criterion in small samples (see
§8) and makes it easy to use a Bayesian approach. That is, prior probabilities for each
of the competing models can be specified and combined with the likelihood to yield
posterior probabilities. In particular this enables the researcher to perform pseudo-
hypothesis tests for the models. In other words, instead of specifying an a-level of 0.05
for rejecting a model in a statistical significance test, a prior probability of 0.95 for that
model may be given. The procedure’s description in the next section, together with the
simulation and empirical examples which follow, should further illustrate the benefits
of combining these three general methodologies.

3. Formulation of the BCVL Procedure

This section proposes a Bayesian cross-validated likelihood (BCVL) method; a new
method for comparing alternative specifications of quantitative models. The method
provides a criterion for model comparison that may easily and usefully be applied in a
large number of model selection situations in Marketing.

3.1. Theoretical Justification

The BCVL method is Bayesian, permitting the specifications of prior probabilities
for the competing models. These priors may incorporate managerial judgement,
intuition, or other factors relating to model plausibility. Much has been written
concerning criteria other than sheer performance which should be used in selecting a
model (see, for example, Lilien 1970; Little 1970; Armstrong and Shapiro 1974;
Wilson 1979). The Bayesian nature of the method also produces posterior probabilities
that are interpretable as probabilities of model correctness, given that the set of
alternative models is known to contain the correct one.

Cross-validation is an important part of the BCVL method, enabling the models to
be tested on data other than those used to estimate the parameters of the models. A
split-half procedure could be used, or (whenever possible) entirely separate data sets
could be used.

The BCVL method uses the likelihood function as its indicator of model fit.
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Cross-validation of the likelihood function is an alternative to the use of situation-
specific fit criteria, and is thus of more general applicability. For example, maximum
likelihood estimation methods have been formulated for a vast number of statistical
techniques for which alternative fit techniques vary widely. Also supporting the use of
likelihood functions is the Likelihood Principle, which states that the likelihood
function is sufficient for inferences and decisions in any experiment (Raiffa 1970,
p- 286). While the Likelihood Principle is not accepted by all statisticians, it is accepted
by all Bayesians.

In addition marketing models often have multiple objectives. Several important
parameters or measures may arise from the same model, each with its own unique
practical relevance. For example, the well-known 2-parameter NBD model (and
several competitors) can predict the distribution and moments of the number of brand
purchases, the amount of brand switching, and the expected number of future
purchases by individuals who have made 0, 1, 2, etc. purchases in an earlier period.
Similarly, the 2-parameter beta binomial model of media viewing, and its competitors,
predict the distribution of the number of exposures for a media vehicle as well as the
reach and frequency generated by any given number of exposure opportunities. It also
predicts the probability that an individual will see the vehicle on the next occasion
given exposure to X out of the last N opportunities. (See Greene 1982 for an
introduction to both of these marketing models.) We already know that maximizing
the likelihood function is an especially effective method for choosing the particular
parameter values, both for the NBD (Shenton and Bowman 1977) and for the beta
binomial model (Kleinman 1973). It is simply suggested that the same idea is useful for
choosing among models with different parametric forms, e.g., between the NBD and
other models of brand choice. In such circumstances the use of the likelihood function
provides a standard method of assessing fit which should provide an effective surro-
gate for a variety of more specific fit criteria.

3.2. Posterior Probabilities for Competing Models

The BCVL method of model comparison is summarized by the following steps:

1. Specify the mathematical forms of the competing models.

2. Choose prior probabilities for the models.

3. Randomly split one sample or obtain two distinct samples of empirical observa-
tions on which the models may be tested.

4. Estimate the parameters of the models on the first sample.

5. Using the parameters from step 4, obtain likelihoods for the models from the
second sample.

6. Calculate posterior probabilities for each of the models.

The specification of competing models is accomplished ideally by the application of
established theory. Where existing theory is insufficient, exploratory methods may be
employed to seek out plausible models (e.g., see Tukey 1977; Rust and Bornman
1982).

Prior probabilities are then assigned to the models, perhaps incorporating such
factors as attractiveness, perceived goodness, or nonperformance criteria. If there is
inadequate advance basis for differentiation between the models, equal priors may be
assigned. Using model parameters estimated on the first sample, likelihoods are
calculated for each model on the second sample. Then posterior probabilities may be
calculated for each of the models.

Expressed more formally, let S, (j=1,..., M) be the competing models, which
may be nested or nonnested, with prior probabilities P(S). Let a, denote a parameter-
ization of S, constrained to a feasible parameter space A,. Let D, and D, represent the
empirical data from samples one and two respectively.
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First, model parameter estimates a* are obtained from the first sample:
o = max (D, §,() (6)

where L represents likelihood and S,(a)) represents model S, with parameters ;. Then
posterior probabilities are obtained for each of the models:

P(S,|D,) =[L(D2;SJ) ’ P(Sj)]/L(Dz)

=[Ly:5(a) P(5)]/ S [L@:iS (@) PS)] ()

To facilitate computation, it is useful to reexpress equation (7) in terms of the
likelihoods at each of the data points:

P(51D) = 3 L0w5(e) P(8)/ 3| TT 10w |PEs) @)

Taking logarithms and exponentiating for each of the products in (8) gives:
M
= exp[ S log L(D,, ; S,(a*)) + logP(Sj)]/ D exp[ Slog L(D, ; S,(a*))
x i=1 x
+log P(S, )] 9
= { > [exp{ > log L(D,, ; S;(a)) + log P(S,)

- SlogL(D.:(a?) —1og1>(s;)}]}_' (10)

where D,, represents the data corresponding to observation x.

