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The Calibration of Expert Judgment 

 

 

 

The study of how people use subjective probabilities is a remarkably modern concern, and was 

largely motivated by the increasing use of expert judgment during and after World War II 

(Cooke, 1991).  Experts are often asked to quantify the likelihood of events such as a 

stockmarket collapse, a nuclear plant accident, or a presidential election (Ayton, 1992; Baron, 

1998; Hammond, 1996).  For applications such as these, it is essential to know how the 

probabilities experts attach to various outcomes match the relative frequencies of those 

outcomes, that is, whether experts are properly “calibrated”.  Despite this, relatively few studies 

have evaluated how well descriptive theories of probabilistic reasoning capture the behavior of 

experts in their natural environment.  In this chapter, we examine the calibration of expert 

probabilistic predictions “in the wild” and assess how well the heuristics and biases perspective 

of judgment under uncertainty can account for the findings.  We then review alternate theories of 

calibration in light of the expert data.   

 

Calibration and miscalibration. 

Miscalibration presents itself in a number of forms.  Figure 1 displays four typical patterns of 

miscalibrated probability judgments.  The solid diagonal line, identity line, or line of perfect 

calibration, indicates the set of points at which judged probability and relative frequency 

coincide.  The solid line marked A, where all judgments are higher than the corresponding 

relative frequency, represents overprediction bias.  The solid line B, where all judgments are 

lower than the corresponding relative frequency, represents underprediction bias.  The dotted line 

C, where judgments lower than 50% are too low and judgments higher than 50% are too high 

represents overextremity bias.  The dotted line D, where judgments lower than 50% are too high 

and judgments higher than 50% are too low represents underextremity bias.  Note that 

overextremity entails overly radical judgments (too close to 0 and 100) and underextremity 

entails overly conservative judgments (too far from 0 and 100).  Combinations of under- or 

overprediction and either of the extremity biases are also possible, and result in lines that cross 

the diagonal at points other than 50%.  Overconfidence, the poster child of judgmental biases, is 

a simple summary term (average subjective probability minus overall outcome frequency) that 

does not uniquely identify any one of these patterns (Wallsten & Budescu, 1983).  Nonetheless, 

when referring to previous research we will often use the term overconfidence as this simple bias 

measure is often the primary statistic reported. 

 



3 

Each of the four patterns illustrated in Figure 1 is consistent with the use of judgmental heuristics 

(e.g., Kahneman & Tversky, 1973), and the pattern found depends on specific qualities of the 

judgmental task or situation and how they interact with the relevant heuristics (Griffin & 

Tversky, 1992; Griffin, Gonzalez, & Varey, 2000).  The neglect of base rates that follows from 

reliance on judgmental heuristics leads to overprediction bias (A) when the outcome base rate is 

low and underprediction bias (B) when the outcome base rate is high.  The neglect of evidence 

quality that follows from reliance on judgmental heuristics leads to overextremity bias (C) when 

the evidence quality is low and underextremity bias (D) when the evidence quality is high.  The 

dependence of miscalibration upon the difficulty of the task and the knowledge of the judge (the 

difficulty or hard-easy effect) was established as the fundamental bias in general knowledge 

calibration by Lichtenstein, Fischhoff, & Philips (1982) in their comprehensive review.  

Nonetheless, general claims about the ubiquity of “overconfidence” continue to dominate 

managerial and academic textbooks.  

 

The Model 

The predictions of the heuristics and biases perspective are typically qualitative in nature, but 

recently Brenner (1995) introduced a parametric model of calibration that makes precise 

quantitative predictions.  Random Support Theory (RST) (Brenner, 1995) combines elements of 

Support Theory (Rottenstreich & Tversky, 1997; Tversky & Koehler, 1994) and Signal Detection 

Theory (e.g., Tanner & Swets, 1954) to fit calibration data and yield a set of psychologically 

meaningful parameters.  Support Theory itself is a “coherence theory” of subjective probability 

and evidence strength, describing when and why intuitive probability judgments depart from the 

syntactic rules of probability theory.  Random Support Theory extends the logic of Support 

Theory to the semantic question of the “correspondence” of the probability and the actual 

outcome (cf. Hammond, 1996).  According to RST, probability judgments reflect the balance of 

evidence captured by underlying distributions of support for correct and incorrect hypotheses.  

Based on the observed probability judgments and the associated outcomes, RST provides an 

efficient summary of these underlying support distributions.  We will focus on three parameters 

of the model.  Alpha ( measures the judge’s discrimination ability, defined as the difference in 

support for correct and incorrect hypotheses, indexing the quality or “weight” of the evidence. 

Sigma () measures the extremity of the judge’s responses, defined as the tendency to depart 

from the base rate value, indexing the perceived strength of the evidence.Beta ( measures the 

differential support received by the focal hypothesis; among other things, can be viewed as an 

index of a judge’s sensitivity to the outcome base rate.   
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In this model, good calibration arises when is matched to  so that extremity of judgment is 

appropriate for the level of evidence quality, and when the outcome base rate is matched by the 

use of .  A zero response bias (is appropriate when the base rate is 50%; an increasingly 

negative response bias maintains calibration as the base rate moves below 50%, and an 

increasingly positive response bias maintains calibration as the base rate moves above 50%.  The 

patterns of miscalibration presented in Figure 1 were generated by RST: overprediction was 

simulated by a low base rate (20% probability of focal outcome) with no bias adjustment ), 

and a balance between extremity and discriminability (); underprediction was simulated by a 

high base rate (80% probability of focal outcome) with no bias adjustment ), and a balance 

between extremity and discriminability (); overextremity was simulated by a moderate base 

rate (50%), and greater extremity than discriminability ); and underextremity was 

simulated by a moderate base rate (50%), and less extremity than discriminability ().   

 

Support theory and RST are closely related to the strength-weight model of confidence and 

calibration (Griffin & Tversky, 1992), sharing an assumption that confidence or judged 

probability reflects the support or strength of evidence for the focal hypothesis relative to that for 

its alternative.  These models all belong to a class we will refer to as direct support models, 

because of their common assumption that confidence (when measured via judged probability) 

reflects a direct translation of the support, or strength of evidence, of the focal outcome relative 

to that of its alternative.  Direct support models naturally depict judgments of confidence as case-

based, in the sense that support is based on an assessment of the available evidence regarding the 

case at hand.  In case-based judgment, the impression conveyed by the evidence determines the 

degree of confidence, with little regard given to the reliability of the relationship between the 

evidence and the target event.  Such an interpretation is consistent with the observation that 

people are often insensitive to characteristics of the larger set of events to which the specific case 

at hand belongs, such as base rates or evidence quality (e.g., Kahneman & Tversky, 1973).  In 

certain cases, set-based characteristics may be treated by people as arguments in a case-based 

evaluation; for example, the base rate of a medical condition may be one argument considered by 

a physician (“there is a lot of that going around”).  However, such usage typically will lead to 

underweighting of the base rate compared to the ideal statistical model.  The impact of a base-

rate “argument” seems to be determined by its apparent relevance to the case at hand (Tversky & 

Kahneman, 1982) rather than by considerations of the reliability of the evidence, as in the 

Bayesian model.  When base rates are used, as in a within-subjects design, they are used in an 

additive manner,  rather than in the multiplicative manner required by the Bayesian model 

(Novemsky and Kronzon, 1999).  This is consistent with the notion that when base rates are 
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salient, they are used to adjust the case-based impression, which acts as an anchor (Griffin & 

Tversky, 1992). 

