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When the probability of a single member of a set of mutually exclusive and
exhaustive possibilities is judged, its alternatives are evaluated as a composite *‘re-
sidual’’ hypothesis. Support theory (Rottenstreich & Tversky, 1997; Tversky &
Koehler, 1994) implies that the process of packing alternatives together in the resid-
ual reduces the perceived evidential support for the set of aternatives and conse-
quently inflates the judged probability of the focal hypothesis. Previous work has
investigated the global weightsthat determine the extent to which the overall eviden-
tial support for the aternatives is discounted by this packing operation (Koehler,
Brenner, & Tversky, 1997). In the present investigation, we analyze this issue in
greater detail, examining the local weights that measure the specific contribution
of each component hypothesis included implicitly in the residual. We describe a
procedure for estimating local weights and introduce a set of plausible properties
that impose systematic ordinal relationships among local weights. Results from four
experiments testing these properties are reported, and alocal-weight model is devel-
oped that accounts for nearly all of the variance in the probability judgments in
these empirical tests. Local weights appear to be sensitive both to the individual
component with which they are associated and to the residua hypothesis in which
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1. INTRODUCTION

Intuitive assessments of likelihood, whether given in explicit numerical
form or evaluated implicitly in the course of making a decision, depend on
the cognitive processes by which uncertain events may be represented. Be-
cause of the richness and complexity of the events that typically interest us,
there is usually more than one way in which such events can be described
in natural language. For example, the same possible outcome of apresidential
election could aternatively be described as ‘‘the Democratic candidate
wins'’ or ‘‘theincumbent candidate wins.”” Theflexibility with which uncer-
tain events can be described may have important conseguences for under-
standing how judgments of likelihood are made.

Indeed, much research has shown that different descriptions of the same
event can evoke substantially different judgments of its probability. Support
theory (Tversky & Koehler, 1994; Rottenstreich & Tversky, 1997) accom-
modates these results by associating subjective probability not with events,
but with descriptions of events, called hypotheses. In support theory, each
hypothesis A has associated with it a degree of support s(A) representing the
strength of evidence for that hypothesis. The judged probability that the focal
hypothesis A holds, rather than the aternative hypothesis B, assuming one
and only one obtains, is given by the proportion of support favoring A:

P(AB) = — A
’ s(A) + s(B)’

The support scale s allows different descriptions of the same event to evoke
different degrees of support. Support theory is thus a nonextensional model;
two hypotheses with the same extension (i.e., referring to the same event)
may nonetheless have different degrees of perceived support.

In this paper, we use support theory to model the nonextensionality of
subjective probability at a finer level of detail than has been done in previ-
ous work. We examine a general model in which support for a hypothesis
is separated into components, each representing the individual contribution
of one of a set of disjoint subhypotheses. A number of qualitative and quan-
titative principles of this decomposition of support are then proposed and
tested. We first review past work on modeling nonextensional judgment
in the context of support theory before introducing our decompositional
model.

Subadditivity

Support theory makes a distinction between explicit disunctions, which
list their individual components, and implicit disunctions, which do not.
According to the theory, the process of ‘‘unpacking’’ an implicit disunction
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into its components yields greater support for the resulting explicit disjunc-
tion. For example, unpacking the hypothesis ‘‘Joe will fly to Miami this
year'’ into the explicit diunction ‘* Joe will fly to Miami this year for busi-
ness or Joe will fly to Miami this year for pleasure’’ is assumed to increase
perceived support. Unpacking may increase support by bringing to mind oth-
erwise neglected possibilities or by increasing the salience and impact of the
unpacked components.

Support theory also assumes that evaluation of an explicit disunction as
awhole tends to yield less support than does separate evaluation of each of
its components. Formally, if Aisanimplicit hypothesis referring to the same
event as the explicit digunction A; [0 A, then

S(A) = s(A; OAy) = s(A) + s(Ay).

The inequality involving the two leftmost expressions refersto implicit sub-
additivity of support, and the inequality involving the two rightmost expres-
sions refers to explicit subadditivity of support. Both properties imply sys-
tematic deviations from extensionality in judgments of probability.

The Evaluation of Residual Hypotheses

In the studies to be reported, we examine situations in which there exists
a fixed set of discrete possibilities, only one of which can be true. As an
example, consider the task of predicting the winner of the Best Picture Oscar
after the nominees have been announced. Denote the five nominated movies
A B, C, D, and E and consider judging the likelihood that movie A will
win the award. This judgment pits the elementary hypothesis A against the
“‘catchall’” or residual hypothesis A (‘‘not-A’"), whichisan implicit disjunc-
tion with the same extension as B [0 C O D [ E. The elementary judgment
of the likelihood of A can be represented in terms of support as

S(A) + s(A)

Suppose that elementary judgments for each hypothesis are elicited. Denote
the sum of elementary judgments across a partition by T. In the case of a
five-way partition, for example,

T = P(AA) + P(BB) + P(CC) + P(D,D) + P(E,E).

Probability theory requiresthat T = 1, because the hypotheses are mutually
exclusive and exhaustive. According to support theory’ s assumptions of im-
plicit and explicit subadditivity, however, each elementary judgment intro-
duces a bias in favor of the focal hypothesis, because its alternatives lose
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support by being packed together in the residual hypothesis. For instance,
because of subadditivity of support, S(A) typically will be less than the sum
of the supports of its components (in this case, B, C, D, and E). Consequently,
support theory implies that T > 1. This pattern has been consistently ob-
served in a number of studies, in judgments of probability and of relative
frequency by both experts and nonexperts (e.g., Teigen, 1974a, 1974b; Pe-
terson & Pitz, 1988; Tversky & Koehler, 1994; Redelmeier, Koehler, Liber-
man, & Tversky, 1995; Fox, Rogers, & Tversky, 1996; Koehler, Brenner, &
Tversky, 1997; Fox & Tversky, 1998; Fox, 1999).

It should be noted that the observation of T > 1 cannot be explained by
ageneral biasin favor of the focal hypothesis. Judgments which pit asingle
elementary hypothesis against another elementary hypothesis typically sum
to 1, showing no evidence of focal bias (Tversky & Koehler, 1994; Wallsten,
Budescu, & Zwick, 1992; Fox, 1999; but also see Brenner & Rottenstreich,
1998; Brenner & Rottenstreich, 1999; Macchi, Osherson, & Krantz, 1999).
Evidently, the excessive total probability isaconsequence of the *‘ packing’’
together of elementary hypothesesincluded implicitly inthe residual hypoth-
esis.

Global Weights: Discounting the Entire Residual Hypothesis

There are severa ways to measure the degree of subadditivity of support
in the assessment of residual hypotheses. The total probability T introduced
above provides a simple overall measure of subadditivity across an entire
set of elementary hypotheses and their corresponding residuals. One way
to represent the degree of subadditivity at the level of individual residual
hypotheses is to use global weights. Let the global weight wx < 1 represent
the degree to which the support for the residual hypothesis A is discounted
relative to the total support for its components. In the case of a five-way
partition,

S(A) = w;i [S(B) + S(C) + s(D) + s(E)].

Using this global weight representation, the support for aresidual hypothesis
can be framed in terms of the total support for its components. Koehler,
Brenner, and Tversky (1997) proposed that global weights for residual
hypotheses may be systematically related to the support for the focal elemen-
tary hypothesis. In particular, they suggested that the greater the support
for the elementary hypothesis, the greater the degree of discounting for the
corresponding residual hypothesis and thus the smaller the associated w. This
suggestion is based on the intuition that when the focal hypothesis is very
strong, ajudge will belesslikely to carefully unpack the corresponding resid-
ual hypothesis, and thus the specific evidence for each of the individual com-
ponents of the residual will be evaluated less exhaustively, yielding a low
value of w. In contrast, when the focal hypothesisis very weak, ajudge will
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be more likely to unpack the residual, considering evidence supporting each
component, yielding a higher value of w.