It should be noted that the division of data into an estimation sample (D,) and
prediction sample (D,), performing steps 3-5 above, can be repeated to obtain more
stable values for the predicted likelihood function. For example, with a total of N
observations one can leave out the xth one, estimate each model based on the
remaining N — 1 points, and compute the likelihood (call it L(x)) of the omitted
observation. This procedure can be performed N times for x = 1,2, ..., N. Then, the
cross-validated likelihood is

N
L* EXI;IIL(X) (11)

and one would use this value in step 6 to calculate the posterior probabilities for each
model.

Using L* as the cross-validated likelihood for predictive models has several concep-
tual advantages. First, a relatively stable value for L* results since all ¥ data points are
held out in turn. Second, since N — 1 observations are used to predict each point the
cross-validated likelihood should be close to the likelihood actually obtained with
future data (when presumably all N observations will be used in estimation). This
corrects a serious drawback of split-half cross-validation in which, due to only half the
sample being used, the estimation error will be larger than it would be using the entire
sample. Finally, if the proposed model is true Stone (1977) showed that LogL* is
asymptotically equal to Akaike’s Information Criterion A. Naturally, however, compu-
tation of L* may be quite time consuming since for each model the parameter
estimates a* must be obtained N times.
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Strictly speaking L* is an approximation, because some dependence exists between
the density estimates at the different data points. However as the sample size increases
this dependence decreases in importance, and may be ignored for all practical
purposes in large samples. As a rule, the effect of any one data point on resulting
parameter estimates should be very slight with sample sizes which are typical for
marketing studies.! Thus we believe that the decrease in estimation error with the L*
method, and the resulting increase in stability, make the L* method preferable to the
sample split-half version of the BCVL whenever the computational requirements for
L* are feasible. Further justification for this form of cross-validation is given by Stone
(1974), and the method is empirically reinforced by the simulation results in §5.

In summary, the BCVL method described here provides a mechanism for choosing
between general functional forms for marketing models; e.g., choosing between Mod-
els A and B in the introduction. Once the general form has been chosen the entire set
of available data would be used to estimate the particular parameters (4,, 4,, 4, and
A, for Model A) which completely specify that selected model. The BCVL is employed
by choosing priors for the competing models and then, for each model,

—estimating any parameters using an initial sample,

—computing the likelihood of the observations in a holdout sample, and

—computing the model’s posterior probability.

Of course if equal priors are assigned, the BCVL chooses the model which has the
highest likelihood for seeing the data actually observed in a holdout sample.

4. Comparison of the BCVL to Other Approaches

The BCVL method incorporates the ideas from several methods for comparing
models. As the discussion in §3 suggests, using the likelihood of one or more holdout
samples to aid in model selection (in particular as computed by L*) has been proposed
previously (Stone 1977). One purpose of this paper is to increase the awareness of these
methods among marketing model-builders, and §§6-8 show their applicability to some
marketing problems. The other objective here is to demonstrate how prior probabilities
can be included in a natural way with approaches that cross-validate the likelihood. It
is perhaps useful to briefly point out some of the ways in which this BCVL method is
different from related methods which have been proposed in the past.

The BCVL method is different from traditional cross-validation methods in two
respects. First, the cross-validation is performed using the likelihood function, instead
of a situation-specific criterion such as the mean square error of a predicted quantity.
Second, the Bayesian format permits the incorporation of prior probabilities for the
competing models and produces posterior probabilities for the models.

The BCVL method also differs from the likelihood methods of model comparison
which have been proposed in recent years. Aside from the incorporation of prior and
posterior probabilities, the BCVL method assesses validity through direct cross-
validation rather than by subtracting an inferred penalty term from the likelihood
function.

The BCVL method is much more general than the Bayesian methods which have
been developed for such specific applications as regression. If the likelihood functions
may be computed, then no additional specialized packages are needed. Thus the
BCVL method may be applied even to situations for which no traditjonal Bayesian
estimation methods have been developed. Some Bayesian methods do lead to posterior
distributions for model parameters, which are not available with the BCVL. But those

TAn exception to this rule would be a regression model with a great deal of multicollinearity in the
predictor variables. But even there, while the effect of one data pomt on the parameter estimates can be
large, the effect on the likelihood of a held-out observation will be much smaller.
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posteriors are generally available (and appropriate) for estimating a selected paramet-
ric model, rather than for choosing between different models.

Since Blattberg and Sen (1975) and Barry and Wildt (1977) have proposed other
Bayesian methods in the marketing literature the ways in which the BCVL method is
different will be described. The Blattberg and Sen approach requires the a priori
construction of prior distributions for the parameters of each model. This requirement,
which is typical of the traditional Bayesian approaches, is bypassed by the BCVL
method. The only priors needed to employ the BCVL method are the prior probabili-
ties for each of the models (which must also be supplied in the Blattberg and Sen
approach).

