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Abstract

A stochastic model of the calibration of subjective probabilities based on support theory

(Rottenstreich & Tversky, 1997; Tversky & Koehler, 1994) is presented. This model extends

support theory—a general representation of probability judgment—to the domain of calibra-

tion, the analysis of the correspondence between subjective and objective probability. The

random support model can account for the common finding of overconfidence, and also

predicts the form of the relationship between overconfidence and item difficulty (the ‘‘hard–

easy effect’’). The parameters of the model have natural psychological interpretations, such as

discriminability between correct and incorrect hypotheses, and extremity of judgment. The

random support model can be distinguished from other stochastic models of calibration by: (a)

using fewer parameters, (b) eliminating the use of variable cutoffs by mapping underlying

support directly into judged probability, (c) allowing validation of model parameters with

independent assessments of support, and (d) applying to a wide variety of tasks by framing

probability judgment in the integrative context of support theory.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The study of subjective probability, from both normative and descriptive per-

spectives, has long concerned psychologists, statisticians, economists, and other

behavioral and social scientists. People use subjective probabilities to represent their

beliefs about the likelihood of future events or their degree of confidence in the truth

of uncertain propositions. Consequently, understanding the nature of subjective

probability allows a glimpse into the structure of human knowledge and belief.

Furthermore, because the assessment of likelihood is an essential component of

choices made under uncertainty, developments in the study of subjective probability
are applicable to many models of decision-making.

One facet of the descriptive study of judgment under uncertainty concerns the

calibration of subjective probabilities: how well do subjective probabilities match

corresponding objective probabilities? Quite apart from the psychological impor-

tance of subjective probability as a measure of belief, the practical question of the
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relationship between subjective and objective probability is of great importance to
many applied endeavors, particularly risk and decision analysis.

1.1. Calibration studies

In a typical psychological study of calibration, a participant answers a number of

questions, or makes a series of forecasts about future events, and for each item

expresses a subjective probability that the chosen answer or forecast is correct. A

person is considered well-calibrated if for all events assigned a given subjective
probability p, 100p% of the events occur as predicted. Ideal calibration entails a

precise match between subjective assessments of likelihood and the corresponding

empirical relative frequencies. The psychological literature on calibration is vast.

Several quite comprehensive discussions of empirical findings and analytic methods

in the study of calibration are provided by Keren (1991), Lichtenstein, Fischhoff, and

Phillips (1982), McClelland and Bolger (1994), Spetzler and Sta€eel von Holstein

(1975), Wallsten and Budescu (1983), Wallsten (1996), and Yates (1994).

1.2. Overconfidence and the hard–easy effect

A common, though by no means universal, finding from many studies of cali-

bration is that people are often overconfident; subjective probabilities are frequently

more extreme than corresponding accuracy rates. For example, when people express

95% confidence, they may be correct only about 80% of the time.

Another common empirical pattern has been termed the hard–easy effect (also

known as the difficulty effect): the degree of overconfidence is larger for difficult tasks
than for easy tasks. Difficulty of a task can be measured either by the proportion of

judges identifying the correct answer, or by subjective assessments of difficulty made

by the judges or by others. There has been substantial debate about the interpre-

tation and generality of both overconfidence and the hard–easy effect, with some

arguing that these patterns may, in part, represent spurious effects or statistical ar-

tifacts (e.g., Ariely et al., 2000; Erev, Wallsten, & Budescu, 1994; Gigerenzer, Hof-

frage, & Kleinbl€oolting, 1991; Juslin, 1994; Juslin, Winman, & Olsson, 2000;

Klayman, Soll, Gonzalez-Vallejo, & Barlas, 1999; Soll, 1996).
In this paper, I introduce the random support model of calibration, a stochastic

model of calibration based on support theory (Rottenstreich & Tversky, 1997;

Tversky & Koehler, 1994). The random support model predicts the hard–easy effect,

and can account for the frequent finding of overconfidence; it can also account for

the less common finding of underconfidence. Although the random support model

cannot itself resolve the various debates concerning the interpretation and generality

of these various empirical patterns, the model can nonetheless account for and offer a

parsimonious representation of them. Furthermore, the parameters of the model
permit psychologically meaningful comparisons between the properties of proba-

bility judgments across different experimental manipulations, task types, or judge

characteristics.

The random support model shares several features in common with other sto-

chastic models of probability judgment. Like the decision variable partition model of

Ferrell and McGoey (1980), the random support model treats subjective certainty as

a random variable, and incorporates different distributions for subjective certainty in

true and false propositions. Like the stochastic judgment model of Wallsten and
Gonzalez-Vallejo (1994), the random support model explicitly incorporates vari-

ability (often termed ‘‘error’’) in the judgment process, as do models proposed by

Erev et al. (1994), Soll (1996), Pfeifer (1994), and Dougherty, Gettys, and Ogden

(1999). Detailed comparisons between the random support model and several other

similar models can be found in the final section of the paper.
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1.3. Overview

The paper is organized as follows. I first review support theory, on which the

random support model is based, introduce the stochastic model of probability

judgment, and apply the model to two-alternative forced choice calibration tasks.

The model makes specific quantitative predictions about the (nonlinear) relation

between overconfidence and item difficulty that is observed in the data. In addition,

independent assessments of support for particular hypotheses are closely related to

parameter estimates from the fit of the random support model, further validating the
approach.

Next, the interpretations of the model parameters are illustrated by fitting the

model to several existing data sets, and comparing the estimated parameter values

across different conditions.

The model is then applied to three-alternative forced choice tasks. Data from

pairwise comparisons of US state populations from one group of judges are used to

generate model predictions for three-alternative judgments from a different group of

judges. The success of these predictions demonstrates the model�s ability to account
for independent data from different tasks.

Finally, the random support model is compared to other models of calibration,

including previous stochastic models. Theoretical and methodological implications

for the interpretation of patterns in calibration data, and for interpretations of

variability in judgment, are discussed.