 

An advantage of direct support models is that, in many cases, people can provide direct ratings of 

the extent to which the available evidence supports a given hypothesis.  Consider as an example a 

study reported by Tversky and Koehler (1994, Study 3; for details, see Koehler, 1996), in which 

subjects assessed the probability that the home team would win in each of 20 upcoming 

basketball games among a set of 5 Pacific Division NBA teams.  Subjects were asked to rate the 

strength of each of the five teams, which was assumed to be monotonically related to the team’s 

support in the confidence assessment via a power transformation.  As shown in Figure 2 (circles), 

the predictions based on the team strength ratings, fit the mean probability judgment data quite 

closely.  Koehler, Brenner, and Tversky (1997) report the results of a number of additional 

studies in which direct ratings of support are used successfully to fit probability judgments. 

 

The triangles in Figure 2 represent mean judgments of evidence strength and mean probability 

judgments for general knowledge questions (Varey, Griffin, & James, 1998).  Subjects in a 

“support” condition were asked to report the proportion of evidence available to them supporting 

each alternative whereas subjects in a “confidence” condition reported their subjective 

probability that each alternative was correct.  For both sports predictions and general knowledge 

answers, the slope of the best-fitting regression line is very close to 1.0, consistent with the 

notion that respondents directly translated their impressions of support into probability judgments 

(cf. Kahneman & Tversky, 1973).   

 

Out of the laboratory. 

Most theories of judgmental calibration were developed on the basis of laboratory data from the 

two-alternative (half-range) forced-choice paradigm, usually with general knowledge questions 

as the object of judgment (see Lichtenstein et al, 1982).  There are a number of reasons for this 

tradition.  General knowledge or “almanac” studies are quick and efficient, producing hundreds 

of easy-to-score judgments from hundreds of subjects, whereas it is both difficult and time-

consuming to assess the quality of judgments made in applied settings:  Loftus and Wagenaar 

(1988), for example, took three years to collect judgments about self-reported wins and losses 

from 182 trial lawyers.  The two-alternative paradigm is closely linked to research and theory on 

“meta-cognition”, the study of how well people can monitor their own knowledge (e.g., Nelson, 

Leonesio, Landwehr, & Narens, 1986), and more generally has a long history in psychophysics.  

In addition, the half-range measure of probability fits the intuitive notion of “confidence,” 

running from complete uncertainty (.5) to complete certainty (1.0).   
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This reliance on half-range studies, however, has obscured several important issues.  For full-

range judgments the focal hypothesis for a given domain can be defined in alternate ways (e.g., a 

set of basketball games can be assessed in terms of wins for the home team, or wins for the team 

higher in the standings) and many measures of judgmental calibration are sensitive to the choice 

of the designated event (Liberman and Tversky, 1993).  This complication is avoided in half-

range studies, but at the cost of losing some important information about human judgment.  Most 

critically, half-range studies confound the role of outcome base rate and task difficulty.  In a 

typical half-range study, the outcome can be summarized by the overall percent correct, which 

serves to define the expected outcome or base rate as well as the difficulty of the question set.   

 

In a half-range study, the effects of base rate and difficulty or discriminability may be 

distinguished by designating one of the possible responses to each item as a target, implicitly 

creating a one-alternative judgment task (cf. Ferrell and McGoey, 1980).  However, these 

manipulated targets are often arbitrary (e.g., P(True) vs. P(False).  In true one-alternative 

judgments (e.g., predicting the likelihood of a given disease, or predicting the likelihood of 

winning a court case), the base rate of the positive outcome is clearly separable from the 

difficulty of discriminating positive outcomes from negative outcomes.  Predicting a nuclear 

accident or a stock market bubble may be difficult either because the event is rare or because the 

available evidence is not diagnostic (or both)— a distinction that may make all the difference to 

understanding and debiasing such judgments. 

 

Expert Judgment: A question of competence? 

Many commentators have argued that expert judgments, at least those made in a naturalistic 

setting, may be immune from the systematic judgmental biases found in laboratory experiments.  

The prevalence of judgmental biases is often blamed on factors intrinsic to the psychology 

laboratory such as unmotivated subjects and misleading and unrepresentative questions (see, e.g., 

Shanteau, 1999).  Thus, “decision heuristics…appear more likely to create biases in the 

psychology laboratory than in the [medical] clinic” (Schwarz & T. Griffin, 1986, p. 82), and 

“biases found readily in other research are not evident in the judgements of professional auditors” 

(Smith & Kida, 1991, p. 485).  By and large such conclusions were obtained from domain 

experts completing pencil-and-paper measures in their domains of expertise, rather than from the 

observation and assessment of expert judges in their day-to-day activities.   

 

There are many reasons to expect that the judgments of experts will depart systematically from 

the judgments of novices (Shanteau, 1999).  Experts know more, they can organize cues into 
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larger “chunks” (Chase & Simon, 1973), and they can recognize patterns more easily, more 

accurately and more quickly (Glaser, 1990; Klein, 1998).  As Simon noted in his classic studies 

of expert judgment, experts seem particularly good at that part of recognition that consists of 

automatic pattern-matching between a stimulus and a category (Chase and Simon, 1973; Simon, 

1979).  All these statements are consistent with a direct support account, and in terms of our 

guiding model imply that in well-ordered domains, expert judgments will have a higher  than 

novice judgments, reflecting experts’ greater ability to correctly discriminate between different 

outcomes.  However, the ability to order cases in terms of the likelihood of a given outcome 

(discrimination) does not necessarily correspond to the ability to assign the appropriate level of 

probability to that outcome (calibration) (Liberman & Tversky, 1993).  Thus, depending on the 

problem environment, even the most knowledgeable and perceptive expert may nonetheless 

show the patterns of miscalibration portrayed in Figure 1 (see Stewart, Roebber, & Bosart, 1997, 

and Wagenaar & Keren, 1986, for related arguments). 

 

Previous Theories Applied to Experts 

According to the confirmatory bias model of  Koriat, Lichtenstein, and Fischhoff (1980), a 

general tendency towards overconfidence arises from people’s inclination to recruit reasons from 

memory that confirm the focal hypothesis.  The stronger and more numerous the reasons that are 

recruited, the greater is the confidence expressed in the selected answer.  Because this process 

inclines the judge to overlook reasons against the selected answer, however, he or she is likely to 

be overconfident that the selected answer is correct.  Consistent with this claim, Koriat et al. 

reported that asking subjects to generate reasons favoring and opposing both options in a 2AFC 

task reduced overconfidence relative to a control condition in which no such reasons were 

generated.  Furthermore, asking subjects to generate reasons contradicting their preferred 

alternative reduced overconfidence relative to a control condition while generation of supporting 

reasons had no effect.   

 

Experts might be more or less susceptible to confirmatory bias than novices.  On the one hand, 

their extensive experience may help them learn to evaluate evidence in a more impartial manner, 

and could also lead them to spontaneously generate alternatives to the focal hypothesis.  On the 

other hand, the broader knowledge base of experts might lead them to more readily generate a 

biased set of reasons favoring the focal hypothesis. 