Koehler et al. (1997) proposed a linear model of the global weights as a
simple form that captures the proposed structure:

wi = 1 — Bs(A), with B > 0.

This linear discounting model implies a qualitative pattern referred to by
Tversky and Koehler (1994) and Koehler et a. (1997) as the enhancement
effect: As the support for al hypotheses increases by a common factor, the
degree of subadditivity also increases, because the global weights associated
with the residual hypotheses decrease. As a result, the total probability T is
greater for astrongly supported set of hypotheses than for aweakly supported
set of hypotheses. For example, in one study by Koehler et al. (1997), sub-
jects read a description of a murder in which there were five possible sus-
pects. Judgments of the probability of guilt for each suspect were elicited
under low information (which minimally implicated each suspect) and also
under high information (which more strongly implicated each suspect). Con-
sistent with the linear discounting model, subadditivity was more pro-
nounced (i.e., T was greater) under high information—where the support for
each hypothesis had increased—than under low information.

The linear discounting model also predicts that, within a given set of
hypotheses, subadditivity is more pronounced for residuals of strongly sup-
ported elementary hypotheses than for residuals of weakly supported elemen-
tary hypotheses. These patterns were observed in the results of several stud-
ies by Koehler et a. (1997), in which global weights were derived jointly
from probability judgments and direct assessments of support.

Local Weights: Discounting Individual Components of the Residual

A more detailed representation of subadditivity of residual hypotheses,
which isthe focus of this paper, incorporates local weights rather than global
weights. Each local weight representsthe degree of discounting of an individ-
ual component of the residual hypothesis, in contrast to the global weight
approach in which thetotal support for the residual componentsis discounted
by a single factor. Using local weights, the support for aresidual hypothesis
can be expressed as a weighted sum of its components' supports:

S(A) = W(B,A)S(B) + W(C,A)S(C) + w(D,A)S(D) + W(E,A)S(E).

The local weight w(B,A), which can be read as ‘‘the weight of B in not-A,”’
represents the weight of the component B within the residua hypothesis A.
Note that the global weight is the support-weighted average of the local
weights.

Local weights have a natural interpretation as the degree to which the
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judge considers or attends to a particular component when evauating the
residual. We should stress that this representation does not entail an explicit
and deliberate process of discounting each component of the residual. In-
deed, the assumption underlying the subadditivity of the support function is
that the residual istypically evaluated as a composite hypothesis, not as a set
of components. Rather, the local weight expresses the degree of component-
specific discounting resulting from a process in which the overall residua
is evaluated without necessarily being unpacked into its components. We
elaborate further on issues of interpretation regarding local weights in Sec-
tions 3 and 6.

By estimating local weights, in the present treatment we explore the repre-
sentation of residual hypotheses in terms of the support accounted for by
theindividual components of the residual. This approach can provide aricher
description of how residual hypotheses are mentally represented and evalu-
ated and allows a more detailed formal representation of subadditivity of
support. For instance, when judging the likelihood that As Good As It Gets
will win this year's Best Picture Oscar, how and to what extent are each of
the remaining nominated films considered? Do some films contribute more
strongly to the impression of the residual than others? Is each film in the
residual discounted, or are some actually given extraweight? Does a particu-
lar film (e.g., Titanic) contribute more to some residuals in which it resides
than to others? Our approach can shed light on these and other questions.
We are concerned especially with how the support for a particular component
hypothesisin theresidual may depend on (&) the support for the focal hypoth-
esis and (b) the support for the component itself.

Overview

The remainder of the paper is organized asfollows. In Section 2, we intro-
duce several plausible ordinal properties that may characterize local weights.
In Section 3, we describe an empirical procedure for estimating local
weights. In Section 4, we present the results of several studies using this
estimation procedure and test the candidate properties of local weights intro-
duced in Section 2. Section 5 introduces a linear model of the local weights
that accounts for most of their variance. Section 6 summarizes the results
and concludes with a general discussion of the nature of residual representa-
tion and decomposition and the value of considering local weights instead
of global weights.

2. POSSIBLE LOCAL WEIGHT PROPERTIES

In this section, we consider a number of plausible properties that local
weights may exhibit. For maximal generality, in most cases the properties
are ordinal. It is important to note that the properties below do not follow
directly from any of the core axioms or assumptions of support theory.
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Rather, these properties posit additional, psychologically plausible structure
characterizing the degree of discounting of support within the constraints of
the theory. Exploration of the structure of local (or global) weights can be
seen as analogous to describing the shape of the utility or subjective value
function in amodel of decision making under uncertainty, such as expected
utility theory or prospect theory (Kahneman & Tversky, 1979). The proper-
tieswe consider, then, do not provide direct tests of support theory, but rather
illustrate the power of the theory to aid in the generation and formal descrip-
tion of new substantive hypotheses.

As a running example to clarify the exposition and motivation of these
properties, we consider the probability of winning afour-way race for public
office involving a popular incumbent (1), who has the highest degree of evi-
dential support, and three challengers of high, medium, and low support (H,
M, and L, respectively).

Property 1. Local subadditivity

w(B,A) = 1 for distinct AB.

Local subadditivity is a natural generalization of “‘global’’ subadditivity ap-
plied to local weights. Global subadditivity entails that the support of the
overal digunction is discounted relative to the sum of its components’ sup-
ports; that is, the global weight isless than or equal to 1. Local subadditivity
entailsthat each individual component of adisjunction is discounted to some
extent. Local subadditivity implies global subadditivity, but the converse is
not true. Global subadditivity could hold even if some components have local
weights greater than 1, as long as other components have sufficiently low
weights so that the support-weighted average of the local weights is not
greater than 1.

In our election example, local subadditivity would hold if the support for
each remaining candidate in the election was discounted somewhat when
judging the likelihood that any particular candidate will win. For example,
when judging the likelihood of 1 winning the race, support for each of H,
M and L would be discounted in the residual, relative to the support evoked
when they are focal or otherwise unpacked. Similarly, when judging the
likelihood of M winning the race, each of I, H, and L would be discounted,
and so on.

Property 2. Residual-dependent local weighting

W(AB) < w(AC) iff w(D,B) < w(D,C) for distinct A, B, C, D.

Note that in the statement of Property 2, in each inequality the first argu-
ment (the component) is held constant, while the second argument (the resid-
ual) is varied. This property requires that for every individual component,
the ordering of local weights across different residual hypothesesisthe same.
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In other words, if one component (e.g., A) carries more weight in residual
C than in residual B, then every other component that is shared by both
residuals (e.g., D) also carries more weight in C than in B. This property
would be satisfied, for example, if local weights were constant for all compo-
nentswithin aparticular residual, but varied across the different residuals. To
afirst approximation, this property impliesa‘‘main effect’’ of the particular
residual hypothesisin which the component resides—in other words, amain
effect of the second argument in the w(LI)l notation.

Returning to the election example, if the medium-support challenger M
is discounted to a greater extent when the incumbent | is focal than when
the low-support challenger L is focal, then residual-dependent weighting
requires that the high-support challenger H is also discounted to a greater
extent when | is focal than when L is focal. This may occur if the residual
not-1 evokes greater discounting for all of its included hypotheses than does
not-L. For example, when judging the likelihood of |, one may simply con-
sider evidence for why | may win against evidence for why | may lose.
The latter set of evidence may not strongly support any of the individual
components L, M, or H. In contrast, when judging the likelihood of L, one
may consider evidence why L may win, and aso evidence why each of the
other candidates may win; in other words, when L is the focal hypothesis,
each of the remaining individual possibilities may be considered more ex-
plicitly. Property 2 thus requires that local weights for components depend
systematically on the residual hypothesis in which they reside—hence the
summary label ‘‘residual-dependent local weighting.”’ The next property
suggests a more specific form of this dependence.