Barry and Wildt make the interesting suggestion that if a decision maker is
interested in a particular marketing variable Y then what is really important is the
posterior distribution for Y, and thus the model selection step may be unnecessary.
The BCVL approach is more general in the sense that by employing likelihoods it can
easily also treat situations in which several variables are important. The Barry and
Wildt approach might conceivably be extended to muitiple criteria, but the computa-
tional problems (which for a simple application might involve muitiple integration of a
multivariate normal distribution) appear formidable. It should be noted that in
situations where a single criterion is important it may sometimes be possible to
improve upon the BCVL by directly minimizing the appropriate loss functions.
However, the simulation of the next section implies that such gains may be small.

5. A Simulation of the Comparative Performance of the BCVL

A simulation was performed to test the performance of the BCVL in comparison to
the performance of existing methods of comparing nonnested quantitative models. The
BCVL is a model comparison method of great generality, and it would be impossible
to design a simulation which would evaluate the performance of the BCVL under all
possible conditions and applications. We therefore employ what we feel is a typical
application, with the hope that the findings of this simulation may be suggestive of the
findings which might result from many practical applications.

5.1. Design

We investigate the case in which three nonnested models of seasonal demand are to
be compared:

MODEL A: Y=a+ bSin(d)+e, 9 €[0,2m7),
Y=a+b(n0— 0% +e, €[0,7),
MODEL B:
Y=a+e, [77 2m),
Y=a+e, 0 €[n/4,37/4),
MODELC: {Y=b+e, 8 €[57/4,77/4),
Y=c+e, otherwise,

with e normal and identically and independently distributed with zero mean, and #
(representing time) is uniformly distributed.

Model A models the seasonality of demand by a simple sine wave. Model B assumes
a base rate a of sales, above which demand peaks in the strongest season. Model C is
analogous to using seasonal dummy variables to model sales, which in effect assumes
constant demand across a given season. When A is the true model we use a = 15 and
b =5, when Bistrue weusea=10and b = 20/772, and when C is true we use a = 18,

o
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b =10, and ¢ = 12. Thus the models look similar over the time parameter #, and may
reasonably be used to approximate one another.

Seven model comparison methods are used, and their performance is evaluated on
two criteria. One of the advantages of this particular application is that mean square
error, a common criterion for evaluating regression models, may be used. If the BCVL
method performs well against mean square error in this well-explored application, then
that may make us more comfortable about using BCVL in applications which are not
so well explored. Three mean square error methods are used: mean square error on the
total sample, on a holdout sample, and on a “jackknifed” holdout set (one point
deleted at a time). The Akaike and Schwarz criteria are also evaluated, as are two
forms of the BCVL: the simple split-sample form and the conceptually preferable L*
form.

There are 5400 random data sets generated, reflecting 25 replications each of all
combinations of three error variance levels (10, 20 and 30), four sample sizes (15, 30,
50 and 100), six orders of model likelihood (with the most likely model occurring with
probability 0.6, next most likely with probability 0.3, and the least likely with
probability 0.1), and three levels of knowledge about the model priors (priors known,
priors unknown (and thus assumed equal) but all three models in the consideration set,
and the true model omitted from the consideration set). All observations in each of the
5400 data sets come from one single true model. But for each experimental condition
(i.e., variance level, sample size, knowledge about priors, etc.) the true model varies
across the 25 replications, in accordance with the prior probabilities specified for that
condition. These variables are chosen to reflect a wide range of possibilities relating to
such factors as model quality, quantity of data, and the prior knowledge of the
researchers. In total over 263,000 data points are employed in the simulation.

The two criteria used to evaluate the model comparison methods are mean square
error (MSE) and the proportion of the time the true model was correctly selected
(PROP). Mean square error is a convenient fit measure which is specific to the
regression example, but PROP is a general measure which applies to all potential
applications of the BCVL.

Each of the seven methods was used to select the best model specification, and that
model was then estimated using the entire sample.

5.2. Results

The overall performance of the comparison methods is compared in Table 1.
Pairwise z tests were performed on the means, testing the two-sided hypothesis that the
mean (or proportion) for the L* form of the BCVL is equal to the competing mean (or
proportion). On the MSE criterion the L* form of the BCVL is superior to all other

TABLE 1

Simulation Results: Overall Comparative Performance of
Model Comparison Methods

Method MSE PROP
MSE (Total) 2.49** 0.44%*
Akaike 2.35%* 0.46
Schwarz 2.31* 0.45*
MSE (Split) 2.51%* 0.37%*
BCVL (Split) 2.48** 0.37**
MSE (“Jackknife”) 2.34** 0.45
BCVL (L*) 2.28 0.46

*Worse than BCVL(L*) at the 0.05 level.
**Worse than BCVL(L*) at the 0.01 level.
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TABLE 2
Simulation Results: Comparative Performance of Model Comparison Methods By Error Variance
Low Variance Medium Variance High Variance
(10) (20) 30)

Method MSE PROP MSE PROP MSE PROP
MSE (Total) 1.45%* 0.51 2.57%+ 0.42+* 3.45%+ 0.39*+
Akaike 1.41 0.53° 2.43%* 0.44* 3.21* 041
Schwarz 1.39° 0.522 241%* 0.44* 3.14 0.39**
MSE (Split) 1.54** 0.43** 2.62** 0.35** 3.37** 0.32%*
BCVL (Split) 1.60** 0.41%* 2.56** 0.36** 3.28%* 0.34%*
MSE (“Jackknife”) 1.42 0.51 2.42%* 0.44* 3.18** 0.41
BCVL(L*) 1.41 0.51 235 0.46 3.10 0.42

*Worse than BCVL(L*) at the 0.05 level.
**Worse than BCVL(L*) at the 0.01 level.
2Better than BCVL(L*) at the 0.05 level.
bBetter than BCVL(L*) at the 0.01 level.

methods at least at the 0.05 level. On the PROP criterion only the Akaike criterion and
MSE (“Jackknife”) are not significantly worse.