 

It should be noted that the results of Koriat et al.’s (1980) studies have proven somewhat difficult 

to replicate (e.g., Fischhoff & MacGregor, 1982).  Biased recruitment of evidence may play a 

more pronounced role when the focal hypothesis is highly self-relevant such that the judge is 
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motivated to confirm (or disconfirm) it.  Hoch (1985), for example, reported results consistent 

with the confirmatory search model in a study of predictions made by business school students 

about the outcomes of their job searches, all of which were evaluatively positive (e.g., receiving 

more than three job offers).  When compared to the actual job search outcomes, the students’ 

predictions proved to be substantially overconfident in the sense of overestimating these positive 

events’ likelihood of occurrence (the pattern of overprediction in Figure 1); furthermore, 

overprediction was greater for low-baserate events.  As predicted by the confirmatory search 

model, asking students to generate reasons why the target event would not occur substantially 

reduced this overconfidence, while asking them to generate reasons supporting the target event’s 

occurrence had no influence.  Confirmatory search processes, then, might be apparent only in the 

assessment of highly self-relevant outcomes, producing optimistic overconfidence (Kahneman & 

Lovallo, 1993; Kahneman & Tversky, 1995; Taylor & Brown, 1988). Experts may not generally 

exhibit such an optimistic bias, as the outcomes they assess do not typically concern themselves 

personally. 

 

Some researchers have argued that the prevalence of overconfidence in two-alternative laboratory 

tasks is attributable to biased selection of particularly difficult or surprising items, a concern first 

raised by May (1986). Derived from a Brunswikian framework in which cue-based 

representations of the environment are constructed from experience (Brunswik, 1943, 1955), 

ecological models draw attention to the manner in which the events serving as the target of 

judgment in laboratory tasks are selected or constructed (Björkman, 1994; Gigerenzer et al, 1991; 

Juslin, 1994).  Ecological models are based on an explicit or implicit assumption that people are 

able to accurately internalize cue-based environmental probabilities.  According to the ecological 

models, people produce these ecological or cue validities when asked for confidence 

assessments, and should be expected to be well-calibrated as long as test items are selected from 

the reference class in an unbiased manner.  Miscalibration, on this account, is a result of non-

representative sampling of test items. 

 

The ecological models predict perfect calibration for tasks in which judgment items are randomly 

selected from a natural reference class.  Consistent with such claims, early comparisons between 

“selected” and “representative” tasks revealed substantial overconfidence for selected tasks but 

little or no overconfidence for the representative tasks (Gigerenzer et al., 1991; Juslin, 1994).  

Critics, however, have noted that such experiments confounded method of item selection with 

task difficulty (Griffin & Tversky, 1992):  The easier, representative tasks would be expected to 

yield less overconfidence than the more difficult, selected tasks on the basis of difficulty alone.  

Moreover, a number of studies using representative sampling have nonetheless found 
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overconfidence (e.g., Budescu, Wallsten, & Au, 1997; Griffin & Tversky, 1992; Paese & 

Sniezek, 1991; Suantak, Bolger, & Ferrell, 1996; Schneider, 1995; Sniezek, Paese & Switzer, 

1990).  A survey of 25 tasks employing representative sampling (Juslin, Olsson, & Björkman, 

1997) reveals a clear pattern of overconfidence for difficult tasks and underconfidence for easy 

tasks, contrary to the predictions of the ecological models that no such effect should occur under 

representative sampling. 

 

For full-range tasks, the ecological models imply that there should be no systematic effect of 

discriminability or target event base rate on calibration; indeed, as long as representative 

sampling is used, these models predict perfect calibration regardless of level of discriminability 

or base rate.  Both of these variables have been found to influence full-range calibration for 

general knowledge items (e.g., Lichtenstein et al., 1982; Smith & Ferrell, 1983), contrary to the 

predictions of the ecological models.  One might argue, however, that such laboratory studies fail 

to satisfy representative design.  By contrast, representative sampling of items is essentially 

satisfied by definition in studies of on-the-job assessments of experts; the items judged by an 

expert in practice should reflect the natural reference class of items for which the judge’s 

expertise is relevant.  Ecological models, then, predict that experts should be uniformly well 

calibrated in the studies we review below. 

 

Although Random Support Theory was developed in the heuristics and biases tradition, it can 

represent the predictions of a number of theories of judgment, based on how the parameters of 

the model vary with changes in base rate and evidence quality.  The notion of case-based 

judgment from the heuristics and biases perspective suggests that as the outcome base rate varies 

across tasks and contexts, the bias parameter  will remain essentially constant (neglect of base 

rate), and that as the level of evidential weight or discriminability varies, the extremity parameter 

 will remain essentially constant (neglect of evidence quality).  Case-based judgment implies 

that support will reflect the evidence related to the particular case at hand, and will not be 

sensitive to aggregate properties of the set of judgment items.  Consequently, the parameters of 

the RST model that ought to reflect these aggregate properties ( and  will remain roughly 

constant despite changes in base rate or evidence quality.  

 

In contrast, the general confirmatory bias model implies a positive measure of focal bias () 

regardless of the task characteristics, and the special case of optimistic bias is characterized by a 

positive focal bias for positive events and a negative focal bias for negative events.  Ecological 

models predict that, with representative sampling of items, calibration will be perfect, implying 
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that in ecologically meaningful situations  will track changes in base rate and  will track 

changes in discriminability.  

 

The Data 

We review research on calibration from five applied domains: medicine, meteorology, law, 

business, and sports.  Wherever possible, we restrict ourselves to studies where the judges were 

making predictions as part of their daily professional activities and where the stimuli were 

neither selected nor restricted by the researchers.  Due to space limitations—and to limitations on 

data we were able to collect from secondary sources—we focus only on the shape of calibration 

curves relating outcome frequency to probability judgments, even though RST makes precise 

predictions about the expected distribution of judgments.  Our approach is necessarily descriptive 

and we do not explore the variety of quantitative performance measures available to diagnose 

miscalibration (see e.g. Harvey, Hammond, Lusk, & Mross, 1992; Murphy &Winkler, 1992; 

Stewart & Lusk, 1994; Yates, 1992; Yates & Curley, 1985). 

 

Expert judges and expert judgments: Two textbook examples. 

Before we present the summaries of data collected across five domains of expertise, we first 

review two paradigmatic examples of excellent calibration.  Few textbook discussions of 

calibration and prediction fail to mention the essentially perfectly calibrated predictions of expert 

bridge players (Keren, 1987) and meteorologists predicting rain in Chicago (Murphy and 

Winkler, 1972).  In fact, these two case studies have been enough to convince many 

commentators of the intrinsic superiority of expert calibration in the field.  It is useful to consider 

how these classic examples fit into our theoretical framework before continuing on to review less 

well-known data sets.   

 

Perfect calibration is theoretically possible with various possible combinations of outcome base 

rate and discriminability or difficulty.  Indeed, ecological models predict perfect calibration in 

any naturalistic or representative environment.  Case-based or direct support models predict 

excellent calibration when the base rate is moderate (near 50%) and when evidence quality is 

moderate.  These conditions are well met in the predictions of the world-class bridge players 

studied by Keren (1987).  The probability of successfully obtaining a given contract (the focal 

outcome) was moderate (55%) and so no response bias was needed or found (observed =.05).  

Furthermore, the players were moderately good at discriminating between successful and 

unsuccessful contracts (=.96, where =0 represents no ability to discriminate, and values 

above 1.3 represent excellent discrimination); and this level of discriminability was almost 
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exactly matched by the moderate extremity of predictions (=.90).  Thus, excellent calibration 

can be entirely consistent with a heuristic case-based account such as direct support theory. 

 

The government meteorologists studied by Murphy and Winkler (1977) were also moderately 

good at discriminating between days with and without rain (=1.09), and also showed moderate 

extremity of judgment (=.94).  However, rain fell on only 26% of the days, so a substantially 

negative response bias was required (and obtained) to maintain calibration (=-.71).  Here, 

excellent calibration marks a distinct departure from the predictions of the heuristic case-based 

account.  As we discuss below in our review of meteorologists’ predictive judgment, it is 

difficult to know if this sensitivity is a tribute to clinical or actuarial judgment, as meteorologists 

combine statistical summary data with intuitive adjustments. 