2. Random support model for multi-alternative tasks

The random support model is an extension of support theory (Rottenstreich

& Tversky, 1997; Tversky & Koehler, 1994), a general model of subjective prob-

ability. Support theory is premised on the critical distinction between events (as

subsets of some sample space) and descriptions of those events, which are termed

hypotheses. In support theory, judgments of probability are attached to hypotheses

rather than events; as a consequence, different descriptions of the same event are

allowed to yield different judged probabilities. Let P ðA;BÞ denote the judgment of the
probability that hypothesis A holds, rather than hypothesis B, assuming A and B

describe disjoint events exactly one of which obtains. The first argument A is termed

the focal hypothesis, and the second argument B the alternative hypothesis. Support

theory assumes that there exists a support scale sð�Þ such that probability judgment

can be represented as normalized support:

P ðA;BÞ ¼ SðAÞ
sðAÞ þ sðBÞ : ð1Þ

The support for a hypothesis can be interpreted as a measure of the overall

strength of the evidence for the hypothesis. This degree of support may be based on a

variety of psychological processes, including retrieval of past empirical frequencies,

judgmental heuristics such as, availability or representativeness, or logical/mathe-
matical arguments or deductions (cf. Brenner & Koehler, 1999; Brenner, Koehler, &

Rottenstreich, 2002; Koehler, Brenner, & Tversky, 1997; Rottenstreich, Brenner, &

Sood, 1999). Past work in support theory has focused in large part on how the

specificity of a description may affect its judged likelihood; in particular, unpacking

an aggregate hypothesis (e.g., ‘‘unnatural cause of death’’) into a collection of

components (e.g., ‘‘homicide, suicide, accident, or some other unnatural cause of

death’’) tends to increase support for the hypothesis. Although the random support

model is able to address such effects in a relatively straightforward way (by intro-
ducing different distributions of support for packed and unpacked hypotheses), the
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present goal is to apply the support theory representation given in Eq. (1) to the
modeling of calibration. This allows the theory to be applicable to any set of hy-

potheses for which the outcomes are observable, not only for hypotheses reflecting

alternative descriptions of the same event.

2.1. Random support model of probability judgment

Support theory as currently described is a deterministic model, in which the

support value for a given hypothesis is represented as a constant. However, support
for a particular hypothesis can be naturally thought of as subject to variability from

several sources. For example, different judges evaluating a particular hypothesis are

likely to draw on different sets of evidence (between-judge variability of support).

Furthermore, the same judge evaluating a hypothesis at different times or under

different circumstances is also likely to draw on different sets of evidence (within-

judge variability of support).

To accommodate variability of support, the present model of calibration treats

support as a random variable, and specifies probability distributions of support for
correct and incorrect hypotheses. The predicted calibration function can then be

derived based on these distributions. The overall approach is similar in spirit to the

decision variable partition model of Ferrell and McGoey (1980), which proposed

distributions of ‘‘subjective certainty’’ for correct and incorrect responses, and de-

rived the calibration function from these distributions along with a set of cutoffs for

converting subjective certainty into a probability judgment. A detailed comparison

of the random support model with the decision variable partition model is presented

in the general discussion.

2.1.1. Preliminaries

Before describing the central aspects of the random support model, it will be

helpful to define some terms and notation. First, consider transforming judged
probability (e.g., 75%) into ‘‘odds’’ (e.g., 3–1). Given the support theory represen-

tation, the odds of hypothesis A rather than B is easily shown to be the ratio of the

hypotheses� support values:

RðA;BÞ ¼ P ðA;BÞ
1� P ðA;BÞ ¼

sðAÞ
sðBÞ : ð2Þ

Also define the log-odds of A rather than B:

LðA;BÞ ¼ lnRðA;BÞ ¼ ln sðAÞ � ln sðBÞ: ð3Þ

2.2. Applying the random support model to calibration

Consider a sample question to be evaluated for calibration quality: ‘‘Which state

has more inhabitants: Arizona or Wisconsin?’’ In a two-alternative forced choice
(2AFC) task like this, the subject chooses an answer and then assesses the proba-

bility that the chosen answer is correct.

In answering such a question, each hypothesis (‘‘Wisconsin more populous than

Arizona’’ and ‘‘Arizona more populous then Wisconsin’’) is assumed to receive some

degree of support, based on the subject�s knowledge of the question domain. Fur-

thermore, support for each hypothesis is assumed to vary across different judges, as

well as within a particular judge considering a particular hypothesis at different

times. For example, to judge a state�s population, Adam may think of familiar cities
that are in that state. On one occasion, he may think of Milwaukee and Green Bay as

Wisconsin cities; on another occasion, Madison, Eau Claire, and Sheboygan may

also be recalled in addition to the other two cities, and Adam�s support for a large
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population in Wisconsin would increase. Different evidence favoring particular cues
may come to mind on different occasions, as in the example above, or entirely dif-

ferent predictive cues may be used in the determination of support.

In addition to variability of evidence considered by a particular judge, the type

and quantity of evidence considered by different judges will also vary. Eve may have

very different evidence than Adam about Wisconsin cities, or may use different cues

to assess state populations (e.g., considering number of professional sports teams or

number of acquaintances from Wisconsin rather than the number of remembered

cities). The probability distributions of support that underlie the random support
model may be used to describe both within-judge and between-judge variability of

support. It is up to the researcher to decide over what set of judgment occasions to

apply the model. Note that this approach allows the model to be very flexible in its

application, and makes no rigid assumptions about the nature of variability of

support. This approach does require, however, that in interpreting results from the

model, researchers are careful in specifying what type(s) of variability they are at-

tempting to account for.

The random support model of calibration has two primary components: a rule for
converting support to judged probability, provided by support theory Eq. (1), and a

joint probability distribution of support for the correct and incorrect answers. To-

gether, these two components allow the model to predict how often a judge will

choose the correct hypothesis, and also to predict the distribution of probability

judgments in the interval ½:5; 1� they will assign to the chosen hypothesis. I consider

the model�s predictions of the judge�s choice of answer and probability judgment in

turn.

Choice of answer. The judge is assumed to choose the hypothesis which has greater
support in a particular exposure to the problem. Given that support for each

hypothesis is characterized by a random variable, this leads to a specific case

of Thurstone�s (1927) law of comparative judgment; in this particular case, two

hypotheses are compared in terms of degree of support. Using the distributions

of support for the hypotheses considered, the probability of choosing a particular

hypothesis can be determined.

Let C denote the correct hypothesis, and I denote the incorrect hypothesis for a

particular question. Let the random variable X denote the support for the correct
answer; i.e., X ¼ sðCÞ. For the Arizona–Wisconsin example, X represents the sup-

port for the (true) proposition ‘‘Wisconsin has more inhabitants than Arizona.’’

Similarly, let the random variable Y ¼ sðIÞ denote the support for the incorrect

answer. The researcher is assumed to know which hypothesis corresponds to C and

which to I, although the judge of course does not.

When X > Y the judge will choose the correct answer; when X < Y , the judge will
choose the incorrect answer. (Due to the use of continuous support distributions, the

probability of a ‘‘tie’’ between the support values is 0.) Given a particular joint
distribution of support, the probabilities of these two events can be expressed in

terms of a parameter representing the judge�s ability to discriminate between correct

and incorrect answers, as shown below.

It is important to distinguish between the choice probabilities, e.g., Pr(C chosen

over I), and the judged probabilities, e.g., P ðC; IÞ. I will use Prð�Þ to denote choice

probability, and P ð�; �Þ to denote judged probability. The former represents the

probability of a judge selecting one option as the more probable outcome, and can be

measured across judges. The latter represents an individual judge�s subjective as-
sessment of the probability that the chosen hypothesis is correct.