Property 3. Local enhancement

W(AB) < w(A,C) iff s(B) > s(C)  for al distinct A, B, C.

Here we propose that not only do local weights depend on the residual
hypothesis, they depend specifically on the support for the focal hypothesis
that defines the residual. In particular, if B has greater support than C, then
the local weight for each component shared by both residuals B and C is
lower in B than in C. This property is an ordinal, local-weight generalization
of the global-weight linear discounting model proposed by Koehler et al.
(1997). In that model, recall that the global weight associated with a residual
hypothesis is lower to the extent that support for the focal hypothesis under
evaluationisstronger. That is, subadditivity isenhanced by increased support
for the focal hypothesis that defines the residual. In local enhancement, this
pattern applies to each individual component’s local weight as well. Local
enhancement implies global enhancement, but not vice versa.

Local enhancement capturesthe intuition that residuals may be morelikely
to be treated in a component-by-component manner when the focal hypothe-
sis is weak than when the focal hypothesis is strong. The example above,
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which contrasts evaluation of the residual defined by | with evaluation of
the residua defined by L, illustrates this notion. If | is a strong hypothesis,
in evaluating itsresidual it may be natural to consolidate the remaining com-
ponents, rather than evaluating them individually. Again, one might simply
consider evidence why | might lose (e.g., he has been the subject of allega-
tions involving shady business dealings), rather than evidence why each of
the challengers may win. To the extent that this evaluation ignores relevant
evidence supporting individual challengers, the degree of discounting of the
residual components may be high, and the local weights low. In contrast, if
a weaker hypothesis such as L is focal, when evaluating the residual it may
be more natural to consider evidence for each of the other, more compelling
candidates in turn (e.g., | has the advantage of incumbency, M has a better
funded and organized campaign, and H is the mediafavorite). Such a pattern
would lead to local enhancement.

We must be careful to distinguish between the claim that the degree of
discounting depends on the residual hypothesis and the alternative claim that
it depends on the focal hypothesis. These two conceptions are naturally con-
founded in the situations we have considered, in that each residual hypothesis
is defined by a particular focal hypothesis. Thus, Properties 2 and 3 could
also be framed in terms of focal dependence of local weights, rather than
residual dependence. Such a characterization would be substantially more
general than ours, however, because it could be applied to all disjunctions,
not just to residual hypotheses. To illustrate, note that if local weights for
a disunction were dependent on the focal hypothesis, then the very same
disunction could be weighted differently when pitted against different focal
hypotheses. For example, in this account, the support for the disunction
B O C in the judgment P(A, B O C) could be different from that in the
judgment P(D, B [ C), despite holding fixed the evidence on which the
judgments are based. Were this the case, it would represent a violation of
one of the central principles of support theory—the assumption that support
for a particular hypothesis is the same regardiess of the hypothesis with
which it is paired. This principle of context independence of support (which
has been empirically validated in several studies, e.g., Brenner & Rot-
tenstreich, 1998; Fox, 1999; see also Koehler, 1996) is implied by support
theory’s use of a single-argument support function that associates a unique
support value with each hypothesis. Framing Properties 2 and 3 in terms of
residual dependence rather than focal dependence avoids any violation of
context independence. These properties, then, describe systematic variability
in local weights across different disjunctions, not variability of support for
the same digjunction across different contexts.

Recall that local weights are defined as a joint function of the component
hypothesis with which they are associated and the residua hypothesis in
which the component resides. Properties 2 and 3 concern residual depen-
dence—that is, systematic variability of local weights across different resid-
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ual hypotheses. The next two properties concern analogous component de-
pendence—that is, systematic variability of local weights across different
components.

Property 4. Component-dependent local weighting

w(A,C) < w(B,C) iff w(A,D) < w(B,D) for all distinct A, B, C, D.

Recall that Property 2 (residual-dependent local weighting) entailed a
main effect of the residual; Property 4 entails an analogous main effect of
the individual component. In each inequality in Property 4, the second argu-
ment (the residual) is held constant, while the first argument (the component)
is varied. This property requires that the ordering of components local
weightswithin aresidual isthe same across different residuals. If one compo-
nent is weighted more heavily than another in one residual, then it is
weighted more heavily than the other in every residual that shares both com-
ponents. For instance, in the election example, the component L could be
systematically ignored or forgotten when evaluating the residuals of |, H,
and M. In contrast, the component | could always be carefully evaluated in
each of the residuals in which it resides. As a result, Property 4 would be
satisfied in that component | has a higher local weight than component L in
every residual in which they both reside. Essentially, Property 4 requires that
some components carry consistently more weight in all residual hypotheses
than do others.

Just as local enhancement (Property 3) described a specific form of resid-
ual-dependent weighting (Property 2), inverse-support component weighting
(Property 5) describes a specific form of component-dependent weighting
(Property 4):

Property 5. Inverse-support component weighting

w(A,C) < w(B,C) iff s(A) > s(B) for distinct A, B, C.

According to Property 5, lower-support components are weighted more
than higher-support components within a common residual. This property
suggests that the differences between the support values of various compo-
nents are ‘‘smoothed out’’ somewhat by their inclusion in the residual hy-
pothesis, such that strongly supported hypotheses are given relatively less
weight, and weakly supported hypotheses are given relatively greater weight.

One possible process by which this property could operate is if consider-
ation of the residual highlights features common to each of the residual’s
components or otherwise draws attention to evidence that is consistent with
each of these components. In the election context, for example, evidence
that the focal candidate may lose could be the primary evidence considered
when evaluating the residual; this evidence may support each of the re-
maining candidates roughly equally. By ‘*blurring’’ distinctions among the
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components of the residual, this process results in a more equal distribution
of support across the components (compared to the case in which each indi-
vidual component is explicitly considered). Hence, stronger components
would receive relatively less weight in the residual, while weaker compo-
nents would receive relatively more weight. We should stress that **more’’
or ‘‘less’ weight is defined relative to the other components within the same
residual hypothesis. By focusing on components within the same residual,
thisproperty controlsfor overall differencesin weights across different resid-
uals and specifically measures variability of local weights associated with
the components support values.

An opposite version of this property—entailing a positive correlation be-
tween a component’s support and local weight—is aso plausible. Such a
property might be satisfied, for example, if attention is focused primarily
on the strongest components when considering the residual hypothesis. The
example described previously, in which strong components like | and H are
given substantial weight in the residual, while weaker components like L
and M are neglected, would produce results opposite to those predicted by
Property 5. Regardless of its predicted direction of influence, at its most
general level, Property 5 concerns the correlation between support of acom-
ponent and the local weight for that component. It turns out, as will be seen
shortly, that our empirical results are most consistent with Property 5 as
formulated above.

3. ESTIMATING LOCAL WEIGHTS

We now describe ageneral procedure for estimating local weights empiri-
cally. Consider a partition with five elementary hypotheses A, B, C, D, and
E. To assess the local weights, we require judgments of the likelihood of
each hypothesis; further, the contribution of each hypothesis must be evalu-
ated within the context of each residua hypothesis that includes it. For in-
stance, evaluations are required of the contribution of hypothesis B to the
overall support of the residuals A, C, D, and E.

To accomplish this, one group of participants (the control group) assigns
probabilitiesto al five hypotheses simultaneously. These participants distrib-
ute 100% of probability mass across the five possibilities in a single step.
The ‘‘neutral’’ setting of these judgments allows estimates of the individual
support values s(A), s(B), s(C), s(D), and s(E).