Interesting patterns emerge when results are compared for different levels of error
variance (Table 2). For low variance BCVL(L*) shows little advantage over most other
methods and in fact performs uniformly worse than the Schwarz criterion. But as
variance increases the comparative performance of BCVL(L*) improves. For medium
and high variance BCVL(L*) is never worse than the other methods and is always
significantly better on at least one of the criteria.

Sample size variation also produces interesting (and, in this case, unexpected)
results. One of the concerns about the use of a likelihood-based technique such as the
BCVL is its performance on small sample sizes, where its consistency property is of
little use. However, from Table 3 it can be seen that for the small sample size of 15
BCVL(L*) outperforms all other methods on the MSE criterion at the 0.01 level. At
larger sample sizes its performance is also good, as it never does significantly worse
than any other method on either criterion.

Table 4 examines the effect of prior knowledge on the comparative performance of
the methods. The ability of the BCVL approach to incorporate directly and simply this
prior knowledge makes BCVL(L*) much preferable when there is knowledge of the
priors. This is manifested by significant advantages (at the 0.01 level) over all other
methods. Interestingly even when the priors are not known BCVL(L*) performs quite
well. Another potential concern for a Bayesian model is the problem of the true model
being left out of the consideration set. This is apparently not a serious problem (at
least in this application) because on the MSE criterion BCVL(L*) performs statisti-
cally better (at the 0.01 level) than all but the Schwarz criterion for this case.

TABLE 3
Simulation Results: Comparative Performance of Model Comparison Methods by Sample Size
Very Small Small Large Very Large
(15) 30 (50) (100)

Method MSE PROP MSE PROP MSE PROP MSE PROP
MSE (Total) 4.58** 0.30 2.59%* 0.41** 1.68** 0.48** 1.10%* 0.56
Akaike 431** 0.34 2.42 043 1.60 0.48 1.07 0.57
Schwarz 4.22%* 0.34 2.37 0.42%* 1.58 0.48* 1.09 0.56**
MSE (Split) 4.38** 0.26** 2.60** 0.34** 1.81** 0.40** 1.25** 0.47**
BCVL (Split) 4.25%* 0.27** 2.63** 0.33%* 1.79** 0.41** 1.26** 0.47%+
MSE (“Jackknife™) 4.26%* 0.32 243* 0.44 1.60 0.49 1.07 0.57
BCVL(L*) 4.10 0.33 2.38 0.45 1.58 0.50 1.07 0.57

*Worse than BCVL(L*) at the 0.05 level.
**Worse than BCVL(L*) at the 0.01 level.
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TABLE 4

Simulation Results: Comparative Performance of Model Comparison
Methods By Knowledge of Priors

Priors Known: Priors Unknown: Priors Unknown:

Correct Model in Correct Model in Correct Model

Consideration Set Consideration Set Not Considered

Method MSE PROP MSE PROP MSE PROP

MSE (Total) 2.17%* 0.66** 2.17** 0.66 3.12%* n.a.
Akaike 2.02%* 0.69** 2.02 0.69¢ 3.01** n.a.
Schwarz 2.01** 0.67** 2.01 0.67 2.93 n.a.
MSE (Split) 2.25%+ 0.55** 2.25%* 0.55%* 3.04** n.a.
BCVL (Split) 2.15%* 0.60** 2.28** 0.52** 3.01%* n.a.
MSE (“Jackknife”) 2.02** 0.68** 2.02 0.68* 2.98*+* n.a.
BCVL(L*) 1.92 0.72 1.99 0.66 2.95 n.a.

*Worse than BCVL (L*) at the 0.05 level.
**Worse than BCVL(L*) at the 0.01 level.
aBetter than BCVL(L*) at the 0.01 level.

5.3. Conclusions

The L* (“Jackknife”) version of the BCVL method performs very well across a wide
variety of conditions. It should be stressed again that this is just one of a vast number
of possible applications, and that any sweeping conclusions concerning the perfor-
mance of the BCVL method would be premature. Nevertheless for this application the
results appear generally favorable for the preferable L* version of the BCVL.

In general BCVL(L*) appears to perform particularly well for situations involving
high variance, low sample sizes, or extensive prior knowledge. The Akaike and
Schwarz criteria also performed well, although generally somewhat worse than
BCVL(L*).