Probability judgment. Once the choice of answer is made, the judge assesses the

probability that the chosen answer is correct. Because the judge chooses the option

with the greater support, the judged probability that the chosen answer is correct is

the normalized maximum of the two support values: maxðX ; Y Þ=ðX þ Y Þ.
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2.3. Predicting the calibration curve

Based on the distributions of support for the correct and incorrect answers, the

probability of choosing the correct answer can be determined, as can the prob-

ability distribution of the judged probability. Furthermore, the distributions of

judged probability conditional on the choice of the correct or incorrect hypothesis

can also be determined. Using Bayes�s rule, one can then derive the objective

probability of making a correct choice given a probability judgment in a par-

ticular range, thereby specifying the calibration curve. The probability of
choosing the correct hypothesis given a probability judgment between j and k is

given by:

P ðC j j < P < kÞ ¼ Prðj < P < k jCÞPrðCÞ
Prðj < P < kÞ ¼ FP jCðkÞ � FP jCðjÞ

FP ðkÞ � FP ðjÞ
PrðCÞ ð4Þ

In this equation, FP denotes the cumulative distribution function (cdf) of P and

FP jC denotes the conditional cdf of P given the choice of the correct answer. Both of

these functions are derived from the initial distributions of support for correct and

incorrect hypotheses.

2.4. Summary of model

The random support model of calibration consists of two main components: (a)

a specification of the distributions of support corresponding to correct and in-

correct hypotheses, and (b) a rule for converting support values to probability

judgments.

This structure of the model makes clear a useful distinction between a model of

probability judgment and a model of probability calibration. The support theory
representation provides the model of probability judgment, which can be applied

very generally, whether one is concerned with calibration or not.

The support distributions for correct and incorrect hypotheses allow the model to

predict the calibration of probability judgments. These distributions instantiate the

knowledge of the judges, and allow a link between a judge�s statement of probability

and the empirical likelihood that the chosen answer is correct.

2.5. Lognormal distributions of support

I will use the lognormal distribution to model variability of support throughout

the remainder of the paper. The lognormal distribution is a close cousin of the fa-

miliar normal (or Gaussian) distribution. If U is a random variable following the

normal distribution with mean l, and variance r2, then V ¼ eU follows a lognormal

distribution with parameters l and r2. For convenience, we use the same parameters

l and r2 to characterize the lognormal random variable, although these parameters

no longer represent the mean and variance of V.
Using the lognormal distribution for support is attractive for several reasons.

First, the lognormal distribution is positively skewed, with a long right-hand tail,

which appears to be appropriate for many of the tasks to be considered. This shape

implies that for a particular distribution of support values, most are relatively small,

with a small proportion being quite large. In modeling variability across judges, this

shape would capture the situation in which a few judges have a high degree of

(perceived) knowledge, while many judges have a small or moderate amount of

(perceived) knowledge.
A second reason for using the lognormal distribution is that, because of its close

relationship to the familiar normal distribution, the lognormal distribution is
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mathematically very convenient. Lognormal distributions of support lead to normal
distributions of log-odds, and as a result a simple transformation from judged

probabilities to log-odds will produce normally distributed data. Finally, and most

importantly, using lognormal distributions of support provides a good fit to a variety

of data. I wish to make no general claims regarding the superiority of the lognormal

distribution across all circumstances and contexts. Other distributional families, such

as the exponential and beta distributions, also have shown quite good fit to a variety

of data. However, based on its success in fitting calibration data, and its close re-

lationship to the familiar normal distribution, the lognormal distribution is a natural
choice for modeling variability of support.

Independent, equal-variance log-support distributions. Let C and I denote correct

and incorrect hypotheses, respectively. Consider X ¼ sðCÞ and Y ¼ sðIÞ to be inde-

pendent lognormal random variables, summarized mathematically as X 
 Kðlx; r
2Þ

and Y 
 Kðly ; r
2Þ. Equivalently, ln X and ln Y can be characterized as independent

normal random variables, with means lx and ly , respectively, and common variance

r2. The interpretations in terms of log-support will typically be more natural for

most readers, given the familiarity of the normal distribution.
Using familiar properties of independent random variables, the log-odds term

LðC; IÞ follows the normal distribution with mean lx � ly and variance 2r2.

Equivalently, the odds expression RðC; IÞ follows a lognormal distribution,

RðC; IÞ 
 Kðlx � ly ; 2r
2Þ. The judged probability P ðC; IÞ does not follow any fa-

miliar distributional family; however, its cumulative distribution is easily determined

by transforming to log-odds and using the distribution of LðC; IÞ.
Correlated support distributions. In many cases, it may be appropriate to consider

the support for the focal and the alternative hypotheses to be correlated. A negative
correlation would most often make sense (e.g., if the two support assessments are

based on the same cues). For example, if C is the hypothesis that ‘‘Wisconsin has a

larger population than Arizona’’ and I is the hypothesis that ‘‘Arizona has a larger

population than Wisconsin,’’ then when the support for C is high, the support for I is

likely to be low.

To model the case of correlated support, consider ln X and ln Y to follow a

multivariate normal distribution with mean vector

lx

ly

 !

and covariance matrix�
r2 qr2

qr2 r2

�
:

In this case,

LðC; IÞ 
 N lx

�
� ly ; 2r

2ð1� qÞ
�
:

Because support is an unobservable quantity (in essence derived from probability

judgments, much as utility is derived from choices), there is no way to separate the

parameters q and r2. For any q < 1, an empirically equivalent representation

using independent support distributions (with appropriate variance) can be cre-
ated. Thus, I will consider the simpler case of independent support distributions

throughout the paper. This is a limiting assumption only when attempting to

relate support derived from probability judgments to independent assessments of

support. In addition, the successes of past investigations which have related sep-

arate assessments of hypothesis strength to derived support suggest that inde-

pendent support distributions may often be a reasonable assumption (Fox, 1999;

Koehler, 1996).
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Now consider a more useful specification of these distributions, in which the
two primary parameters that characterize the model are introduced. Let X and Y

be independent lognormal random variables representing the support for the

correct and incorrect answers for a particular question. Define the distributions of

X and Y as follows: X 
 Kðdr; r2Þ and Y 
 Kð0; r2Þ. Equivalently, lnX
Nðdr; r2Þ
and ln Y 
 Nð0; r2Þ. In this formulation, log-support for the correct and the in-

correct answers follow equal-variance normal distributions, with the mean of

the correct answer distribution shifted by d standard deviations from the mean of

the incorrect answer distribution.
The parameter d thus represents the discriminability between the two distribu-

tions: the additional support that typically applies to correct hypotheses rather than

incorrect hypotheses. Using properties of the normal distribution, we find that the

probability of choosing the correct answer over the incorrect answer is a monotonic

function of d:

PrðCÞ ¼ PrðX > Y Þ ¼ PrðlnX > ln Y Þ ¼ PrðlnX � ln Y > 0Þ ¼ U

 
dr

r
ffiffiffi
2

p
!