Other groups of participants first judge an arbitrarily assigned target hy-
pothesis (e.g., A) against its residua (e.g., A). This elementary judgment
allows an assessment of the relative support for A and for A. To allow estima-
tion of the individual contributions of each of the components within A,
these participants then allocate the remaining probability (i.e., the amount
not assigned to A) across the components B, C, D, and E. The elementary
hypothesis provided as the initial target is varied across participants. In al
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experimental conditions, each participant is required to give a set of five
judgments that sums to one.

If the distribution of probability across these components when they make
up the residual differs substantially from the distribution of probability in
the control condition, we have evidence that the local weights differ from
one. Let P,(B) denote the judgment of hypothesis B when A is the target
hypothesis and P(B) denote the judgment of hypothesis B in the control con-
dition. Using the notation of support theory, these judgments can be repre-
sented as follows:

P(B) = s(B)/[S(A) + s(B) + s(C) + s(D) + S(E)]
Pa(B) = W(B, A)s(B)/[S(A) + S(A)]
Py(A) = P(AA) = S(A)/[s(A) + S(A)].

Note that the representations above ensurethat ;P (j) = 1for al i (includ-
ing the control condition). Aggregate local weights across a set of judges
can then be estimated by comparing the mean judgment of a particular hy-
pothesis when it isin aresidua to the mean judgment of that hypothesis in
the control condition. Specifically,

P(B)/P(A)

One can verify this result either via algebra or via the following intuitive
argument. The numerator gives the support for B relative to A, when A is
the target and B is evaluated within the residua A. The denominator gives
the support for B relative to A, when A and B are on ‘‘equal footing’” in the
control condition. The ratio, then, gives the degree to which B is discounted
when it is evaluated within the residual A, rather than by itself (as in the
control condition), which is precisely what is meant by a local weight.

This procedure is attractive in that it alows a completely *‘ nonparamet-
ric’’ estimation of the local weights and the support values. That is, no as-
sumptions are made about the form of the support values and local weights,
beyond assuming that they are all nonzero. This can be most clearly seen
by noting that the estimation procedure entails a one-to-one transformation
from a set of probability judgments (assuming that no judgments are O or
1) to aset of support values and local weights. For example, in the case of five
hypotheses, there are six conditions in the empirical procedure (the control
condition and five conditions where each elementary hypothesisis focal), in
which five probability judgments are made. Because the judgments must
sum to 1, the total number of freely-varying data points for the probability
judgmentsis6* (5 — 1) = 24. There are also 24 parameters to be estimated:
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4 support values (one for each elementary hypothesis, with one arbitrarily
set to 1) and 20 local weights (4 weights for each of the 5 residual hypothe-
ses). In generd, for k elementary hypotheses, there are (k — 1) * (k + 1)
freely varying probability judgments, k — 1 support values and k * (k — 1)
local weights. It is easily seen that the number of data pointsis equal to the
number of parameters to be estimated. In short, the estimation procedure
can be seen as a transformation from a set of probability judgments into an
equivalent set of support values and local weights; no information is lost,
and no constraints are imposed on the data. The resulting local weights and
support values can then be examined to determine if they can be character-
ized by simple principles of the kind posited in Properties 1-5. (For arelated
nonparametric approach to the estimation of the probability weighting func-
tion in the domain of decision making under risk, see Gonzalez & Wu, 1999,
in this issue.)

4. DATA

We now turn to several experiments in which we use this general proce-
dure to estimate local weights. In Experiment 1, participants judged the like-
lihood that each of the films nominated for the 1998 Best Picture Oscar
would win the award. In Experiment 2, participants judged the probability
of winning for both the Best Picture Oscar nominees and the Best Actor
Oscar nominees. |n Experiment 3, basketball fans assessed the probability
of the different *‘Final Four’’ teams winning the 1998 NCAA Basketball
Championship. In Experiment 4, we extend our procedure to judgments of
absolute frequency; participants made judgments regarding the popularity of
different college majors. In each case, we estimate the local weights and
support values and test the properties presented in Section 2.

Experiment 1: Best Picture Oscar Judgments

Participants were 186 students at the University of Waterloo, approached
in public areas of campus, who completed a short questionnaire in exchange
for $2 Canadian. The questionnaire concerned predictions and evaluations
of the five films nominated for the 1998 Best Picture Oscar. Initial instruc-
tions read in part:

The following five films have been nominated for the Best Picture Oscar:
As Good As It Gets, The Full Monty, Good Will Hunting, L.A. Confidential, Titanic

In this questionnaire you will be asked to make a number of judgments about these
films. We recognize that you are unlikely to have seen all of these films, and may
not have seen any of them. Please make your evaluations on the basis of whatever
information you have about each film, such as movie reviews, advertisements, or
comments from friends who have seen the film.
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Participants in the control condition, who distributed probability across the
five candidates, were given the following instructions:

Please estimate each film's probability of winning below. Your probability judg-
ments should each be between 0% (indicating complete certainty that the film will
NOT win) and 100% (indicating complete certainty that the film will win). Please
make sure that the probabilities you assign to the five films add up to 100%.

These participants then proceeded to rate a subset of the films in terms of
several attributes (entertaining, thought provoking, emotionally moving, and
funny).

The remaining participants first judged the probability of a single desig-
nated ‘‘target’’ film, which varied across participants. After judging the prob-
ability of the target film, participants completed attribute ratings for that film,
as afiller task. This attribute-rating task was designed to strengthen the ma-
nipulation of designating a target film and prevent participants from simply
allocating probability acrossthefive filmsat once, asin the control condition.
Onthefollowing page, after completing several more attribute ratings, partic-
ipants distributed the remaining probability among the four remaining films.
For example, a participant who initially evaluated the target As Good As It
Gets saw the following instructions:

Now, please judge the probability of winning the Best Picture Oscar for each of the
remaining nominated films. Make sure that the total you assign to the four of them,
plus the probability that you already assigned to As Good As It Gets, adds up to
100%. In other words, make sure that the total of the probabilities of al five films
adds to 100%.

The Full Monty
Good Will Hunting
L.A. Confidential
Titanic

%
%
%
%

Data from an additional 54 participants were excluded from the analyses
that follow, as these participants failed to give probability judgments that
added to 100%. Almost of all of these participants were in the noncontrol
conditions and misinterpreted the instructions as requesting that the probabil-
ities assigned to the four nontarget films (rather than all five films) add to
100%. Methodological precautions were taken to prevent this problem in
Experiment 3.

Results

The mean probability ratingsfor the fivefilms, by target film, are presented
in Table 1. Rows of Table 1 designate different conditions, and columns
represent the different judged films. By construction, the sum of the ratings
within each row is 100%.

Consistent with subadditivity of support, the mean rating for each of the
target films (represented by the bolded diagonal entries of the table) exceeds
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TABLE 1
Means (and Standard Errors) of Probability Judgments for Best Picture Oscar in
Experiment 1

Judged hypothesis

As Good The Full Good Wil L.A.
Target hypothesis As It Gets Monty Hunting Confidential Titanic
Control 12.3 7.1 141 10.6 56.0
(n = 36) (a.5) 1y .7 (1.6) 4.1
As Good As It Gets 14.7 9.8 15.9 135 46.0
(n = 28) (2.5) (2.6) .7) (2.3) (4.5)
The Full Monty 15.3 8.4 16.6 131 46.6
(n=31) (1.9) .7) (1.8) (2.2) (3.8)
Good Will Hunting 12.3 8.7 21.0 9.9 48.1
(n = 30) (2.4) (1.5) (34) (1.3) (4.4)
L.A. Confidential 125 9.1 18.0 14.3 46.0
(n=27) (1.6) (1.2 (2.2 (2.2 (3.3)
Titanic 6.0 35 6.7 6.9 76.9
(n = 34) (1.3) (0.9 (1.4) (2.0) (4.4)

the mean rating for the corresponding film in the control condition. Indeed,
the sum of the target film elementary judgments, T, is 135% (SE = 6.7%),
substantially greater than the 100% expected under additivity.