6. Regression Models of the Marketing Mix

To exemplify the usefulness of likelihood methods in comparing regression models,
we first examine the case in which two nonnested regression models are compared.
Churchill (1979) reported territory data for the sales (Y), advertising spots (X,),
number of sales representatives (X,), and wholesale efficiency index (X;) for a brand
of ball point pens (Table 5). Let us suppose that the two sales prediction models below
are the models under consideration:

MODEL A: Y = A+ A, X, + A,X, + A;X;, (12)

MODEL B: Y = B, + BIn(X,) + B,In(X,) + Bsln(X,). (13)
Model A is a simple linear regression model and Model B is the linear-in-logs model
(Carroll, Green and DeSarbo 1979). Model B has the property of modelling diminish-
ing returns for each variable separately.

Assuming normal error variance, the likelihood function for each model is calcu-
lated as follows:

N A
L(D) = AI;II[(I/\/ZW—V)exp{—(Y, - Y,)2/2V}] (14)

where D represents the data and ¥ is the error variance.

The Akaike and Schwarz criteria may be applied to the entire set of data. Since least
squares regression estimates are maximum likelihood, standard least squares estima-
tion programs may be used to provide the estimates. It is worth noting, though, that
the maximum likelihood estimate of the error variance is the mean square error, which
is a biased estimator (Theil 1978, p. 150).
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TABLE 5
Territory Data for Click Ball Point Pens*
Sample Sales (Y) Advertising (X)) Number of Wholesale (X;)
Territory  Assignment  (in Thousands of $) (TV Spots Per Month) Sales Reps (X ,) Efficiency Index
005 Post 260.3 5 3 4
019 Pre 286.1 7 5 2
033 Post 279.4 6 3 3
039 Post 410.8 9 4 4
061 Pre 438.2 12 6 1
082 Post 315.3 8 3 4
091 Post 565.1 11 7 3
010 Post 570.0 16 8 2
115 Pre 426.1 13 4 3
118 Post 315.0 7 3 4
133 Post 403.6 10 6 1
149 Pre 220.5 4 4 1
162 Pre 343.6 9 4 3
164 Pre 644.6 17 8 4
178 Pre 5204 19 7 2
187 Post 329.5 9 3 2
189 Post 426.0 11 6 4
205 Pre 343.2 8 3 3
222 Post 450.4 13 5 4
237 Pre 421.8 14 5 2
242 Pre 245.6 7 4 4
251 Pre 503.3 16 6 3
260 Post 375.7 9 S 3
266 Post 265.5 5 3 3
279 Pre 620.6 18 6 4
298 Post 450.5 18 5 3
306 Post 270.1 5 3 2
332 Post 368.0 7 6 2
347 Pre 556.1 12 7 1
358 Pre 570.0 13 6 4
362 Pre 318.5 8 4 3
370 Pre 260.2 6 3 2
391 Post 667.0 16 8 2
408 Post 618.3 19 8 2
412 Pre 525.3 17 7 4
430 Pre 332.2 10 4 3
442 Post 3932 12 5 3
467 Pre 283.5 8 3 3
471 Pre 376.2 10 5 4
488 Post 481.8 12 5 2

*This table is adapted from Churchill (1979, p. 505).

The results of the Akaike criterion are as follows for Models A and B:
C,y(A)= —153.60 — 5 = —158.60, (15)
Cy(B)y= —160.21 — 5= —165.21. (16)

Thus, the Akaike criterion would select Model A, the linear model, as the preferred
model.
The results of the Schwarz criterion are:

Cs(A) = —153.60 — §1n(40) = — 162.82, (17)
Cp(B) = —160.21 — §In(40) = —169.43. (18)
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The Schwarz criterion also prefers Model A. In fact, whenever the number of
estimated parameters is the same for two competing models the two criteria will
unavoidably prefer the same model, since the log likelihood is adjusted by the same
amount for each model. In effect one is just comparing the likelihoods.

Alternatively, posterior probabilities may be computed by employing the BCVL
method. Here, instead of using L* the sample will be randomly split, as in Table 5.
The coefficients for each of the models are obtained using the estimation sample.
Likelihood functions are then calculated for both models on the validation sample.
Assuming priors of 0.5, posterior probabilities of 0.91 and 0.09 are obtained for
Models A and B, respectively, using equation (7).

Whereas comparison of log likelihoods and other error criteria are often difficult to
make intuitive, since the magnitudes vary with the application, these posterior proba-
bilities provide a measurement of model comparison that is easily grasped, and whose
magnitudes are comparable across application. Therefore, the BCVL method should
facilitate tradeoffs between the objective and subjective components of model selec-
tion.

In the interest of parsimony, it may be desirable to consider models obtained by
eliminating unnecessary independent variables from Models A and B. One approach
to dealing with this issue involves employing the usual nested F tests to determine the
significance of the variables. Then, with the insignificant variables removed, Model A
with its remaining variables could be tested against Model B with its remaining
variables.

In this case, using the 0.05 significance level and the data from all observations, X,
is deleted from both Models A and B. The resulting criteria based on 2-variable
versions of the models are:

Co(A)= —15439 — 4 = —158.39, (19)
C,(B)= —171.80 — 4 = —175.80, (20)
Cp(A) = — 15439 — 4/2In(40) = — 161.77, 1)
Cy(B)= —171.80 — 4/21In(40) = —179.18. (22)

Using each criterion Model A, the linear model, is still preferred. It is interesting to
note the comparison between the criteria for the two variable models and those for the
three variable models. Using both criteria the performance of Model B is judged to
have deteriorated with the loss of X, which is inconsistent with the implications of the
hypothesis tests. However, Model A is judged to have been improved by the elimina-
tion of X5, which is consistent with the hypothesis tests.