¼ U

 
dffiffiffi
2

p
!
; ð5Þ

where Uð�Þ denotes the standard normal cumulative distribution function.

The second parameter r represents the degree of variability of the support dis-

tributions—the more spread out the support values, the greater the value of r. In
terms of the observable probability judgments rather than the unobservable con-

struct of support, r reflects the extremity of judgments; greater values result in

judgments closer to 0 and 1, and further away from .5.

In the case of 2AFC tasks where judgments cannot be less than .5, larger r entails

larger probability judgments. Put another way, when r is large, there is greater
variability in the support distributions, and consequently, highly discrepant support

values for the two considered options are more common, resulting in larger prob-

ability judgments for the selected option.

Examples. Fig. 1 displays the model�s predictions for different values of d and r. The
top curves represent calibration curves, and the bottom curves display the ‘‘response

proportions’’ or relative frequencies of the various possible probability judgments.

Note that the Y-coordinates of each of the response proportion curves sum to 1.

Larger values of d result in an upward shift of the calibration curves (top portion of
Fig. 1) and relatively more high probability judgments (bottom portion of Fig. 1), as

can be seen by comparing the filled-circle and open-circle curves. Larger values of r
cause an overall drop in the calibration curve, and a greater proportion of high prob-

ability judgments, as can be seen by comparing the cross and the open-circle curves.

Even though changes in r do not affect the overall likelihood of choosing the

correct answer (because that likelihood depends only on d—see Eq. (5)), changing r
can nonetheless greatly affect the height and shape of the calibration curve. In

particular, changing the overall distribution of judgments while holding overall ac-
curacy constant will affect the height of the calibration curve. As an illustration,

consider a case where two points on calibration curve A are ð:60; :60Þ and ð:70; :70Þ.
Imagine that overall accuracy remains constant, but r is increased such that prob-

ability judgments that previously were .60 become judgments of .70, and judgments

that previously were .70 become judgments of .80. As a result, two new points on

calibration curve B will be ð:70; :60Þ and ð:80; :70Þ. The result is that curve B will be

below curve A even though overall accuracy is unchanged. Thus, the calibration

curve is dependent on both the discriminability between correct and incorrect an-
swers ðdÞ, and the variability of support ðrÞ.
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Parameter estimation. There are several ways in which the parameters of the

random support model could be estimated from calibration data. A simple and ef-

fective one is a ‘‘method of moments’’ approach, which works as follows: d is esti-

mated from the proportion of correct choices made, using Eq. (5); r is then estimated

by equating the average probability judgment in the data with the average proba-
bility judgment implied by the model. Simple analytic expressions for the average

judged probability cannot be determined for the lognormal model, so an iterative

procedure for estimating r was used. Because of its intuitive simplicity and com-

putational ease, this estimation method will be used throughout the paper. Other

approaches (method of moments in log-odds metric, maximum likelihood) give very

similar results.

3. Study 1: Pairwise state population comparisons

To illustrate various analyses possible with the random support approach, the

model was fit to data involving comparative judgments of the populations of states

in the US.

3.1. Method

Twenty five pairs of states were randomly selected from the set of all possible pairs

of states. Participants (n ¼ 190 Stanford University undergraduates) evaluated these

25 state pairs (e.g., Kentucky and Utah), for each pair selecting the state they be-

lieved had the larger population. After selecting a state, each participant rated the

probability that the choice was correct by circling a value on a scale ranging from

50% to 100% by 5% increments.

Item level and aggregate level fitting. The random support model can be fit at

either an aggregate or an item level. In the case of aggregate fitting, two parameters

Fig. 1. Examples of calibration curves and response proportions based on lognormal-support model.
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are estimated to match the overall accuracy rate and average probability judgment,
across all state pairs and all judges. In other words, two parameters are fit to the

entire set of data. In the item-level case, the model is fit to data from each individual

judgment item (pair of states), across judges. In other words, two parameters are fit

for each item. The model predictions across the 25 items can then be combined, and

compared against the overall (across-item) data. It is of course also possible to fit the

model individually to each judge�s data, but with only 25 judgment items per judge,

the calibration curves are rather ‘‘noisy’’ for each individual judge.

These various fitting procedures differ in terms of the sources of variability rep-
resented by the distributions of support. In the aggregate analysis, the distributions

of support are used to account for within-judge, between-judge, and between-item

variability. In the item-level analysis, the distributions of support account for only

within-judge and between-judge variability, whereas between-item variability is

captured by different fitted parameter values for each item.

The random support model fits approximately equally well to the full set of data

via both the item-level and the aggregate fitting procedures. Fig. 2 displays the data

(both calibration curve and response proportions, plotted as open triangles) and the
predictions based on the estimated aggregate model (plotted as filled circles). The

corresponding item-level graph is virtually identical.

The model�s predictions closely approximate both the observed calibration curve

and the response proportions. In terms of goodness-of-fit measures, the model is off

by about 3 percentage points in predicting the calibration curve; specifically, the

average absolute deviation between the predicted and observed calibration curves

(weighted by the response proportions, to avoid overemphasizing differences based

on little data) is .031 for the aggregate model, and .030 for the item-level model. As
for the response proportions, the average absolute deviation between the predicted

and observed proportions is .024 for the aggregate model, and .017 for the item-level

Subjective Probability

P
ro

p
o

rt
io

n

Fig. 2. Calibration curves and response proportions for aggregate data (triangles) and model predictions

(circles) for Study 1 state population judgments.
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model. The item-level model fits the response proportions a bit better, mainly be-
cause the predicted proportion of 100% judgments is increased. The two models

make essentially identical predictions about the calibration curves. Descriptive

measures of goodness-of-fit (like average absolute deviation) are desirable here be-

cause they can indicate the overall quality of fit without specifying any particular

(arbitrary) null hypothesis to be tested. Furthermore, such measures are not affected

by design features like sample sizes as hypothesis testing measures would be, nor are

they contaminated by range restriction as correlational measures would be.

The similarity of the item-level and aggregate fits does not imply that there are no
systematic differences in choices or probability judgments across the judgment items.

Rather, it suggests that across-item variability can be incorporated effectively into

the distributions of support that initially were used to account for variability of

support across judges.