The local weights for each film in each residual were calculated based on
the set of mean judgments, using the analysis described in Section 3. The
resulting local weights are presented in Table 2, along with the support values
for each film derived from the mean ratingsin the control condition. In Table
2, the rows containing local weights represent different residual hypotheses,
and the columns represent different component hypotheses. Because the sup-
port scale has an arbitrary unit, without loss of generality we adopt the con-
vention that the sum of the support values across the partition is 1.

The set of local weights can be tested for correspondence with the proper-
ties proposed in Section 2. In accordance with Property 1 (local subadditi-
vity), 80% (16 of 20) of the local weights are less than 1. Furthermore, the
few weights that exceed 1 do so only dlightly, while many of the weights
are quite small.

Thelocal weights appear to be dependent on the residual hypothesis; Prop-
erty 2 is satisfied in 26 of 30 tests (87%). Indeed, examining Table 2 one
can see clearly that the local weights (as well as the global weights) vary
substantially across the different residual hypotheses (the rows of the table).
The local weights are nearly 1.0 for the complement of The Full Monty but
less than .5 for the complement of Titanic. As further evidence, in a main-
effects ANOV A of the local weightsby residual and component, the variabil-
ity accounted for by the residual hypothesis is substantial, F(4, 11) = 38.8,
MSE = .007, p < .0001.
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TABLE 3
Summary of Local Weight Properties: Percentage of Tests Satisfied for Each Property, for
Each Data Set

Data P1 P2 P3 P4 P5
Expt 1: Picture 80 87 20 80 87
Expt 2: Picture 100 73 87 47 43
Expt 2: Actor 80 67 80 67 50
Expt 3: NC Cluster 92 83 75 50 58
Expt 3: KY Cluster 83 67 83 50 42
Expt 4: Majors 100 83 42 67 83
Overal average 89 76 80 63 60

Note. Pl islocal subadditivity. P2 and P3 concern residua dependence. P4 and P5 concern
component dependence.

Furthermore, the pattern of across-residual variability in the local weights
matches the ordering of the support values for the focal hypothesis, consis-
tent with local enhancement (Property 3). To illustrate, note that Titanic has
high support while not-Titanic has very low local weights. In contrast, The
Full Monty has low support while not-The Full Monty has high local weights.
Overal, local enhancement is satisfied in 27 of 30 tests (90%). The Pearson
correlation between local weights and support values of the negated compo-
nent (r = —.78) can be taken as evidence in favor of a specific form of
local enhancement, in which thelocal weights decrease linearly with increas-
ing support for the focal hypothesis.

Turning to variability of local weights by component (i.e., by column in
Table 2), we find that Property 4 is satisfied in 24 of 30 tests (80%). The
variability accounted for by component is substantial, asillustrated by asig-
nificant main effect of component (F(4, 11) = 3.6, MSE = .007, p < .05),
in addition to the main effect of residual noted above. Finally, Property 5
holds in the great majority (87%) of tests; stronger components tend to have
smaller local weights. For instance, the Titanic column in Table 2 has sub-
stantially lower weights than the Full Monty column. A summary of the
property tests in this and subsequent experiments can be found in Table 3.

Experiment 2: Best Picture and Best Actor Oscar Judgments

UCLA undergraduates (N = 232) participated in a replication and exten-
sion of Experiment 1; they completed the study within aquestionnaire packet
containing several other unrelated tasks. Participants assigned probabilities
first to the 1998 Best Picture Oscar nominees and then to the 1998 Best
Actor Oscar nominees (Matt Damon in Good Will Hunting, Robert Duvall
in The Apostle, Peter Fonda in Ulee's Gold, Dustin Hoffman in Wag the
Dog, and Jack Nicholson in As Good As It Gets).

In the control condition, participants gave probability assignments only
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TABLE 4
Means (and Standard Errors) of Probability Judgments for Best Picture Oscar in
Experiment 2

Judged hypothesis

As Good The Full Good Will L.A.
Target hypothesis As It Gets Monty Hunting Confidential Titanic
Control 124 7.3 174 129 50.0
(n = 35) 1.3 1.2 2.y (1.6) (4.0
As Good As It Gets 16.3 7.9 171 113 474
(n=31) (1.8) (1.0 (1.8) (1.4 3.7
The Full Monty 13.2 9.9 20.9 14.8 41.2
(n =32 (1.4 (1.4) (2.4) (2.3) (3.5)
Good Will Hunting 105 6.2 27.2 8.1 48.0
(n = 30) (1.3 (1.2 (3.4) (1.5) (4.2
L.A. Confidential 9.5 6.5 16.9 18.7 485
(n = 33) (1.3 (1.3) (2.3) (3.0 (4.4)
Titanic 7.3 4.2 131 9.0 66.5
(n = 35) (1.3 (0.8) (1.8) (2.0) (4.4)

for each task. Participants not in the control condition (a) assigned a probabil-
ity to a target film, (b) rated how entertaining that film was, and then (c)
distributed the remaining probability among the nontarget films. This se-
guence of tasks was then repeated for the Best Actor nominees. Again, the
rating task placed between the initial and final allocation of probability was
designed to prevent participants from assigning al five probabilities at once,
as in the control condition.

Results

Our analysis focuses on the 202 participants who provided responses that
added to 100% for both tasks. The mean probability judgments and derived
local weights and support values are presented in Tables 4 and 5 for Best
Pictureand in Tables6 and 7 for Best Actor. Again, wefind that total elemen-
tary judgments exceed 100% for both tasks; T = 139%, SE = 6.7, for the
Best Picture judgments and T = 129%, SE = 7.4, for the Best Actor judg-
ments.

Local weights are again consistently less than 1; Property 1 is satisfied in
every case for Best Picture and in 80% of tests for Best Actor. Furthermore,
we find that local weights are again highly residual dependent. Property 2
is satisfied in 73 and 67% of tests for Best Picture and Best Actor, respec-
tively. In a main-effects ANOVA, the mean local weights vary by residual
hypothesis for both Best Picture (F(4, 11) = 7.2, MSE = .008, p <. 01)
and Best Actor (F(4, 11) = 5.7, MSE = .011, p < .01). Again, the variability
by residual is consistent with local enhancement; Property 3 is satisfied in
87 and 80% of tests, and the Pearson correlations between local weights and
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TABLE 6
Means (and Standard Errors) of Probability Judgments for Best Actor Oscar in
Experiment 2

Judged Hypothesis

Matt Robert Peter Dustin Jack
Target hypothesis Damon Duvall Fonda Hoffman Nicholson
Control 24.5 16.2 13.2 191 27.1
(n = 36) 3.2 (2.0) 1.4 21 (3.0
Matt Damon 28.7 133 135 16.0 285
(n=34) (36) (3.0) (1.7) (24) (29)
Robert Duvall 18.7 195 16.8 177 27.4
(n = 30) (2.5) (2.1) (2.4) 2.1 (2.5)
Peter Fonda 222 134 16.0 14.8 33.7
(n=31) (3.3 (2.4) (3.3 (1.6) 3.1
Dustin Hoffman 16.2 115 16.4 229 329
(n =32 (2.8) (1.4) (2.3) (3.6) (3.6)
Jack Nicholson 16.2 117 10.8 16.6 44.7
(n = 35) (2.4) (1.4) (1.6) (1.6) (3.6)

support values are —.66 and —.36 for Best Picture and Best Actor, respec-
tively.

Results for variability by component are less consistent. The Best Picture
data show no evidence of variability by component: Property 4 is satisfied
inonly 47% of tests, and the main effect of component istrivial, F(4, 11) =
1.3. Onthe other hand, the Best Actor data does provide evidence for compo-
nent dependence: Property 4 is satisfied in 67% of tests, and there is a strong
main effect of component (F(4, 11) = 9.8, p < .01) in the ANOVA. This
variability by component does not appear to be related to the support values
of the components; Property 5 is satisfied at the chance level of 50%.