 

Not all published data sets reviewed below provided enough information to fit the full RST 

model.  However, all provided a calibration curve or table relating subjective probabilities to 

actual outcomes, the base rate of the target or focal outcome, and some measure of 

discriminability (usually Az, the area under the Receiver Operating Characteristics curve in SDT, 

which itself is a linear transformation of d' in SDT, of  in RST, and of the ordinal correlation of 

discrimination recommended by Liberman & Tversky, 1993).  In the absence of complete data, 

we provide a graphical and qualitative comparison of the direct support predictions with the 

expert data.  As a simple default or null prediction, we create “direct support” calibration curves 

by setting the extremity parameter  to 1, indicating a moderate level of judgmental extremity 

that is insensitive to evidence quality, and by setting the response bias parameter  to 0, 

indicating no sensitivity to outcome base rate, and allowing discriminability and base rate to vary 

from one data set to the next.  We then examine the fit of the direct support curves to the 

observed judgments. 

 

These direct support curves serve as “neglect models”, indicating the pattern of judgments 

expected if base rate and discriminability are completely neglected.  Observed curves that fall 

close to these predicted curves provide evidence consistent with the case-based neglect account.  

Observed curves that fall closer to the identity line than the predicted curves imply some 

sensitivity to base rate and discriminability. 

 

Domain 1: Calibration in Medical Settings 

We begin with the expert domain for which the widest variety of data sets is available.  Over the 

last 20 years, there has been a growing interest in the quality of physicians’ prognostic and 

diagnostic judgments and this interest is now reflected in a substantial body of empirical research 
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(see Dawson, 1993 and Winkler & Poses, 1993, for reviews).  Data points from nine such studies 

are presented in Figure 3, and Table 1 provides accompanying information such as the target 

event, base rate, and , the RST measure of discriminability.  Figure 3 also shows simulated 

curves based on random support theory with constant  and (i.e., our null “neglect model”), for 

three combinations of base rate and discriminability.  The theoretical curves give a good 

qualitative fit to the data points. 

 

The data summarized in Figure 3 reveal that, across the different sets of medical events, 

physicians’ judgments show marked overprediction (when base rate is high and discriminability 

is high), good calibration (when base rate is moderate and discriminability is high), and marked 

underprediction (when base rate is very low and discriminability is low).  These variations in 

calibration are clearly inconsistent with ecological theories or the presence of an overall 

confirmatory bias in favor of the focal hypothesis.  Nor are they consistent with the form of the 

confirmatory bias explanation that is most common in the medical decision making literature: the 

“value-induced bias” or “warning bias” (Edwards & von Winterfeldt, 1986).  According to this 

account, described by Wallsten (1981), physicians tend to exaggerate the likelihood of very 

severe conditions, either because their utilities contaminate their probability estimates, or because 

they search for signs of a dangerous condition. This account implies that overprediction should 

increase with the severity of the event; in fact, both a very severe negative event (heart attack) 

and a positive event (surviving cancer for five years) show moderate overprediction whereas a 

rare but relatively mild negative event (streptococcal throat infection) shows gross 

overprediction. 

 

The pattern of calibration across studies is also inconsistent with the many accounts that 

implicate regular feedback (whether event-based or in terms of probability scoring) as the key to 

good calibration (Keren, 1988; Edwards & von Winterfeldt, 1986).  Because the physicians in all 

studies had clear, unambiguous event-based feedback regarding events that they could not control 

(Murphy & Brown, 1994), feedback cannot explain the marked variation in the calibration of 

their probability judgments.  There is also no clear distinction in terms of quality of calibration 

between prognostic (predictive) judgments (where physicians might accept that the events truly 

are uncertain) and diagnostic judgments (where the correct answer is at least theoretically 

knowable), in contrast to suggestions by Winkler and Poses (1993; see also Wagenaar & Keren, 

1985).  There is considerable variation in calibration between studies within the category of 

prognostic judgments (e.g., between surviving cancer for several years and surviving as an in-

patient in an intensive care ward for a few days or weeks) as well as between studies within the 
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category of diagnostic judgments (e.g., between having streptococcal throat infection and having 

a heart attack). 

 

Winkler and Poses (1993) noted that “many factors could have contributed to such differences, 

but one that seems to stand out is the base rate.”  Consistent with direct support models and more 

general heuristic models such as “prediction by evaluation” (Kahneman & Tversky, 1973), the 

pattern of overprediction and underprediction is strongly related to the base rate likelihood of the 

target events, and to a lesser extent (particularly for the heart attack study) to the discriminability 

of the relevant hypotheses.  This is exactly what would be expected if the physicians were 

reporting the support for the relevant hypotheses with little regard for the base rate likelihood of 

the events or the discriminability of the hypotheses.   

 

The outcomes represented in Figure 3 differ in many ways other than base rate and 

discriminability.  Figure 4, however, displays two calibration curves that are roughly matched for 

outcome and discriminability and differ only in time scale and hence base rate of survival.  These 

data from Poses et al. (1997) represent survival predictions for cardiac patients over a three-

month and one-year period.  Although the shorter time frame seems intuitively “easier” to predict 

(and indeed yields a slightly higher value of the discriminability index ), consistent with the 

direct support account the three-month predictions show a more marked underprediction bias due 

to the more extreme base rate (i.e., 81% vs. 59% survival rate). 

 

The direct support account is consistent with the finding that personal experience with a patient 

(relative to written descriptions) increased overprediction in diagnosing cardiac failure (Bobbio, 

Detrano, Shandling, Ellestad, Clark, Brezden, Abecia, & Martinezcaro, 1992).  It is also 

consistent with the report that physicians’ judgments of the probability of bacteremia were 

correlated with the availability of cases of bacteremia in their memory (Poses & Anthony, 1991).  

Both the vivid experience that comes with personal contact with a patient and easily accessible 

memories of a given outcome could give rise to stronger impressions of support for a hypothesis. 

 

The apparent neglect of base rate across these studies fits the earlier observation that experienced 

physicians (sometimes) and medical students (frequently) neglected the prevalence rate of a 

disease when making a diagnosis, and tended to characterize uncertain hypotheses by “50-50” 

ratings rather than by their prevalence rate (Wallsten, 1981).  Eddy’s (1982) classic report on 

probabilistic thinking in medicine also highlighted the many barriers to physicians’ use of base 

rate information.  It is unlikely that the present findings reflect ignorance on the part of the 

physicians as their judgments of prevalence rates have been found to be quite accurate (e.g., 
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Bobbio, Deorsola, Pistis, Brusca, & Diamond, 1988; Christensen-Szalanski, 1982).  For example, 

in a study on diagnosis of skull fractures (DeSmet, Fryback, & Thornbury, 1979), physicians’ 

mean estimate of fracture incidence was 2.2% (with a range from 0 to 10%), when the actual rate 

was 2.9%.  The results of this study, which was not included in Figure 3 because of space 

limitations, show the same dramatic overprediction found by Christensen-Szalanski and 

Bushyhead (1981) in their study of pneumonia diagnosis (base rate 3.4%). 

