Optimal Pricing of New Subscription Services:
Analysis of a Market Experiment

Peter J. Danaher

Department of Marketing
University of Auckland
Private Bag 92019
Auckland
New Zealand

Ph: (64) (9) 373-7999
Fax: (64) (9) 373-7444
Email: p.danaher@auckland.ac.nz

Currently the author is Professor and Chair, Department of Marketing, University of Auckland, New Zealand. The author thanks the Editor, Area Editor and reviewers for comments which improved the manuscript.
Appendix 4 : Usage Partial Derivatives

\[\frac{\partial U}{\partial p^u} = \sum_{i=1}^{l} \sum_{t=1}^{T} \pi_t \exp \left(X_{it} \beta_i + \rho_{it} \sigma_i \right) \frac{\phi(E_{it})}{\Phi(R_{it})} \prod_{t=1}^{l} \Phi(R_{it}) \times \left\{ \beta_{1t} - \frac{\delta_{it} \phi(E_{it}) \rho_{it} \sigma_i}{\Phi^{2}(R_{it})} \left(R_{it} \phi(E_{it}) + \Phi(R_{it}) \right) + \sum_{t=1}^{l} \delta_{it} \phi(E_{it}) \right\} \]

and

\[\frac{\partial U}{\partial p^w} = \sum_{i=1}^{l} \sum_{t=1}^{T} \pi_t \exp \left(X_{it} \beta_i + \rho_{it} \sigma_i \right) \frac{\phi(E_{it})}{\Phi(R_{it})} \prod_{t=1}^{l} \Phi(R_{it}) \times \left\{ \beta_{2t} - \frac{\delta_{2t} \phi(E_{it}) \rho_{it} \sigma_i}{\Phi^{2}(R_{it})} \left(R_{it} \phi(E_{it}) + \Phi(R_{it}) \right) + \sum_{t=1}^{l} \delta_{2t} \phi(E_{it}) \right\} \]

Appendix 5 : Revenue Partial Derivatives

\[\frac{\partial \text{REVTOT}}{\partial p^u} = \sum_{i=1}^{l} \sum_{t=1}^{T} \pi_t \prod_{t=1}^{l} \Phi(R_{it}) + p^w \sum_{i=1}^{l} \sum_{t=1}^{T} \delta_{it} \phi(E_{it}) \prod_{t=1}^{l} \Phi(R_{it}) - \frac{p^w}{\partial p^u} \frac{\partial U}{\partial p^u} \]

and

\[\frac{\partial \text{REVTOT}}{\partial p^w} = p^w \sum_{i=1}^{l} \sum_{t=1}^{T} \sum_{t=1}^{T} \delta_{2t} \phi(E_{it}) \prod_{t=1}^{l} \Phi(R_{it}) + U + p^w \frac{\partial U}{\partial p^w} \]