The extreme discrepancy in support between Titanic and the other nomi-
neesfor the Best Picture category could cause some concern that the structure
in the local weights may be driven primarily by this one outlier. The consis-
tent results for the Best Actor category help to dispel this concern, because
the variability in support for the Best Actor nominees is not nearly as large
as that for the Best Picture nominees. Furthermore, examination of the films
other than Titanic also reveals roughly the same pattern of results as does
the full set of films.

Experiment 3: NCAA Basketball

We now examine adifferent prediction domain, with judgeswho are expe-
rienced with and inherently interested in the subject matter. Basketball fans
(N = 115) wererecruited from a computer news group devoted to discussion
of college basketball and directed to a web site where they assessed the
likelihood of different winners of the 1998 NCAA Men's Basketball Cham-
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pionship. In exchange for their participation, they were entered in a drawing
to win one of three commemorative Final Four T-shirts.

At the time of the study, the field had been reduced to the Final Four
teams North Carolina, Utah, Kentucky, and Stanford. The design of the ex-
periment on the web site was similar to that of the previous studies. Partici-
pants in the control condition simultaneously assigned probabilities to al
four teams on a single screen of their web browsers. All other participants
assigned a probability to an initial designated target team on the first screen,
and then assigned probabilities to the remaining teams on a second screen.
The computer program used to run the web site ensured that all fans' proba
bility judgments added to 100% across the four teams; in cases where judg-
ments did not add to 100%, fans were required to reenter their judgments
until this condition was met.

Results

The data split naturally into two clusters, independently of the experimen-
tal manipulation. Roughly half of the fans (n = 59) indicated North Carolina
as the favorite, while the other half (n = 55) favored Kentucky. Asasimple
classification rule, those that assigned a larger probability to North Carolina
than to Kentucky were placed in the North Carolina cluster; the remainder
were placed in the Kentucky cluster. Data from one additional fan whose
judgments did not fit either pattern were excluded from the analysis.

As before, the total elementary judgmentsin each cluster exceeded 100%;
T = 132%, SE = 7.5, for the North Carolinacluster, T = 129%, SE = 10.9,
for the Kentucky cluster. Table 8 lists the derived local weights for the two
clusters. For both clusters, most weights are less than one, satisfying Property
1. Thelocal weights are again strongly residual dependent, satisfying Proper-
ties 2 and 3. Consistent with this result, ANOVAs for each cluster indicate
a margina main effect of residual, F(3, 8) = 3.2, MSE = .019, p < .10,
for the North Carolina cluster; F(3, 8) = 3.0, MSE = .021, p < .10, for the
Kentucky cluster. Correlations between local weights and support for the
focal hypothesis were also considerable, —.34 for the North Carolina cluster
and —.52 for the Kentucky cluster. For neither cluster is there substantial
variability based on component, as postulated by Properties 4 and 5.

Experiment 4. College Majors

The following experiment extends our analysis to judgments of absolute
frequency. While effects of unpacking appear to be generally larger for judg-
ments of probability than for judgments of relative frequency (Tversky &
Koehler, 1994), judgments of relative and absol ute frequency have both been
found to exhibit subadditivity (e.g., Rottenstreich & Tversky, 1997). Further-
more, the enhancement effect has al so been observed in judgments of relative
frequency (Koehler et al., 1997). Examining the applicability of the present
analysis to judgments of absolute frequency is worthwhile because some
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TABLE 8
Support Values and Local Weights Derived from NCAA Final Four Judgments in
Experiment 3

Component

Kentucky  North Carolina  Stanford Utah Global

QY B © (O)  weight
Carolina cluster
Support 219 546 .109 125 —
Local weight in not-A — .656 734 .630 .663
w(LJA)
Local weight in not-B .769 — .363 .559 .613
w(LJB)
Loca weight in not-C 1.017 748 — 794 821
w(LIC)
Local weight in not-D .560 413 .636 — AT7
w(LID)
Kentucky cluster

Support 495 279 101 126 —
Loca weight in not-A — 575 .208 199 408
w(LJA)
Loca weight in not-B .865 — .366 1.248 .862
w(LJB)
Loca weight in not-C .944 .970 — 2.252 113
w(LIC)
Local weight in not-D 707 .536 .518 — .630
w(LIC)

researchers have claimed that commonly observed biasesin probability judg-
ments are greatly reduced or eliminated when frequencies are elicited instead
(Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995; Gigerenzer, Hof-
frage, & Kleinbolting, 1991; see also Kahneman & Tversky, 1996).

Participants were 240 UCL A undergraduates who completed a short ques-
tionnaire within a packet containing severa other tasks. Initial instructions
read, in part:

At alarge Midwestern state university, the social sciences consist of four different
majors: psychology, sociology, political science, and economics. Suppose there are
1000 students enrolled at this university who have declared asingle major in a social
science.

Participants proceeded to allocate these 1000 students to the four possible
majors. Participants in the control condition answered the question:

How many of these students major in each of the individual social science majors?
(make sure the total adds up to 1000)

Economics Psychology — Political Science Sociology
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Participants who encountered a designated target major (e.g., Economics)
answered questions of the following form:

How many of these students major in Economics, and how many major in a social
science other than Economics? (make sure the total adds up to 1000)

Economics Social science other than Economics

Of the number of students you assigned to a Social science other than Economics,
how many major in each of the remaining individual majors?

Psychology — Political Science_____ Sociology

Results

We analyze data from the 181 participants who provided judgments that
added to 1000 as instructed. For purposes of comparability to the previous
experiments, judgments are normalized and represented as proportions.
Mean judgments are presented in Table 9; derived local weights are found
in Table 10. The total of the elementary judgments (T = 137%, SE = 4.9)
is again greater than 100%. Furthermore, al 12 local weights are less than
1, satisfying Property 1.

Thereissubstantial variability of local weights by both residual (F(3,5) =
18.0, MSE = .0006, p < .01) and component (F(3, 5) = 8.5, p < .05),
satisfying Properties 2 and 4, respectively. There is no strong evidence of
local enhancement in this case; Property 3 is satisfied in only 42% of al
tests, and the correlation between local weights and the support for the focal
hypothesisisamere .19. Evidence for inverse-component support weighting
isstronger. Property 5 is satisfied in 83% of tests and the correl ation between
local weights and the support of the particular component modified by the

TABLE 9
Means (and Standard Errors) of Normalized Frequency Judgments for Possible Majors in
Experiment 4

Judged Hypothesis

Target Political

hypothesis Economics Psychology science Sociology
Control 30.7 24.7 24.9 19.7
(n = 38) .7 .7 1.5) (1.6)
Economics 41.3 21.3 20.6 16.8
(n= 34 2.7 (1.5) @7 1y
Psychology 24.8 35.2 21.7 18.3
(n = 33) (1.8) (2.6) (1.6) (1.5)
Political science 27.2 23.0 30.9 19.0
(n= 32 (1.8) 1.2 21 (1.9
Sociology 27.6 22.6 20.4 29.3

(n = 44) (1.6) 1.2) (1.4) (2.4)
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TABLE 10
Support Values and Local Weights Derived from Normalized Frequency Judgments for
Possible Mgjors in Experiment 4

Component
Political
Economics Psychology science Sociology Globa
Q) (B) (©) (D) weight
Support .307 247 .249 197 —
Local weight in not-A — .640 613 .632 .628
w(LIA)
Local weight in not-B 571 — 614 .653 .606
w(LIB)
Local weight in not-C 716 750 — 779 744
w(LIC)
Local weight in not-D .605 614 .550 — 591
w(LID)

local weight is —.31. This relatively low correlation is primarily due to the
constrained range of both the local weights and the support values. The ordi-
nal tests more clearly demonstrate that orderings of local weights for compo-
nents within aresidual are opposite the orderings of the components’ support
values.