 

Not all instances of base rate effects on calibration represent neglect of known base rates; when 

the base rate varies across populations or cohorts, it can be very difficult for a judge to make 

appropriate adjustments.  For example, Tape, Heckerling, Ornato and Wigdon (1991) 

investigated pneumonia diagnoses in three medical centers in different U.S. states.  Both the base 

rate likelihood of pneumonia and the validity of common diagnostic cues varied markedly in the 

three centers.  As Yates (1994) noted in his discussion of these data, if the more extreme base 

rate in Illinois (11% confirmed cases in the sample) was known and taken into account by the 

physicians, these judgments should have been easier than those in Nebraska (32% pneumonia 

cases).  However, the probability judgments in Illinois showed much more overprediction than 

the probability judgments in Nebraska.  These data were originally analyzed with the lens model 

equations (Hammond, Hursch & Todd, 1964; Tucker, 1964), which do not include base rate 

neglect as a possible source of judgmental bias.  Stewart and Lusk (1994) have presented a more 

inclusive model of forecasting skill that adds base rate bias and regression bias (insufficient 

adjustment for low predictability) to the lens model decomposition; this combination of 

calibration principles with the lens model approach is highly consistent with the RST approach 

we outline here. 

 

In medical settings, it is instructive to consider the patient as an additional source of expert 

judgment, one with privileged access to internal states.  Two recent studies have compared 

physician and patient judgments of survival for patients with metastatic colon and lung cancer 

(Weeks, Cook, O’Day, Peterson, Wenger, Reding, Harrell, Kussin, Dawson, Connors, Lynn, & 

Phillips, 1998) and for “seriously ill” patients (Arkes, Dawson, Speroff, Harrell, Alzola, Phillips, 

Desbiens, Oye, Knaus, Connors, & SUPPORT investigators, 1995).  Surviving six months was 

considerably less common for the cancer patients (about 45% of whom survived six months) than 

for the mixture of seriously ill patients (about 70% of whom survived six months), and in both 

cases physicians were moderately good at discriminating those who would survive from those 

who would die (’s between .8 and .9, respectively).  Thus, the direct support model implies that 

the physicians should be well calibrated for the cancer patients, and show distinct 

underprediction for the seriously ill patients.  This pattern was indeed found, as displayed in 
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Figures 5a and 5b.  Also displayed in Figures 5a and 5b are the patients’ self-predictions of 

survival.  They are notably less discriminating than the physicians’ judgments, and show a 

marked positive or “optimistic” bias, which is absent from the physicians’ judgments.   

 

 

Domain 2: Calibration in Weather Forecasting 

The calibration of American meteorologists predicting precipitation (e.g., Murphy & Winkler, 

1972) has been described as “superb” (Lichtenstein et al, 1982), “champion” (Edwards & von 

Winterfeldt, 1986) and as an “existence proof” of good calibration (Wallsten & Budescu, 1983).  

There are at least five non-exclusive explanations for this excellent calibration: the use of 

sophisticated computer models and centrally-provided forecasts that allow direct “pattern-

matching” of present cues to past outcomes (e.g., Fischhoff, 1988), the clear and unambiguous 

feedback received by the forecasters coupled with their knowledge that they cannot affect the 

outcome (Murphy & Winkler, 1984; Keren, 1991), training in probabilistic thinking (Murphy & 

Brown, 1984), the explicit presentation of base rates that allow their use as an “anchor” at the 

time of prediction, and, consistent with the direct support account, the combination of accurate 

cues (i.e., high discrimination) with moderate base rates.  

 

Some historical information casts doubt on the necessary roles of computer models and training 

in probabilistic thinking.  Murphy and Winkler (1984) present data collected by Hallenback 

(1920) on his probabilistic predictions of rain in the Pecos Valley in New Mexico.  These 

predictions (base rate 42%), based on composite weather maps, show very good calibration, with 

only a small tendency towards underprediction in the middle and high ranges.  However, they 

cannot be described as a triumph of intuitive judgment; they were really a triumph of early 

weather technology in the actuarial mode.  Hallenback (1920) described a pattern-matching or 

“table look-up” strategy in which certain prototypical weather patterns were matched with the 

relative frequency of past outcomes: “The basis of this method is a series of composite weather 

maps showing the frequency of precipitation, in percentages, with different types of pressure 

distribution” (p. 645). 

 

Winkler and Poses (1993) noted that the excellent calibration of modern American weather 

forecasters predicting rain may be related to the moderate base rate (about 25% in the Murphy & 

Winkler, 1972, analysis mentioned earlier), and contrasted this with the poorer calibration of 

weather forecasters predicting extreme storms (base rate 13%).  However, they cautioned that the 

forecasters also have more experience with forecasting precipitation than forecasting storms.  A 

closer look at the moderate overprediction of storms indicates an intriguing pattern: “a strong 
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tendency to overforecast existed for the smaller areas and... a tendency to underforecast existed 

for the larger areas” (Murphy, 1981, p. 72).  That is, when storms are rare (as in smaller forecast 

areas) forecasters tend to overuse high probabilities; when storms are more common (as in larger 

forecast areas) forecasters tend to underuse high probabilities, consistent with base rate neglect 

and the direct support account.   

 

Murphy and Daan (1984) reported another striking finding in their study of Dutch weather 

forecasters.  The forecasters were given detailed probabilistic feedback based on one year’s worth 

of predictions.  Data collected during the second year of the study showed that this feedback 

served to reduce the overprediction observed in the first year so that the overall calibration curve 

(averaged across many prediction events) for the second year followed the identity line fairly 

closely.  However, as Murphy and Daan (1984) noted, “the amount of overforecasting increases, 

in general, as the sample climatological probabilities of the events decrease in both years” (p. 

416).  Figure 6 displays this pattern for the prediction of various weather events along with the 

relevant direct support lines (representing complete neglect of base rates and evidence quality).  

Weather events have been categorized in terms of base rate and discriminability as shown in 

Table 2. 

 

Consistent with the general predictions of direct support theory, when the meteorological event 

was common, calibration was very good, whereas when the event was rare, there was marked 

overprediction.  Did this occur because the meteorologists were reporting the strength of their 

evidence for a given hypothesis without due regard for the base rate, or because the rarer events 

were also more severe and meteorologists were determined not to miss them?  It is impossible to 

rule out the presence of a “warning bias” in this situation, but data from other types of forecasts 

seem to cast doubt on this explanation.  Much more overprediction is found for predictions of 

rainfall greater than 1.4 mm (base rate 9%) than predictions of rainfall greater than .2mm (base 

rate 20%), although the former is by no means an extreme amount of rain.  Similarly, there is 

more overprediction when judges evaluate whether visibility will be less than 4 km (base rate 

17%) than when they evaluate whether visibility will be less than 10 km (base rate 44%).  In this 

case, the “4 km” prediction does not include extreme or dangerous events as these form another 

category, visibility less than 1 km (base rate 3%, with extreme overprediction).  Although value-

induced or warning biases may add to the tendency for overprediction, the evidence suggests that 

the base rate had a substantial and independent effect on miscalibration.  Inspection of Figure 6 

reveals that the empirical lines are somewhat closer to the line of perfect calibration than the RST 

prediction lines; this indicates that the meteorologists were giving more weight to the base rate 

than the “neglect” model predicted. As discussed above, this discrepancy from the case-based 
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support model may be a result of the considerable technical information provided to the weather 

forecasters or because of their training in statistical models. 