The construction of pseudo-hypothesis tests using the BCVL method may be
illustrated by reconsidering the number of independent variables question. In Model
A, assuming equal priors, the posterior probability for the three-variable model was
0.53 versus 0.47 for the model deleting X;. A pseudo-hypothesis test giving the more
parsimonious model a prior of 0.95 would make the posteriors in this case 0.06 for the
three-variable model and 0.94 for the two-variable model, leading to the two-variable
model being selected. It is equivalent to set the prior at 0.95 and then use 0.5 posterior
probability as the critical value, as may be obtained from equation (7).

The selection of the best model using BCVL does not negate the usefulness of
conventional model testing procedures. The researcher will still find it appropriate to
perform the usual diagnostic tests (e.g., on normality of the error term). If the “best”
model is found to be invalid on these grounds, then this is an argument for expanding
the consideration set of model specifications.

Copyright © 2001 All Rights Reserved



34 ROLAND T. RUST AND DAVID C. SCHMITTLEIN

7. Choosing an Innovation Diffusion Model

Innovation diffusion models of new product acceptance are generally developed and
applied with one of two uses in mind. First, the inferred characteristics of the
population (e.g., proportion of “innovators” vs. “imitators”) may be of interest. Or
secondly, one might desire forecasts of some quantities before they are observed. These
can include the ultimate number of adopters, the number of adopters in some future
time interval, the time at which the adoption rate will peak, and the adoption rate in
that period.

When these and other predictions are of interest cross-validating the likelihood is a
natural summary measure of model effectiveness. Also, since equal priors are assumed
for the models considered, the criterion for selection is simply L* (defined in §3). That
is, one-observation at a time is dropped for cross validation.

The general class of models examined here is described by Schmittlein and Mahajan
(1982). The probability that any individual adopts by time ¢ is given by

F(y=c(l1—e ")/(1 + ae™") (23)

where p = b/(a + 1) is a coefficient representing innovativeness, ¢ = ab/(a + 1) repre-
sents imitation, and c is the probability of ever adopting. So, in a sample of size M, cM
is the expected number that will eventually adopt.

Heeler and Hustad (1980) discuss an interesting issue regarding innovation diffusion
models, namely the use of management judgement or other external sources instead of
early adoption data to estimate the parameters. For example, the average parameter
estimate using the entire adoption histories of several similar products might be used.
This decision can be viewed in terms of the two sources of error described in §2. The
use of externally acquired parameter values obviously reduces estimation error but
since the choice of analogous products is unlikely to be perfect it increases modelling
error. This section shows how the BCVL can be used to choose between the use of
external parameter values and values estimated from the early adoption data at hand.

The diffusion pattern for four medical innovations—ultrasound, CT head, CT body,
and mammography—will be of interest here. Yearly adoption data from a sample of
209 hospitals are available for the estimation of (a,b,c) and are described in detail
elsewhere (Schmittlein and Mahajan 1982). However, instead of estimating all three
parameters from these data, the notion of estimating a = q/p separately using the
adoption pattern for several durable goods will also be investigated. Specifically a will
be obtained as the average maximum likelihood estimate from data on four consumer
durable adoptions—clothes dryers, room air conditioners, color TV and dishwashers.
Those estimates are given in Schmittlein and Mahajan (1982). Taking this approach
reduces the instability of the estimates since only b and ¢ must be estimated from the
hospital adoption data. Consequently, it will perform better in prediction than the
model with all three parameters estimated if the relative sizes of the innovative and
imitative effects are nearly the same for consumer durables and medical innovations.

The results from fitting the two and three parameter models are given in Table 6.
The model with all three parameters estimated is effective in representing the actual
adoption curves, as the figures in Schmittlein and Mahajan (1982) show. The first four
columns list, for the four innovations, the maximum likelihood parameter estimates,
logarithm of the maximum likelihood /, logarithm of the cross-validated likelihood L*,
Akaike’s information criterion 4, and the BCVL posterior probabilities derived from
Log L*. Based on both the values of Log L* and A the three-parameter approach is
preferred for CT head, CT body, and mammography; with the two-parameter model
chosen for ultrasound. So only in this last case is the accuracy of the judgmental
estimate of a and the added stability of the two-parameter model enough to offset the
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TABLE 6
Diffusion Model Results for Medical Innovations
Mammography

Ultrasound CT Head CT Body Case 1 Case 2
3 Parameter Model
a 70.39 393.6 1191. 249.8 249.8
b 0.4406 1.399 1.671 0.6474 0.6474
¢ 0.9377 0.5608 0.4956 0.5944 0.5944
1(4,6,0) - 5113 - 321.0 - 2740 —4173 - 4173
Log L*(a, 5,8 - 5144 - 3239 —2769 —420.5 — 4205
A —5143 — 3240 -277.0 —420.3 —420.3
Posterior prob. 0.35 1.00 1.00 0.99 0.38
2 Parameter Model
a 4141 4141 41.41 41.41 5517
b 0.3830 0.8922 0.8334 0.4475 0.7348
¢ 0.9784 0.5936 0.6062 0.6245 0.5886
1(a, b, &) - 5121 - 3293 —285.1 - 4232 — 4182
Log L*(a, b, —513.8 —330.8 —286.7 — 4248 — 4200
A - 514.1 - 3313 —287.1 — 4252 - 420.2
Posterior prob. 0.65 0.00 0.00 0.01 0.62

modelling error from the imperfect analogy of consumer durables with medical
innovations. Note that in all cases the values of LogL* and 4 are very close. In
addition to the result on their asymptotic equality, it seems that one can also hope to
use A as a substitute for L* in approximating BCVL posterior probabilities, for large
sample sizes.