5. A LINEAR MODEL OF LOCAL WEIGHTS

We can test specific versions of Properties 3 and 5 by assuming a simple
linear model of the local weights and comparing the predicted probability
judgments derived from this model to the observed mean judgments. In the
linear local weight model, we represent local weights as

w(B, A) = 1 — as(B) — Bs(A).

Property 3 will be satisfied if B > 0; as support for the focal hypothesis
increases, local weightsfor the componentsin theresidual decrease. Property
5 will be satisfied if a > 0; local weights for the particular component de-
crease as the support for that component increases.

This model of the local weights was fit to the set of mean probability
judgments for each of the experiments described above, using SAS's
weighted |east-squares nonlinear regression procedure PROC NLIN. Table
11 contains summaries of the parameter estimates and goodness of fit mea-
sures for each data set. Goodness of fit measures for two comparison models
are also provided: (a) an additive model in which all local weights equal 1
and (b) a constant-weight model in which all local weights are equal to each
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TABLE 11
Summary of Parameter Estimates (and Standard Errors) and Goodness of Fit for Linear
Local-Weight Model: w(B, A) = 1 — as(B) — Bs(A)

R? (%) R2(%) R (%)

Data Component (o) Residual (8) full model alw=1 alw=k
Expt 1: Picture .059 (.005)*  .113 (.011)* 99.7 89.7 96.8
Expt 2: Picture .019 (.023) 124 (.029)* 98.5 92.1 98.6
Expt 2: Actor —.243 (.201) 534 (.193)* 93.8 74.3 91.2
Expt 3: NC cluster 116 (.037)*  .114 (.057)* 97.6 90.3 97.4
Expt 3: KY cluster  —.326 (.294) 779 (.216)* 95.5 87.5 93.6
Expt 4: Mgjors 129 (.120) .295 (.112)* 97.9 345 98.1

other. In the additive model, only the support values are estimated; in the
constant-weight model, the (constant) value of the local weights is an addi-
tional parameter to be estimated.

Several observations from Table 11 are noteworthy. First, the fit of the
linear local weight model is excellent in all cases; R? values range from 93.8
to 99.7%. Even though the baselinefit of the additive model is aso typicaly
quite good, the linear local weight model improves substantially on the base-
line fit in every case and leaves little variability unexplained. It is important
to evaluate the improvement of more complex modelsin terms of the amount
of variability left unexplained by simpler models. In Experiment 1, for in-
stance, the linear model explains 97% of the variability left unexplained
(10.3%) by the additive model. In other words, although there are substantial
deviations from additivity, the pattern of subadditivity can be accounted for
amost perfectly by a two-parameter linear model. The linear model aso
substantially improves on the constant weight model for three of the data
sets (Experiment 1 Best Picture, Experiment 2 Best Actor, and Experiment
3 Kentucky cluster), while performing approximately equally well for the
remaining three data sets.

Second, the estimates of the parameter 3 are positive and significantly
different from zero in al cases, supporting the linear version of local en-
hancement. Finally, the estimates of a are significantly different from zero
in two cases, tentatively supporting a linear version of inverse-component
weighting. In short, in addition to the ordinal tests of Properties 3 and 5, we
find solid and consistent evidence for residual-specific local weights that
vary linearly with the support for the negated component and some evidence
for a comparable form of component-specific weighting.

6. DISCUSSION

Virtualy all judgments under uncertainty entail some assessment of a par-
ticular target event evaluated against its alternatives taken as agroup. Investi-
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gation of how residual hypotheses are represented and evaluated is thus an
essential aspect of the study of judgment under uncertainty. An appealing
aspect of support theory isthat it highlights the importance of the representa-
tion of residual hypotheses and also provides natural toolsfor modeling their
support. The approach presented in this paper, of modeling support for resid-
ual hypotheses with local weights, may shed additional light on this issue.

Patterns of Local Weights

Summarizing the results of the previous experiments, we reach three pri-
mary qualitative conclusions about local weights. First, each component of
aresidual hypothesis appears to be discounted to some extent; Property 1 is
overwhelmingly supported in each set of data. Stated differently, individual
hypotheses are very rarely given full weight or strengthened by their inclu-
sion within the residual. Thisis a substantially stronger version of subadditi-
vity than has been considered in previous work on support theory.

Second, local weights vary considerably across different residual hypothe-
ses (Property 2). In particular, the strength of the focal hypothesis appears
critically important in determining local weights. Stronger focal hypotheses
are associated with smaller local weights for each component in the residual
(Property 3). In asense, strong hypotheses are at a particular advantage when
in the focal position—because the alternatives are typically discounted more
heavily.

Third, local weightsvary based on the particular component of the residual
with which they are associated (Property 4). Whilethisfinding isless consis-
tent and robust, it appears quite often (in the Best Picture datain Experiment
1, Best Actor data in Experiment 2, North Carolina cluster in Experiment
3, and mgjors data in Experiment 4). There is some evidence that stronger
components of the residual tend to be discounted more than weaker compo-
nents (Property 5). This can be viewed as aform of ‘‘smoothing’’ of within-
residual variability of support.

The present results supplement and extend Koehler et al.’s (1997) analysis
of global weights in several ways. First, while Koehler et al. needed to elicit
both probability judgments and direct ratings of support to investigate en-
hancement, using the local-weight approach we can study enhancement us-
ing judgments of probability aone. Second, we observe enhancement at the
level of local weightsrather than global weights. By controlling for common
individual components in the local enhancement tests, we can rule out the
possibility that variability in global weights is merely due to the different
components included in different residuals. For example, consider a model
inwhich only component-wise variability of local weights exists and assume
that A, B, and C always receive local weights of .8, .6, and .4, respectively.
Based on these assumptions, not-A would have a relatively low global
weight, because it contains the lower-weighted components B and C, while
not-C would have a relatively high global weight, because it contains the
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higher-weighted components A and B. Extending enhancement to local
weights as specified by Property 3 allows usto concludethat all local weights
tend to be lower for residuals defined by stronger focal hypotheses and thus
reject the explanation that global weight differences are merely manifesta-
tions of component-wise local-weight differences.

Nonetheless, it should be acknowledged that—in light of the relatively
weak influence of component dependence (i.e., Properties 4 and 5)—the
global linear discounting model (Koehler et a., 1997) will often provide a
good first approximation of subadditivity, without the need to estimate local
weights. Identification of the specific conditions under which component de-
pendence does and does not hold will require further research.

Focal, Neutral, and Residual-Resident Hypotheses

Our genera pattern of results can be concisely summarized in terms of
how components with substantial supporting evidence are affected by either
being made focal or being relegated to a residual hypothesis. The local en-
hancement results (Property 3) suggest that stronger hypotheses are espe-
cialy helped by being singled out in the focal position, because the residual
hypothesis is greatly discounted. In contrast, in accordance with inverse-
support weighting (Property 5), a strong hypothesis residing in the residual
may be most vulnerable to discounting. We can consider three possible eval-
uation states for hypotheses: (a) focal; (b) neutral, asin the control condition;
or (c) residing within a residual. Our results suggest that hypotheses with a
large degree of evidential support show the greatest variability across these
different states. Weaker hypotheses, in contrast, appear to be the most stable
across these three states. This characterization appears plausible in that only
if there is a substantial degree of relevant evidence to be differentially ac-
cessed and weighed should there be substantial variability in support across
the different states.