 

 

 

Domain 3: The Calibration of Legal Judgments 

The appropriateness of lawyers’ probability judgments has important implications for the quality 

of their service--decisions about whether to sue, settle out of court, or plead guilty to a lesser 

charge all depend on a lawyer’s judgment of the probability of success.  Surprisingly, then, there 

is relatively little research assessing the calibration of lawyers’ probability judgments in their 

day-to-day practice.  Figure 7 presents calibration curves representing Dutch (Malsch, 1989) and 

American (Goodman-Delahunty, Granhag, & Loftus, 1998) lawyers’ judgments of whether they 

would win their cases.  Base rates in both studies were near 50%, but predictions of the Dutch 

lawyers were somewhat discriminating ( = .54) whereas the American lawyers’ judgments 

showed no predictive validity ( = .10, hardly above chance).  Malsch (1989) describes a number 

of differences in the Dutch and American legal systems that might explain the differential 

sensitivity to outcomes.  In both data sets, there is surprisingly little evidence that lawyers’ 

judgments show a confirmatory bias given the pressures of the adversarial system; if 

confirmatory biases were rife, then the calibration curves should fall largely under the identity 

line.  Instead, consistent with the case-based model, both sets of judgments show an 

overextremity bias (underprediction of success for low probabilities and overprediction of 

success for high probabilities).  As expected given their poorer discrimination, this bias is much 

more marked for the American than for the Dutch lawyers. 

 

Goodman-Delahunty et al. (1998) found other interesting patterns within their data.  When 

lawyers were surveyed close to their trial date (and had somewhat valid information about a 

given case,  = .33) they were moderately well-calibrated, and showed a moderate extremity 

bias; when surveyed far from the trial date (with completely nondiagnostic cues,  = .03) they 

showed a strong extremity bias and outcomes were at the base rate level regardless of expressed 

probability.  Again, this neglect of discriminability is consistent with the direct support account.  

There was also some evidence for optimistic overconfidence when the predictions were 

personally relevant: the subset of lawyers who were working for plaintiffs on a contingency fee 

basis were just as confident as other lawyers (generally about 65% confident) but won their cases 

much less often (42% compared to 56% overall).  
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Domain 4: Calibration in Business Settings 

Indirect evidence implies that optimistic overconfidence, a focal bias towards the desirable 

outcome (Kahneman & Lovallo, 1993; Kahneman & Tversky, 1995), may be prevalent in 

business settings.  Financial forecasts made over the last century have been consistently too 

optimistic (Hogarth & Makridakis, 1981).  For example, Wall Street analysts expected the 

Standard and Poors 500 Index to post average earnings growth of 21.9% per year from 1982 to 

1997, whereas actual annual earnings growth averaged 7.6% (Cadsby, 2000).  A survey of 

macro-economic predictions from 14 OECD countries indicated that industrial firms were 

systematically overly optimistic in their production estimates (Madsen, 1994); further analyses 

implicated a search for confirming evidence, as it took more and stronger evidence to lead firms 

to predict decreased production than increased production.  A series of laboratory studies by 

Bazerman, Neale and colleagues showed that people in negotiation settings overestimate the 

probability their final offer would be accepted and were overly optimistic that a third party would 

rule in their favor (Bazerman & Neale, 1982; Neale & Bazerman, 1983; Farber & Bazerman, 

1986, 1989).   A survey of almost 3000 new business owners revealed that they were 

unrealistically optimistic about their own business succeeding (81% probability of success for 

their own business vs. 59% probability of businesses like theirs, whereas a realistic estimate is 

somewhere in the range of 30-70%, Cooper, Woo, & Dunkelberg, 1988). 

 

Figure 8 displays the calibration of professional American economic forecasters predicting the 

likelihood of economic recession at various points in the future.  The plot shows an over-

extremity bias that increases with an increasing time frame, as discriminability decreases (Braun 

& Yaniv, 1992).  When the economists predicted the outcome of the current quarter, they had 

valid models and cues with which to work ( = 1.17); however, the base rate of recession was 

relatively low (about 20%), and so marked overprediction occurred for subjective probabilities 

above .6.  As the time horizon increased, the judges moderated the extremeness of their 

predictions but not enough to match the declining validity of their models and cues, and so for 

forecasts two quarters ahead ( = .58), overprediction was found for subjective probabilities 

above .4.  When the forecast horizon was four quarters ahead, the judges’ cues and models were 

essentially worthless (  0, indicating no discrimination), and so regardless of the judged 

probability of recession (which ranged from 0 to 90%) the observed frequency of recession was 

always close to the base rate value.  The observed curves are generally consistent with the 

predictions of the random support model; however, the observed judgments are markedly higher 

(i.e., closer to the line of perfect calibration) than are the direct support lines, implying that the 

economists were at least somewhat sensitive to the base rate. 
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There are a number of studies on stock market prediction, although few lend themselves to 

calibration analyses.  In an analysis of trading at large discount brokerage houses, Odean (1997) 

reported a bias towards overtrading, such that purchased stocks underperformed sold stocks, 

consistent with optimistic overconfidence in stock choice.  In a laboratory study with real-life 

information, undergraduate and graduate students in finance courses were asked to predict the 

probability that a given stock (earning) would increase by more than 10%, increase by between 

5% and 10%, and so on (Yates, McDaniel, & Brown, 1991).  The primary finding was the 

graduate students (“experts”) were more likely to attend to non-predictive cues and so were more 

poorly calibrated than the undergraduate students, who made less extreme and less variable 

predictions.  In a series of follow-up studies, stock brokers and related financial professionals 

predicted changes in the Turkish stock market (Onkal & Muradoglu, 1994); the primary finding 

was that calibration became poorer with longer time intervals, and that the relative performance 

of experts and semi-experts depended on the time horizon.  The bottom line in Figure 9 

represents the calibration of Turkish stockbrokers predicting whether the share price of each in a 

set of Turkish companies would increase or decrease over a one-week period.  Although the 

stockbrokers showed some ability to discriminate successful from unsuccessful companies ( = 

.45), only 2 of the 22 companies actually increased in price over the target week (presumably a 

bear market on the newly deregulated Turkish market) and in the face of this very low base rate 

the traders showed a marked overprediction bias. 

 

Domain 5: Calibration in Sports.  

In no other domain are predictions more ubiquitous—or arguably less important—than in sports.  

Commentators, fans, bookies, and bettors all have a reason for assessing the probability of a win, 

the chances of the champion surviving the first round, and the likelihood of setting a new world 

record.  Sports events have been a major source of data for studies of predictive judgment, but 

few of these studies have used expert judges.  An exception to this rule is the study of horserace 

odds by economists interested in the rationality of the aggregate market.  Odds for horse races 

shift as a result of the money placed by large numbers of individual investors, so the 

unbiasedness of such odds is a test of the rationality of market forces.  Many studies have 

revealed a small but systematic bias such that posted odds and wagered amounts for favorites 

(high probability winners) are too low whereas posted odds and wagered amounts for longshots 

(low probability winners) are too high (termed the “favorite-longshot bias” for obvious reasons, 

e.g., Snyder, 1978; Thaler & Ziemba, 1988).  This has been explained by general risk-seeking in 

gamblers (the pleasure of the long-shot) and by loss aversion driving gamblers to try to turn their 

losses into gains by a big win.  It has even been tied to an “overconfidence” bias, though the 

observed pattern is actually one of underextremity. 
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We know of one cross-national study of expert commentators (television and newspaper sports 

reporters) that offers a clear test case for the direct support account.  Ayton and Onkal (1996) 

asked media commentators in England and Turkey to give probabilistic predictions for a set of 

football (soccer) Cup Matches in their own countries.  The natural target hypothesis is a home 

team win.  In fact, there was a marked home field advantage in the Turkish cup games and little 

home field advantage in the English cup games; in other words, the base rate for a home team 

win was high (80%) in Turkey and moderate (close to 50%) in England.  The commentators in 

both countries were moderately (and equally) good at discriminating between winning and losing 

teams ( = 1.07) leading to a situation in which the direct support account implies good 

calibration for the English commentators and substantial underprediction for the Turkish 

commentators.  As the top lines in Figure 9 attest, this pattern emerged very clearly. 