Finally, the last column of Table 6 results from considering, for mammography, a
different external source for the parameter a in the two-parameter model. Given that
the estimate 4 has already been found for ultrasound, CT head and CT body, the
average of these three values can provide a in the two-parameter model for
mammography. Presumably there is a closer analogy between mammography and the
other medical innovations than with consumer durables. In fact, the results support
this contention since the approach where only b and ¢ are obtained from the early
mammography adoptions outperforms, in terms of Log L* and A4, the model with all
three parameters. The posterior probability for the two-parameter model increases
from 0.01 to 0.62 when the more appropriate innovations are used to estimate a. So the
analysis demonstrates that, in some cases, using externally derived quantities for
diffusion models can indeed constitute a better strategy than estimating them from
initial data on adoptions. But more importantly, the BCVL approach or other
likelihood criteria enable the researcher to make this tradeoff between modelling and
estimation error any time that the use of external parameter values is under consider-
ation.

8. Modelling Business Failures

In this final application a model is developed to predict business failures in the years
before they occur. Data for 23 failed and 23 nonfailed firms that were originally
analyzed by Sharma and Mahajan (1980) are used to calibrate logistic regression
models for this binary response. Those researchers found two variables to be signifi-
cantly related to failure—return on assets and the firm’s current ratio. So the question
here concerns the effectiveness of using both of these quantities to predict business
failures.

As was the case with the previous applications, a variety of predictions may be of
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interest. In addition to making a “failed /nonfailed” binary prediction for each of a set
of firms, one may wish to identify those firms whose probability of failure is greater
than g as a risk assessment. Alternatively, a set of firms might be rank ordered in terms
of likelihood of failure. As discussed in §3.1, with these multiple predictions cross-
validating the likelihood function is again a natural measure of predictive effective-
ness.

In this section two specifications of the logit model will be compared, the first using
both return on assets and the current ratio as predictors, and the second using only
return on assets. With both variables in the model one has Equation (1):

P,
Log( ﬁ) =ay+ a;ROA,_x + a,CR,_,  where (24)
!
P, = the probability that a firm doesn’t fail in year ¢, (25)
ROA, _ = the firm’s return on assets in year t — K, and (26)
CR,_ x = the firm’s current ratio in year ¢ — K. (27)

Since the data were available, business failures were predicted in years 1 to 5 before
failure. So equation (1) was estimated by maximum likelihood separately for the cases

TABLE 7
Logit Analysis of Business Failures

Years Before Failure

1 2 3 4 5
Equation (1)
Constant - 3.69 —3.96 - 3.56 —2.63 - 544
(2.07) (1.63) (1.38) (1.13) (2.36)
Return on 25.04 31.65 19.18 18.22 33.13
Assets (9.38) (11.49) (7.47) (6.93) (16.19)
Current Ratio 1.23 0.58 0.72 0.19 0.66
(1.08) (0.81) (0.64) (0.48) (0.83)
Log Likelihood /, - 531 —15.32 —2235 —24.59 —11.53
Log L* - 6.70 -19.24 —25.65 —27.69 -17.71
A —8.31 —18.32 —25.35 —27.59 —14.53
Posterior prob. 0.67 0.28 043 0.35 0.04
Egquation (2)
Constant - 1.90 -3.21 —245 -233 —4.64
(0.95) (1.11) (0.85) (0.85) (2.20)
Return on —28.83 36.15 22.82 19.25 37.80
Assets (10.26) (11.05) (7.40) (6.66) (17.96)
Log Likelihood /, —6.33 -15.73 —-23.18 —24.68 - 12.01
Log L* —7.43 - 18.32 —26.35 —27.08 - 14.42
A - 8.33 -17.73 —25.18 — 26.68 —14.01
Posterior prob. 0.33 0.72 0.57 0.65 0.96
24, - b) 2.04 0.809 1.65 0.172 0.957
Sample Size 36 44 46 44 26
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K =1,2,3,4,5, using the BMDP statistics iaackage (Dixon 1981). The results are listed
in Table 7, with the estimated standard error for each coefficient in parentheses.
Similarly, when only return on assets is used, the model becomes Equation (2):

P
Log( 1——t1’,) = B+ B1ROA, . (28)
Results for equation (2) are also given in Table 7. As can be seen by comparing Log L*
and Akaike’s A4 for equations (1) and (2), the model using only return on assets is
chosen for prediction with four of the five time horizons. That is, whenever predicting
failures two years to five years in advance, the estimation error (with these sample
sizes) is increased too much when the current ratio is included, more than offsetting its
contribution to the model. The degree to which the simpler model is superior is further
illuminated by examination of the BCVL posterior probabilities in Table 7. Equal
priors were used in computing these posterior probabilities.