Item-level analyses. I now turn to more detailed analyses of the parameter esti-

mates for individual judgment items. In particular, can differences in performance

and judged confidence on different items be accounted for parsimoniously by the

random support model? Can the model accommodate the hard–easy effect, the
commonly found relationship between difficulty and overconfidence for individual

items?

In Fig. 3, overall accuracy (i.e., the proportion of judges choosing the correct

answer) is plotted against average judged probability for each of the 25 state pairs.

The smooth curve in the figure is based on the lognormal random support model

with constant r ¼ :80 as discriminability d is varied. The correspondence between

the curve and the distribution of points suggests a good qualitative fit of the log-

normal model with constant r across items. That is, average judged probability and
overall accuracy in individual items are quite predictable based on only changes in

Average Subjective Probability
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Fig. 3. Overall accuracy plotted against mean subjective probability for each pair of states in Study 1. The

solid line traces the model predictions for varying discriminability d and constant r ¼ :80.
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the discriminability parameter d, representing the difficulty of the individual
questions.

Relation between overconfidence and difficulty. Holding constant the value of r, the
model can predict the relationship between accuracy and overconfidence. To illus-

trate the random support model�s predictions of the hard–easy effect, overconfidence

is plotted against accuracy for several different values of r in Fig. 4. The random

support model accounts for the hard–easy effect for difficult and moderately easy

questions; however, it predicts an intriguing reversal of the hard-easy effect for ex-

tremely easy questions (accuracy of .9 or higher). In the context of the lognormal-
support model, overconfidence drops as accuracy increases, but for very high levels

of accuracy, overconfidence increases again. More generally, the random support

model predicts a nonlinear relationship between average judged probability and

overall accuracy (shown in Fig. 3) that is not predicted by several other accounts of

the hard–easy effect (e.g., Bj€oorkman, 1992; Suantak, Bolger, & Ferrell, 1996). This

nonlinear relationship is observed in the data presented here, and is also evident in

the results of other calibration research (e.g., Fig. 1 in Juslin & Olsson, 1997).

Different values for the model parameters can allow for either aggregate over-
confidence or aggregate underconfidence. Consider the curve for the value r ¼ 1.

The mean value of overconfidence (averaging over all levels of accuracy) is .063; for

the mean value of overconfidence to be 0, r needs to be about .68. This suggests that

if items uniformly spanning a wide range of difficulty (from 50% to 100% accuracy)

are judged, and the value of r is constant across these items, aggregate overconfi-

dence will be the typical result for r > :68, and aggregate underconfidence the result

for r < :68. The random support approach can thus accommodate both overcon-

fidence and underconfidence, with r indexing the degree of over/underconfidence.
Relating model parameters to features of the judgment items. An additional feature

of the random support approach is the ability to relate aspects of the support dis-

tributions to other features of the judgment items. For example, the estimates of d
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Fig. 4. Random support model predictions of the hard-easy effect: overconfidence plotted against accuracy

for different values of r.
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across judged pairs of states can be related to properties of the individual states. In
choosing the state with the larger population, discriminability between correct and

incorrect answers (as measured by d) would be expected to be positively related to

the actual difference in population between the two states. Indeed, there is a sub-

stantial association between the log-ratio of the two states� populations and the

ability of judges to discriminate between the correct and incorrect answers (r ¼ :78).
Direct assessments of support. In contrast to the ‘‘psychophysical’’� relationship

between actual state populations and discriminability, we can also examine the

correspondence between independent subjective judgments of individual state pop-
ulations and measures of pairwise state discriminability. A separate group of 146

Stanford undergraduates rated the populations of states on a 0–100 scale. They

were encouraged to use a ratio scale—to assign the most populous state a rating of

100, and then assign ratings to the other states relative to the largest state. If they

believe that a state has half the population of the most populous state, its rating

should be 50.

The mean values from these ratings can be considered aggregate support estimates

for each individual state. Across the 25 state pairs, the association between d and the
log-ratio of the state support ratings is somewhat stronger (r ¼ :87) than the cor-

relation based on the log-true-population-ratio from the previous section (r ¼ :78).
Thus, independent judgments of support for single states are strongly related to the

estimated separation in support distributions derived from probability judgments

involving pairs of states. See Koehler (1996), Koehler et al. (1997), and Fox (1999)

for additional explorations of the relationship between judged probabilities and

independent assessments of support.

In short, the discriminability parameter can be predicted from the true population
values of the states, or, even better, from independent judgments of state populations.

Further, the discriminability parameter is more strongly related to both of these

predictors than is the simple measure of percent correct (r ¼ :74 between percent

correct and log-support ratio; r ¼ :71 between percent correct and log-population

ratio). These higher correlations suggest that the discriminability parameter d may be

a better predictive measure of pairwise state judgment performance, compared to the

more traditional measure of percent correct.

4. Study 2: Perceptual, cognitive, and prediction data

To explore further the generality of the random support model, and to illustrate

the interpretations of the model�s parameters, I fit the model to a selection of data

sets from previous studies of calibration, involving several different judgment

domains.

Keren (1988) studied calibration in several perceptual and knowledge tasks. In
these tasks, the difficulty of the perceptual tasks was varied as follows.

• In Experiment 1, participants completed a perceptual task in which they judged

whether a gap in a visually presented ring was on the right or left. This task in-

cluded more difficult small-gap trials and easier large-gap trials. Participants also

answered general knowledge questions about European geography.

• In Experiment 2, participants viewed two letters presented briefly, followed by a

mask and an arrow pointing to one of the letter locations. The task was to identify

which of two target letters (A or E) had been presented in the indicated location.
There were three stimulus conditions. Letters were either repeated (the two pre-

sented letters were identical, either AA or EE), conflicting (both A and E were pre-

sented), or neutral (the uncued letter was always either K or N). The repeated-letter

inferiority effect (Bjork & Murray, 1977; Egeth & Santee, 1981) suggests that

performance will be poorer for repeated letters.
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• Experiment 3 was similar to Experiment 2, except that only the neutral letter con-

dition was used. The exposure time of the letters was varied, to adjust the diffi-

culty of the task from easier (long-exposure) to harder (short-exposure) while

holding other aspects of the task constant.

Ronis and Yates (1987) studied calibration for general knowledge items and

predictions about the outcomes of upcoming basketball games.

Wright and Wisudha (1982) studied calibration for general knowledge items and

predictions about future events.
Table 1 contains the (aggregate) summary statistics, parameter estimates and fit

indices for the lognormal-support model fit to each of these sets of data. The col-

umns on the far right refer to the (weighted) mean absolute deviation between the

modeled and observed calibration probabilities (‘‘MAD of calib. curve’’), and the

(weighted) mean absolute deviation between the modeled and observed response

proportions (‘‘MAD of resp. prop.’’). The fit between the model and data for these

studies is generally very good; the average absolute deviation between model and

data calibration curves and between model and data response proportions is, again,
typically only about .03.