 

Summary of the Data 

In all domains of expert judgment surveyed, systematic miscalibration was observed.  In each 

case, the observed patterns matched the qualitative predictions of the heuristics and biases 

perspective, as embodied by the direct support account.  Nonetheless, there were notable 

differences among the domains in the magnitude of miscalibration, such that the judgments of 

experts with the greatest training and technical assistance in statistical modeling (meteorologists 

and economists) were less biased than the direct support account predicted.  Judgments of 

experts with less training in normative judgmental models, such as physicians, stockbrokers, and 

sports commentators, were captured well by the direct support account. 

 

Other Stochastic Models 

 

In this section we briefly discuss two additional models of subjective probability calibration that, 

like RST, incorporate stochastic components in their attempt to reproduce calibration curves.  

With appropriate supplemental assumptions, both models are capable in theory of reproducing 

the patterns of miscalibration found in our review of expert judgments.  We argue, however, that 

in most cases RST offers a more parsimonious account that yields more easily interpreted 

parameter values, providing a framework that allows insights into the psychological 

underpinnings of miscalibration. 

 

Partition Model. 

At the time of the Lichtenstein et al. (1982) review, the only existing model precise enough to be 

fit to empirical data was the decision variable partition model (herein the partition model) of 
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Ferrell and McGoey (1980).  In the tradition of signal detection theory, this model describes 

confidence judgment as a process of partitioning an internal decision variable (which might be 

thought of as a feeling of confidence) into confidence categories, which are used in making the 

overt judgment or response.  The decision variable itself is not scaled in terms of probability; 

instead, the judgment is assumed to arise from a partition of some underlying variable.  The 

model successfully fits calibration curves found in general knowledge tasks, though it should be 

noted that in such applications the number of free parameters is relatively high when compared to 

the number of data points being fit.  Perhaps more impressive is the partition model’s 

performance when supplemented by the assumption that the judge’s set of partition cutoffs is 

insensitive to changes in task difficulty in the absence of performance feedback (Ferrell & 

McGoey, 1980; Smith & Ferrell, 1983; Suantak, Bolger, & Ferrell, 1996).  Although there exists, 

for any given level of proportion correct, a set of cutoffs that would ensure perfect calibration, 

Ferrell and colleagues have found that the miscalibration observed in experimental contexts is 

often well accounted for by a single set of cutoffs that is not changed over large variations in task 

difficulty.  In this sense, the partition model with fixed cutoffs can be seen as a close relative of 

RST with fixed extremity and focal bias parameters.   

 

Perhaps the single greatest weakness of the partition model is its agnosticism regarding the 

underlying determinants of the unobservable decision variable, that is, the feeling of confidence 

upon which the partition is constructed.  The model makes no attempt to specify how evidence is 

evaluated to arrive at the feeling of confidence, or how the judge goes about partitioning the 

resulting decision variable.  In this sense, the partition model might be construed rather narrowly 

as a model of the response stage of the confidence assessment process, as Ferrell has 

acknowledged (e.g., Ferrell, 1994, p. 433).  While the partition model typically produces a good 

fit to empirical calibration curves (and response proportions), achieving such a fit requires 

estimation of a fairly large number of parameters.  For example, to fit a full-range calibration 

dataset with 11 probability categories (0%, 10%, … , 100%), the partition model requires 

discriminability and base rate parameters comparable to those of RST, but in addition requires 

estimation of a set of 10 cutoff values, for which RST substitutes only two additional parameters 

(extremity and focal bias).  Arguably, RST’s parameter values are also more readily interpreted 

(e.g., in terms of case- versus class-based reasoning) than those of the partition model. 

 

Error Models. 

A number of researchers have considered the consequences of unreliability in confidence 

judgments for the assessment of calibration.  Erev, Wallsten, and Budescu (1994; also Wallsten 

& Budescu, 1983) offered a Thurstonian “true score plus error” model in which an underlying 
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feeling of confidence is subjected to some degree of stochastic variation prior to being translated 

into an overt judgment.  They assumed, for demonstration purposes, that the underlying “true” 

judgment equals the actuarial probability of the event being judged, and investigated how error 

due to unreliability affected the resulting calibration analysis.  To illustrate, suppose that a 

weather forecaster’s true judgment based on a set of forecasting cues is equal to the actual 

probability of precipitation given those cues, but that his or her overt judgment is subject to some 

error.  How does this error influence calibration?  Erev et al. (1994; also Budescu, Erev, and 

Wallsten, 1997), assuming a particular instantiation of their general model, demonstrated using 

simulation data that calibration curves can indicate overextremity even when the confidence 

judgments themselves are unbiased estimates of the true probability subject to symmetric error.  

This result arises primarily from effects of regression, but may also be enhanced by boundary 

effects due to rounding at scale endpoints.  Pfeifer (1994) independently developed a very similar 

thesis to that of Erev et al.  Such error models generally produce greater overextremity as the 

degree of error increases, and in this sense can account for the difficulty effect. 

 

The results of Erev et al. can be interpreted in two ways, as a methodological prescription or as a 

descriptive model of probability judgment.  The methodological prescription highlights the perils 

of diagnosing overconfidence on the basis of the calibration curve, since “error alone” can 

produce the appearance of overconfidence in such a curve even when underlying “true” 

judgments are unbiased.  Brenner, Koehler, Liberman, and Tversky (1996) argued that the 

standard measure of overconfidence in 2AFC tasks, namely the difference between mean 

confidence and overall accuracy, provides an unbiased estimate of aggregate overconfidence 

which is not subject to the same kind of regression effect apparent in the calibration curve.  In 

response to the more general methodological recommendations of Erev et al, Brenner (2000) 

raised questions about the appropriateness of evaluating calibration on hard-to-define true scores 

rather than well-defined actual judgments. 

 

Budescu, Wallsten, and Au (1997) assess the relative contributions of measurement error and 

systematic bias (i.e., over- or underconfidence) to overall miscalibration, using the Wallsten and 

González-Vallejo (1994) statement verification model. The reliability of subjective probability 

judgments is assessed from replicate judgments and used to estimate the degree of miscalibration 

expected on the basis of error alone (i.e., in the absence of systematic bias), which is then used to 

construct a less strict standard of “ideal” performance than that which is usually employed, the 

identity line of perfect calibration.  (Klayman, Soll, González-Vallejo, & Barlas, 1999, offer 

another method for separating effects of systematic error and unreliability of judgments.)  Using 

this method, Budescu, Wallsten, and Au (1997) found substantial overextremity, even after 



23 

correcting for the unreliability of the assessments, in a full-range task involving the relative 

populations of pairs of cities.  As a descriptive model, then, the assumption of an unbiased “true 

score” subject to error is not a sufficient account of the miscalibration found in this and other 

laboratory tasks. 