9. Issues in Application

9.1. Choice of Samples

The strongest tests of model predictive validity require the use of two or more
independent samples. Unless multiple independent samples are available, the re-
searcher is forced to cross-validate on subsamples of a single sample. One advantage of
the BCVL method over the other likelihood methods of model comparison is its ability
to utilize explicitly two or more independent samples.

9.2. Using the Posterior Probabilities

In any practical situation the selection of a model may involve many criteria, and
thus the ability to analyze the corresponding tradeoffs becomes important. The
posterior probabilities obtained from the BCVL method may be useful as a means of
making more informed decisions on these tradeoffs. The posterior probabilities provide
an indication not only of which model is better, but also to what degree, and thus
facilitates the tradeoffs involving other criteria.

One possible use of the posterior probabilities would be to form an acceptance
region. For example, management may have a strong preference for Model A as
opposed to Model B, on the basis of subjective criteria. A possible decision rule would
be to accept Model A if its posterior probability were, say, greater than 0.2. This
reasoning is similar to that employed in traditional hypothesis testing.

9.3. Specification of Good Models

The specification of good models is essential to the successful application of any
model comparison. In the BCVL model, posterior probabilities will be apportioned
across the models, even if all of them are bad. Thus, careful consideration should be
given to relevant theoretical and empirical considerations in the model specification
step. It should be noted however that at least for the application in the simulation the
BCVL model performed well even when the true model was not in the consideration
set.

9.4. Nested Models

When nested models are included among the competing set, the assumptions of the
BCVL model would appear to be violated. This problem has been noted by Atkinson
(1978) in the context of the Bayesian comparison of linear regression models. In
particular, if Model A included Model B as a special case, then both Model A and
Model B may be true. A simple solution to this dilemma is achieved by deleting from
the parameter space of Model A all points in which Model A is identical to Model B.
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This constraint forces the two models to be distinct, and the assumptions are no longer
violated. It should also rarely become an issue in operationalizing the BCVL method.
When the parameter spaces are continuous, as will typically be the case, the probabil-
ity of any finite collection of points (such as the set normally deleted with the above
constraint) will be zero. Thus, nested models will generally provide no theoretical or
operational difficulties.

There may be some concern over the fact that classical hypothesis testing and this
Bayesian approach may produce results for nested models that are apparently unre-
lated. However, this is not a condemnation of the Bayesian approach, but rather a
reflection of basic differences in philosophical orientation between the Classicists and
the Bayesians. A discussion of the theoretical basis for Bayesian statistics is given by
Box and Tiao (1973).

As alluded to previously, decision rules may also be incorporated within the
Bayesian approach, which resembles classical hypothesis testing. For example, when
Model B is more complex (i.e., more difficult to use) than (nested) Model A, then a
typical decision rule used in hypothesis testing is to choose Model B only if the
researcher is 95% sure that it is better. An alternative decision rule might be to choose
Model B over Model A only if B’s posterior probability was greater than 0.95. This
alternative pseudo-hypothesis testing procedure has the advantage of being applicable
even to models that are not hierarchically related.

9.5. Strengths and Limitations

The BCVL method described in this paper permits the comparison of nonnested,
quantitative models, even when models are functionally unrelated and /or have differ-
ent numbers of parameters. The posterior probabilities obtained for each of the models
facilitate tradeoffs in which objective criteria may be more conveniently weighed
against the subjective criteria. As is illustrated in the previous sections, applications are
possible for a wide array of typical predictive models in marketing.

On the other hand, the BCVL method may not be applied to models for which
likelihood functions may not be computed. This is not a serious limitation, however,
since the use of likelihoods is now widespread, and the use of models for which
likelihoods may be calculated is the typical case in marketing. Also, as stated
previously, if all of the competing models are bad, then the BCVL method will appear
to support bad models. This may be overcome through the exercising of care in model
specification.

A more serious problem arises in the choice of samples for cross-validating the
likelihood function. Split-half cross-validation will overstate the model’s estimation
error, since only half of the available sample is used. Thus, the jackknife-like proce-
dure used to obtain L* is preferred. Note that when the sample size N is relatively
small, estimating the parameters N times to calculate L* is not too difficult. When N is
larger, direct calculation of L* may be infeasible (too time consuming), but here one
can use the asymptotic equality of Log L* and Akaike’s Information Criterion 4. Since
the latter quanity is easily computed, the cross-validated likelihood may be replaced by
e in very large samples.

In summary, for choosing between competing predictive marketing models, the
BCVL approach offers three distinct advantages:

1. it allows incorporation of prior predispositions regarding model choice, with the
prior and posterior probabilities facilitating tradeoffs between objective and subjective
model criteria;

2. through cross-validation it reflects the total error (due to modelling plus estima-
tion) in the model’s predictions; and

3. by cross-validating the likelihood functions as opposed to single forecast quantities
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(i.e., usually an expected value) the ability of the chosen model to make a variety of
predictions is more accurately assessed.

Over a wide range of conditions in a large simulation, for at least one typical
application, the BCVL approach generally outperformed the existing methods for
comparing nonnested quantitative models.?
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