4.1. Comparison of parameter estimates

Fitting the model to these datasets illustrates how the model parameters can

measure changing properties of calibration data across conditions or task types. For

example, the model parameter r provides an assessment of probability judgment

extremity, controlling for accuracy. For instance, note that estimates of r for general
knowledge tasks (range: 1.08–1.25) tend to be greater than estimates of r for

Table 1

Summary of parameter estimates and fit measures for datasets in Study 2

Data set Condition(s) Avg.

judged

prob.

PrðCÞ d r MAD of

calib.

curve

MAD of

resp.

prop.

Keren (1988) Expt. 1: general

knowledge

.76 .70 .74 1.08 .020 .044

Keren (1988) Expt. 1: large gap

(easy)

.68 .79 1.12 .60 .050 .048

Keren (1988) Expt. 1: small gap

(hard)

.65 .67 .61 .58 .036 .037

Keren (1988) Expt. 2: conflict

(easy)

.74 .80 1.21 .80 .012 .031

Keren (1988) Expt. 2: neutral

(medium)

.73 .77 1.05 .80 .014 .032

Keren (1988) Expt. 2: repeated

(hard)

.70 .61 .38 .83 .060 .028

Keren (1988) Expt. 3: long exp.

(easy)

.74 .77 1.04 .85 .040 .008

Keren (1988) Expt 3: short Exp.

(hard)

.65 .63 .48 .60 .028 .034

Ronis and

Yates (1987)

General

knowledge

.78 .67 .63 1.24 .022 .046

Ronis and

Yates (1987)

Basketball .66 .60 .34 .66 .041 .022

Wright and

Wisudha

(1982)

General

knowledge

.77 .60 .36 1.25 .015 .059

Wright and

Wisudha

(1982)

Future .77 .83 1.31 .88 .054 .038
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prediction (range: .66–.88) and perceptual tasks (range: .58–.85). This suggests that,
for a given level of discriminability (i.e., d, or overall accuracy), probability judg-

ments are more extreme in the general knowledge tasks than in the prediction or

perceptual tasks. This pattern is consistent with Dawes�s (1980) hypothesis that

overconfidence is greater for intellectual judgments than for perceptual judgments.

Fischhoff and Macgregor (1982) and Wright and Wisudha (1982) noted that fore-

casts of future events were made with less extreme confidence than were judgments

for general knowledge questions. The observation of larger values of r for general

knowledge questions than for prediction tasks is consistent with these results as well.
Furthermore, estimates of r appear stable for different difficulty levels of similar

tasks. For instance, the two perceptual tasks in Keren�s Experiment 1, although

differing substantially in difficulty (d ¼ 1:12 and .61, respectively for the large-gap

and small-gap judgments) yielded nearly identical values of r, .60 and .58. Similarly,

estimates of r were very stable across the varying difficulty levels of the task in

Keren�s Experiment 2. However, Keren�s participants appeared to be substantially

more confident in their long-exposure judgments (r ¼ :85) than in their short-ex-

posure judgments (r ¼ :60), even after adjusting for the varying difficulty of the two
types of judgments. One interpretation is that the short-exposure judgments seemed

much more difficult to the participants (even adjusting for the actual difficulty),

prompting more conservative ratings of confidence, and thus a lower value of r.
In summary, the random support model provides a good fit to perceptual judg-

ments, cognitive judgments, and predictions of future events. Analyses of the model

parameter estimates tentatively suggest: (a) consistent judgment extremity across

related tasks of varying difficulty, and (b) lower judgment extremity for future

predictions and perceptual judgments, compared to higher judgment extremity for
general knowledge judgments.

5. Study 3: Three-alternative state judgments

As a further extension, I now explore the generalizability of the model to three-

alternative forced choice (3AFC) tasks. In this study, participants judged the pop-

ulations of either pairs or triples of states. Based on the parameter estimates obtained
from fitting the random support model to the state-pair judgments, predictions for

the state-triple judgments are derived and compared to the data. Thus, like the

analysis of independent judgments of support from Study 1, this study allows an out-

of-sample test of the model�s fit; parameters are estimated from one set of data, and

predictions are evaluated based on an independent set of data from a different task.

5.1. Method

Participants. Participants were 121 Stanford University undergraduates enrolled

in an introductory psychology course. They participated in the study for course

credit, completing the questionnaire in a packet composed of several other unrelated

tasks.

Design. One group of participants (group T, n ¼ 65) was presented with a set of

US state triples. For example, one triple consisted of Georgia, Nevada, and Kansas.

For each triple, participants were instructed to pick the state with the largest pop-

ulation and then rate the probability that their chosen answer was correct, using a
scale ranging from 33% to 100%.

Two other groups of participants (P1 and P2, n ¼ 27 and 29, respectively) com-

pleted a set of similar judgments involving pairs of states. For each item for Groups

P1 and P2, the correct answer from each triple in Group T was paired with one of the

incorrect answers from the triple. For example, the state pairs corresponding to the
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triple described above would be (Georgia, Nevada) and (Georgia, Kansas). Each
participant made judgments for either 25 state pairs or triples.

5.2. Results

First, overall accuracy rates and average judged probabilities for each of the

25 state triples are compared to the predictions of the random support model.

Second, the overall calibration curve across all triples is compared with the model�s
predictions.

Item-level accuracy. The random support model was first fit to the data from

groups P1 and P2. For example, estimates of d and r were derived from data for the

Georgia–Kansas, and, separately, from data for the Georgia–Nevada pair. In this

manner, the differences in means between the support distributions for Georgia and

Kansas, and for Georgia and Nevada, can be estimated. Because the correct answer

(e.g., Georgia) was present in both pairs, the means of the three support distributions

can be scaled based on the two d estimates from groups P1 and P2. An average

estimate of r was computed from the values derived from groups P1 and P2. Using
these three estimated parameters, the overall accuracy rate and average judged

probability for each state triple can be predicted, and compared to the corresponding

observed judgments.

In Fig. 5, the observed accuracy for each state triple is plotted against the item-

level accuracy predictions of the model. For comparison, also displayed are the fits

Fig. 5. Observed vs. predicted accuracy rates for state triples in Study 3. Predictions for ‘‘lognormal

support model’’ (open circles) are based on the random support model using parameters derived from the

two state pair conditions. ‘‘Multiple regression’’ predictions (filled circles) are derived from regressing

triple accuracy rates on the two state pair accuracy rates.
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based on a multiple regression of the triple-accuracy rate predicted from the two
pairwise accuracy rates (from groups P1 and P2). The correlation between the

random support model predictions and the actual triple accuracy measures is very

high (r ¼ :93) and essentially the same as the multiple correlation of the best linear fit

based on the two pairwise accuracy measures (R ¼ :94), even though the latter model

requires the estimation of three additional parameters.