Quite different evidence may be considered when an element is singled
out or relegated to the residual. Furthermore, evidence evoked by a singled-
out hypothesis may affect the evaluation of the alternatives. For example,
in evaluating evidence for the composite residua of films other than L.A.
Confidential, one may consider evidence for why the focal film may lose
(e.g., thefilm was not a popular success, it is somewhat cynical and depress-
ing, gritty crime films typically do not win Best Picture, etc.). Much of the
evidence relating to L.A. Confidential’s chance of losing may support each
of the remaining hypotheses nearly equally. For instance, one reason why
L.A. Confidential is likely to lose—gritty crime films do not often win—
could support each of the weaker hypotheses The Full Monty, As Good As
It Gets, and Good Will Hunting nearly as much as the stronger hypothesis
Titanic. Evidence cued or driven by the focal hypothesis may aso interfere
with the retrieval of evidence that implicates a particular component, but not
the entire residual. Focusing on how gritty crime films tend not to win may



44 BRENNER AND KOEHLER

distract one from the romantic charms of Titanic whichimplicateit asalikely
winner. Thus, some of the ‘‘unique’’ supporting evidence for the stronger
components may be neglected in such an evaluation or may be shifted some-
what in favor of the weaker components in the residual. The reason that local
weights are smaller for stronger components may simply be because these
components have the most to lose.

Formation and Evaluation of Residual Composites

The observed patterns of local weights are consistent with the general
view that the residual is typically not evaluated in a piece-by-piece, exten-
sional form. Rather, the residual may be evaluated as an overall composite
(e.g., “‘Titanic does not win'") which may call to mind or be supported by
substantially different evidence than would be evoked by a piece-by-piece
evauation. The view that disjunctions are typically represented as a compos-
ite impression has been a central assumption underlying past analyses of
support theory (Koehler et al., 1997; Tversky & Koehler, 1994; Rotten-
streich & Tversky, 1997). In discussing the representation of residua hy-
potheses, Koehler et al. (1997) proposed that, rather than first evaluating
the evidence for each elementary hypothesis separately, and then aggregating
the support of the hypotheses residing in the residual, people instead aggre-
gate the hypotheses in the residual and then evaluate the support of the re-
sulting composite. There are a number of processes by which evaluation of
the composite is likely to yield less support than what would have resulted
from apiece-by-piece, extensional evaluation. Evidencethat supports several
components of the residual, for example, may be counted only once when a
composite impression of the residual is evaluated, resulting in subadditivity.

Extending this notion somewhat, one partial explanation of local enhance-
ment is that when the focal hypothesis is strongly supported, the tendency
to form a composite impression of the residual may be intensified. In this
view, local weights are especially low within residuals pitted against strong
hypotheses because the residual is not decomposed to the same extent as
when the focal hypothesisis weak. Conversely, residuals may be more natu-
rally decomposed when a coherent general impression of the residual is less
natural or is harder to form. This is likely to be the case when the focal
hypothesis is only weakly supported, and severa disparate individual com-
ponents within the residual may appear plausible, perhaps for quite different
reasons.

Local Weight Estimation: Methodology and Interpretation

The conception of residual hypotheses as composites may appear at odds
with the ** (de)compositional’’ logic of the local weight representation intro-
duced in this article. If the residual is evaluated as a composite, why model
it as a weighted sum of the support of its components? We should stress
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that the local-weight representation is not intended to capture an explicit
cognitive process of component-by-component evaluation of the residual.
Local weight decompositions of support can be viewed as analogous to attri-
butewise decompositions of utility commonly used to model choice. For ex-
ample, a consumer’s preferences among a set of TVs may be represented
parsimoniously by an additive utility model in which a TV’s utility is com-
posed of the sum of weighted utilities for its attributes (such as size, price,
picture clarity, brand). This type of model is useful for both predictive and
explanatory purposes, even though the consumer most likely evaluates each
TV in ahalistic (rather than an attribute-by-attribute) manner. Just as attri-
bute-specific models of utility can decompositionally represent the structure
of preference, local-weight models of support can decompositionally repre-
sent the structure of belief.

Itisuseful, then, to distinguish the method of local-weight estimation from
the psychological processes by which these local weights are determined.
Methodologically, we can view the determination of local weights in our
empirical procedure as having two stages. First, a composite residual is
formed, and the support for the explicitly defined focal hypothesisis evalu-
ated against this composite’s support. Second, the composite is broken up
into its distinct components, which are then individually assessed. We as-
sume that this second process is unlikely to occur in the absence of explicit
instructions or other motivation to evaluate the individual components of the
residual.

Properties describing how local weights vary across residual hypotheses
(e.g., Properties 2 and 3) address the first step, namely, how evidence sup-
porting the composite residual may depend on the focal hypothesis. Roughly,
thisfirst step concerns the global weights for each residual, defining an aver-
age level for the local weights. Properties describing the distribution of local
weights within a particular residual (e.g., Properties 4 and 5), in contrast,
address how the evidence that supports the composite is allocated to itsindi-
vidual components in the decomposition step. Thus, analysis of residual de-
pendence can address composite formation, while analysis of component
dependence can address composite decomposition.

Strictly speaking, then, it would be a mistake to interpret the local weight
associated with a component hypothesis as a direct measure of its salience
or contribution to the support assigned to the residual hypothesis as awhole.
It is possible, for example, that the judge may not think at all of a particular
component of the residua hypothesis when assigning a probability to the
focal hypothesis in the first step of the estimation procedure, but may still
give that component nonzero weight when asked to explicitly assess each
of the individual components of the residua in the second step.

From our view, however, asis suggested by our earlier discussion, impos-
ing this kind of process interpretation of local weights would in any case be
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misguided, because it implies that support for the residual hypothesis is as-
sessed strictly in terms of its components. We assume, in contrast, that forma-
tion of a composite residua hypothesis precedes assessment of its support.
Residual hypothesis formation may eventually be best understood in terms
of the set of features taken to represent the residual, which may or may
not be collected from the residual’s component hypotheses. In the residual
formation process, certain component hypotheses may be neglected alto-
gether, while factors unrelated to the components (e.g., incorporation of fea
tures contrasting those of the focal hypothesis) may play an important role.
The likelihood of a component hypothesis making a contribution to the per-
ceived support for the residual as a whole is presumably related to factors
such as the hypothesis's distinctiveness and salience.

Nonetheless, there may be circumstances in which the methodological
procedure for estimation of local weights bears some resemblance to the
psychological processes of residual hypothesis formation. In particular, we
suspect that some kind of (de)compositional process may occur when the
judgeis evaluating one of asmall number of competing elementary hypothe-
ses. Under these circumstances the judge may very well implicitly assess
the contribution of each component hypothesis to the overall support of the
residual. When a large number of discrete hypotheses are under assessment,
in contrast, it is highly unlikely that each component will receive individual
scrutiny in the process of assessing support for the residual as a whole. In-
deed, the functional basis of the process of composite residual hypothesis
formation may lie in the computational complexity that would arise if evi-
dence had to be assessed in terms of itsimplication for each of alarge number
of aternative hypotheses.

Conclusion

In summary, the evidence considered in evauating a residua hypothesis
appears to be quite different from the evidence considered when one evalu-
ates each of its components individually. Fortunately, how the discrepancies
between the two sets of evidence affect judgment under uncertainty can be
largely captured with just a few simple principles. The evidence supporting
the residual composite is less compelling than the aggregate of the evidence
for each individual component; thus, local weights are typically less than 1.
Furthermore, consistent with local enhancement, one may form atighter and
more unified composite impression of the residual when the focal hypothesis
is strong. Finally, general evidence against the focal hypothesis may be per-
ceived as supporting each of the components in the residual roughly equally;
thus, consistent with inverse-support weighting, weaker components in the
residual may gain weight at the expense of stronger components. Consistent
with the lessons learned from studies of choice and similarity, the evaluation
of evidence under conditions of uncertainty appears to be highly dependent
on the way in which the judgment task is framed.
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