Item-level mean judged probability. In Fig. 6, the observed average judged prob-

ability for the triple items is plotted against the predictions of the model. Also

plotted, for comparison, is the multiple regression fit of the average judged proba-
bility of the triples predicted from the average judged probability of the two cor-

responding pairs. Again, the predictions of the model are excellent (r ¼ :95) and

correlate virtually as well as do the multiple regression fits, which involve fitting three

additional parameters (R ¼ :96). The mean absolute deviation between the model

predictions of average judged probability and the data is a mere .027.

Overall calibration. Finally, the pairwise judgment data were used to generate a

predicted calibration curve for the triples data. The item-level parameter estimates

obtained from the pairs were used to generate the model�s predictions for the triples
judgments. Because the distribution of probability judgments (or log-odds) for the

triples case is not easily related analytically to the normal distribution, a simulation

approach was used instead. For each of the state triples, 10,000 probability judg-

ments were simulated based on the d and r parameters estimated from the pairs data.

Fig. 7 displays the aggregate calibration curve based on these simulations, as well as

Fig. 6. Observed vs. predicted average confidence for state triples in Study 3. Predictions for ‘‘lognormal

support model’’ (open circles) are based on the random support model using parameters derived from the

two state pair conditions. ‘‘Multiple regression’’ predictions (filled circles) are derived from regressing

average confidence for the triples on the two state pair average confidence scores.
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the actual data from triple judgments. Again, the model fits quite well; average
absolute deviation between predicted and observed calibration curves is .040 and

between predicted and observed response proportions is .036. Note that in all the

tests involving triple judgments, unlike tests for the 2AFC tasks considered previ-

ously, the model is predicting completely new data and no new parameters are being

estimated.

6. Comparison of models of calibration

As noted earlier, the random support model is similar in spirit to several other

stochastic models of calibration. Below, I compare and contrast some of the features

of these models.

6.1. Decision variable partition model

Ferrell and McGoey (1980) proposed an stochastic ‘‘signal detection’’ model of
the calibration of probability judgments which is closely related to the random

support model. For a two alternative forced choice (2AFC) task, for instance, their

model proposes that the judge experiences an internal measure of ‘‘subjective cer-

tainty’’ (Ferrell & McGoey, 1980, p. 33) for each option. As in the present random

support model, the option which produces greater subjective certainty is chosen as

the answer. The judged probability that the answer is correct is based on the absolute

value of the difference between the two subjective certainty measures. This decision

Fig. 7. Data (triangles) and predicted (filled circles) calibration curves and response proportions for state

triples in Study 3. All model predictions are based on parameters derived from the state pairs data.
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variable is partitioned into k-ordered confidence ratings (e.g., .50, .60, etc.) by a set
of k � 1 cutoffs. In this model, the confidence categories comprise an ordinal scale,

and do not necessarily refer to numerical probability judgments; they could refer, for

example, to ordered verbal probabilistic labels (e.g., unlikely, possible, likely).

In Ferrell and McGoey�s decision variable partition (DVP) model, the feelings of

subjective certainty for correct and incorrect answers are modeled as random vari-

ables from normal distributions with unit variance. The separation between the two

distributions of subjective certainty is the measure of discrimination—the ability to

tell the difference between correct and incorrect answers. In the 2AFC case, the
parameters of the DVP model are the measure of discriminability and the set of

cutoffs which partition the decision variable into classes of probability judgments. In

the case of 6 confidence levels, 6 parameters are used to estimate 11 probabilities

(6 conditional ‘‘calibration’’ probabilities and 5 unconstrained response proportions).

Ferrell and his colleagues have successfully used the model to describe changes in

calibration due to varying item difficulty or base rate (Smith & Ferrell, 1983), and

due to performance feedback and training (Ferrell, 1994b; Ferrell & McGoey, 1980).

Ferrell has discussed how his model can be successfully applied to both cognitive and
sensory/perceptual tasks (Ferrell, 1995, 1994a; Suantak et al., 1996).

The random support model is similar to Ferrell�s model in the following respects:

1. Subjective certainty for each option is modeled as a random variable, with subjec-

tive certainty for correct options typically greater than subjective certainty for in-

correct options.

2. The option with the greater subjective certainty is chosen by the subject.

3. The subjective certainty values for the two options are combined to produce a

probability judgment.
However, the present model also differs from Ferrell�s model in several important

ways.

1. Subjective certainty is interpreted as support for the considered hypotheses, in the

context of support theory.

2. Judged probability is mapped directly from the support values for the two op-

tions, rather than using multiple cutoffs.

3. Only two parameters are required to model the calibration curve and distribution

of response proportions for the 2AFC case. No variable cutoff parameters are
used. In effect, the ‘‘cutoffs’’ are implicitly instantiated in the support distributions

and the transformation from support into judged probability.

4. The random support model is easily extended to judgments between more than

two alternatives.

5. Parameters of the support distributions can be linked naturally to other features

of the judgment items or characteristics of the judge(s).

In these ways, the random support model can provide a more parsimonious ac-

count of numerical probability judgment than does Ferrell�s model. However, Fer-
rell�s model has the advantages that (a) ordinal judgments of likelihood can be

accommodated easily, and (b) the additional cutoff parameters allow for greater

flexibility in fitting data.

Griffin and Tversky (1992) proposed a model quite similar to Ferrell�s model (as

noted by McClelland & Bolger, 1994), except incorporating discrete rather than

continuous underlying random variables. In Griffin and Tversky�s model, for a

particular two-alternative question, the subject searches memory and samples units

of ‘‘evidence’’, as if drawing from an urn containing a mixture of red and white balls.
Whichever option receives more units of evidence (red balls) is chosen as the answer,

and the reported probability judgment is the proportion of total evidence in favor of

the chosen option. The number of units of evidence are modeled as binomial random

variables. Griffin and Tversky introduce this model in the context of their discussion

of the strength and weight of evidence. Strength refers to the proportion of the
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sample of evidence favoring one option over another, and weight refers to the size of
the sample drawn. In this simple chance model, the reported probability judgment

only reflects the strength of the evidence considered (i.e., the proportion of evidence

favoring the chosen option) and does not reflect the weight, or credence, of the

evidence. Griffin and Tversky show that their simple model of judgment, incorpo-

rating a varying discriminability parameter, can describe distinct qualitative patterns

of calibration data across different task characteristics. Following Griffin and

Tversky�s premise of confidence judgments driven primarily by strength rather than

weight, Koehler, Brenner, and Griffin (2002) apply the present random support
model to patterns of calibration by experts in domains such as medicine, sports, and

business.

Pfeifer (1994) also proposed a discrete-variable stochastic account of calibration.

He assumes that for a particular question, the probability of answering correctly is p.

The subject reviews the total set of knowledge she has about the question ðnÞ and

notes the amount of evidence ðrÞ favoring the focal event. The reported probability

judgment is then p̂p ¼ r=n. For instance, a weather forecaster assessing the probability
of rain might implicitly consider (from memory) the n days sharing similar condi-
tions to the present day, and recall rain on r of those days. The evidence for the focal

event need not be a simple tally of frequencies as in this example, but rather evidence

more generally defined.

Pfeifer considers the case where judges are unbiased, in the sense that Eðp̂pÞ ¼ p,
and r follows a Binomial ðn; pÞ distribution. In this case, he argues, the observed

calibration data may still suggest overconfidence, as a consequence (or illustration)

of regression toward the mean.

6.2. Regression-to-the-mean ‘‘error’’ models

Pfeifer�s conclusion is similar in this respect to the arguments of Erev et al. (1994)

(also Budescu, Erev, & Wallsten, 1997a; Budescu, Wallsten, & Au, 1997b). They

show that if subjects� probability judgments p̂p are centered around the ‘‘true’’

probability p but are perturbed by error, calibration data may appear to show

spurious overconfidence.

These accounts assume that subjects in some sense have internalized the ‘‘true’’
probabilities they are trying to estimate. However, the translation to an expressed

probability judgment may introduce error. The random support account makes no

such assumption about access to the true probabilities, or underlying unbiased

judgment. Rather, in the random support model, subjects simply weigh evidence for

the propositions under consideration, and report a judgment based on this evidence.

The random support approach does include a model of variability of judgment, but

the variability is embodied initially in the distributions of support, rather than

judged probability.
One common conclusion taken away from the error models is that overconfidence

in stated probabilities may partially be a statistical artifact, a consequence only of

error in the translation from covert, internal confidence to an overt, stated proba-

bility. A common way of stating this argument is to say that in some cases over-

confidence may not be ‘‘real.’’ This conclusion may be misleading in that it appears

to suggest that, given that in the past when a judge makes predictions with 90%

confidence and only 70% of the predictions turn out to be correct, one should

nonetheless expect future predictions to be well-calibrated. This interpretation would
be mistaken, unless the ‘‘error’’ inherent in the judge�s stated probabilities somehow

disappeared. More generally, it is unclear why one should evaluate the quality of

calibration on the unobservable, latent ‘‘true scores’’ that are constructed in these

error models, and allow those true scores to trump the observed probabilities as the

quantities to be evaluated for good calibration. A more detailed critique of this
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interpretation derived from error models can be found in Brenner (2000); see also the
reply by Wallsten, Erev, and Budescu (2000).

6.3. Stochastic judgment model

Budescu et al. (1997b), following Wallsten and Gonzalez-Vallejo�s (1994) sto-

chastic model of statement verification, propose a model of probability judgment

which is in many ways similar to the random support model and the decision var-

iable partition model of Ferrell and McGoey (1980). Like the decision variable
partition model, their stochastic judgment model (SJM) focuses primarily on the

mapping from covert feelings of confidence to overt responses via variable response

cutoffs. The random support model differs from this model primarily by avoiding the

use of multiple cutoffs, and incorporating a direct mapping from support (i.e., covert

confidence) to judged probability. As a result, the random support model can be

easily applied to tasks involving three or more propositions, while extending the

stochastic judgment model to such tasks is less straightforward.

6.4. Ecological models

Several authors (Bj€oorkman, 1994; Gigerenzer et al., 1991; Juslin, 1994) have

proposed what have been termed ‘‘ecological’’ models (McClelland & Bolger, 1994)

of the calibration of probability judgments, citing the work of Brunswik (1943,

1955). The main premise of these models is that people internalize the associations

between cues and events in the world (variously termed ecological validities or ex-

ternal cue validities), and draw upon this internalized knowledge when judging
likelihoods. With exposure over time to a particular judgment domain, the internal

cue validities are assumed to closely match the ecological validities.

The ecological models posit that if people appropriately internalize ecological

validities (and the proponents of these models generally assume that they do), people

should be well-calibrated on judgment items that are representative of the overall

judgment domain. If, however, the judgment items are selected by experimenters to

be especially difficult, or are particularly surprising or otherwise non-representative

of a natural reference class to which people have adapted, people�s internal cue
validities will generally overestimate the predictive validity of the cues in the sample

of judgment items, and overconfidence will result. In short, the ecological models

attribute overconfidence to non-representative selection of judgment items or tasks.

In the context of the random support model, surprising or misleading items are

those for which d is negative. More generally, it is easy to represent ‘‘biased’’ sets of

judgment items for which predictive cues are less predictive than they are in the full

population of items. We could imagine distributions representing support for all

correct and all incorrect answers across a relevant population of potential judgment
items (e.g., pairs of cities or states). Call these the population support distributions. If

the correct and incorrect support distributions for a particular sample of judgment

items are closer together than the population support distributions, this is analogous

to what the ecological proponents consider a biased or non-representative set of

items. Using different support distributions, the random support approach can

represent the match or mismatch between cue validities for a set of items and the

corresponding ecological validities in the entire population of items.

But in contrast to the ecological models, the random support approach does not
assume that if items are randomly sampled from an appropriate reference class,

overconfidence should disappear. While the notion of biased sampling of items is

clearly important, the claim that random sampling of items eliminates overconfi-

dence has not always been supported (Brenner, Koehler, Liberman, & Tversky,

1996; Griffin & Tversky, 1992). The random support approach can represent biased
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or representative item selection without requiring that overconfidence disappear in
the case of the latter.

Gigerenzer et al. (1991) and Juslin et al. (2000) also argue that the hard-easy effect

should disappear given random selection of judgment items at different levels of

difficulty. The random support model, in contrast, predicts the hard–easy effect for

most of the range of item difficulty, regardless of random selection of items. Data

from Study 1 and other sources (e.g., McClelland & Bolger, 1994) document the

existence of the hard–easy effect even when items are randomly sampled from a

relevant reference class.

7. Summary and conclusions

The proposed random support model of probability judgment was shown to

account for a wide array of calibration data. The model provides a unified account of

calibration data from tasks with varying numbers of alternatives. Independent

judgments of support correlate with parameters derived from probability judgments,

validating the construct of support. Parameters of the model are easily interpretable

and permit comparisons of different aspects of the quality of probability judgments

across judge and task characteristics. The random support model differs from pre-
vious stochastic models of calibration by eliminating the use of variable cutoff pa-

rameters, mapping underlying support directly into judged probability, and by

providing a very general framework (support theory) for the analysis of different

judgment tasks.
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