 

Several researchers (Björkman, 1994; Juslin et al., 1997; Juslin, Wennerholm, & Olsson, 1999; 

Soll, 1996) have recently offered modified ecological models in which stochastic error 

components have been introduced as a way of improving the fit of such models to actual 

calibration data.  In such models, the “internal” probability is only an estimate of the 

corresponding ecological probability, unbiased but subject to sampling error.  Soll (1996), Juslin 

et al. (1997), and Budescu, Erev, and Wallsten (1997) have shown, using simulations, that a 

modified ecological model incorporating sampling error can produce overconfidence that 

increases with task difficulty (as determined by the uncertainty of the environment and the 

sample size, i.e., number of available previous cases matching the present one).  Soll (1996) 

further demonstrated, in a cue-based task somewhat different from the typical calibration 

experiment, that subjects appeared to be able to produce unbiased estimates of the ecological 

conditional probabilities associated with a set of cues, even though in terms of calibration these 

subjects were substantially overconfident. 

 

Sampling error alone, it should be noted, cannot produce underextremity (Juslin et al., 1997, p. 

197).  Given the number of empirical studies which have reported underconfidence for relatively 

easy tasks (e.g., Baranski & Petrusic, 1994; Björkman, Juslin, & Winman, 1993; Brake, Doherty, 

& Kleiter, 1997; Griffin & Tversky, 1992; Juslin et al., 1999; Suantak et al., 1996), it is clear that 

sampling error, by itself, cannot account for the full range of results from calibration 

experiments.  Moreover, at a conceptual level, it is not entirely clear what it means to argue that a 

judge’s confidence assessments are not systematically biased, but instead merely fail to account 

for the uncertainty associated with prediction based on the available evidence.  Arguably, it is 

precisely such uncertainty which the judge is expected to convey in his or her confidence 

assessment.  This issue highlights an apparent conflict of goals between proponents of error 

models, who are concerned with whether the judge says what she means (i.e., gives a confidence 

assessment that properly reflects the corresponding “internal” probability), and the typical 

“consumer” of such assessments in everyday life, who is more concerned with whether the judge 

means what she says (i.e., gives a confidence assessment that properly reflects the actual 

probability of being correct).  The consumer of judgments by Soll’s (1996) subjects, for example, 

is unlikely to take much comfort in the purported accuracy of these subjects’ underlying 
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judgments upon discovering that when they indicated confidence in the range of 90 to 100%, 

they were accurate approximately 60% of the time. 

 

Conclusion 

 

Our survey of the calibration of probabilistic judgments in applied settings has identified the 

discriminability of the hypotheses and the base rate likelihood of the outcome as major predictors 

of miscalibration in experts’ everyday judgments.  Consistent with direct support models and the 

partition model—and with the difficulty effect described by Lichtenstein et al—good calibration 

is found when discriminability is high and base rates are moderate; overprediction is found when 

base rates are low; underprediction is found when base rates are high; and an extremity bias 

(what is usually meant by the term “overconfidence”) is found when discriminability is low and 

base rates are moderate.  Apparently, the prevalence of overprediction and overconfidence in 

many domains is not a sign that people are intrinsically biased to give high or extreme 

probabilities, but that important domains are marked by low base rates and by relatively non-

diagnostic information (e.g., identification of drug users in transport industries by personal 

interviews)  (Griffin & Varey, 1996).   

 

The observed pattern of miscalibration in expert judgment is consistent with the predictions of 

the case-based direct support models derived from the literature on judgmental heuristics.  Other 

models fared less well.  Contrary to the predictions of ecological models, expert judgments 

exhibited systematic miscalibration despite representative sampling of judgment items.  In the 

expert data sets we examined, there is little or no indication of a general bias in favor of the focal 

hypothesis, as implied by the confirmatory bias model.  In particular, there was little evidence of 

optimistic bias in these data sets.  Note, however, that most of the judgments were generally not 

self-relevant.  When the issues were extremely self-relevant, such as the patients’ predictions of 

their own survival, there was considerable optimistic bias shown.  Apparently, an optimistic bias 

can sometimes contribute to but is not a necessary condition for miscalibration of subjective 

probability.  Other stochastic models, like RST, might be able to reproduce the pattern of 

miscalibration in expert judgments that we described (or any other pattern), with appropriate 

supplemental assumptions.  We find the general framework of support theory in which RST is 

based, however, to provide a useful and psychologically plausible interpretation of the patterns 

that we found:  Assessments of probability typically reflect a direct translation of the support 

provided by the evidence for the target hypotheses, with little regard to the reliability of the 

evidence or the base rate of the outcome. 
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The identification of subjective probability with psychological support or strength of evidence 

gives rise to two very different reactions.  According to some scholars, personal or subjective 

probabilities are of little interest because they do not reflect the way that people naturally process 

uncertainty (which is presumed to be through frequency counts, Gigerenzer, 1994).   A second 

approach is to accept that subjective probabilities are not only natural, but inescapable.  A 

historical review of the use of concepts related to “chance” in English literature noted that “With 

one exception, all quotations found…are subjective probabilities.  They all are expressions of 

degrees of belief, at least in a poetic sense, that an event will happen” (Bellhouse and Franklin, 

1997, p. 80).  Consider the following statement, taken from a recent financial column: “Three 

months ago, I might have put the risk of an Asia-wide credit crunch...at less than 10 per cent, 

now I’d say it is approaching 30 to 40 percent”.  How can this statement about a unique, not to 

say unprecedented, event be reworded in frequency terms?   

 

Our guess is that there will always be judgments made in terms of subjective probability or odds 

about unique events, and many such judgments, even by experts, will fail the test of 

correspondence.  Accepting this, these results imply that training in probability and statistics, and 

in particular, training in the distinction between intuitive support and extensional probability, is 

essential to improve judgmental calibration in applied fields (see Stewart & Lusk, 1994, for one 

useful categorization of the skills needed for proper calibration).  The attainment of expertise 

may sometimes imply good discrimination, but it rarely ensures good calibration. 
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Table 1 

 

Target event description, baserate (BR), and discriminability () for medical calibration studies 

depicted in Figure 3. 

 

 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

study target event BR  

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

low D, very low BR 

Christensen-Szalanski & Bushyhead (1981) pneumonia 2.7% 0.23* 

Poses, Cebul, Collins, & Fager (1985) streptococcal pharyngitis 4.9% 0.33* 

Poses & Anthony (1991) bacteremia 7.9% 0.50 

 

high D, low BR 

Tierney et al. (1986) myocardial infarction 12% 1.13 

Centor, Dalton & Yates (1994) streptococcal throat infection 25% 1.04 

Mackillop & Quirt (1997) cancer survival 28% 1.34 

 

high D, high BR 

McClish & Powell (1989) ICU survival 75% 1.23 

Poses et al. (1990) ICU survival 77% 1.04 

Detsky et al. (1981) ICU survival 91% 1.04* 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 

* Value of discriminability parameter  for these studies were computed based on relevant values 

estimated from published graphs, as the necessary values were not explicitly provided in the 

source article. 

 



 

Table 2 

 

Target event description, baserate (BR), and discriminability () for Daan & Murphy (1982) 

weather forecasting datasets depicted in Figure 4. 

 

 

––––––––––––––––––––––––––––––––––––––––––––––––– 

target event BR   

––––––––––––––––––––––––––––––––––––––––––––––––– 

Low Baserate (BR < 12%) 

visibility < 1 kilometer   3% 1.17 

windspeed > 31 knots   4% 1.17 

precipitation > 1.4 millimeter 11% 0.71 

 

Moderate Baserate (18% ≤ BR ≤ 43%) 

visibility < 4 kilometers 18% 0.99 

precipitation > 0.3 millimeters 25% 0.74 

windspeed > 21 knots 31% 0.95 

visibility < 10 kilometers 43% 0.81 

 

High Baserate (BR = 75%) 

windspeed > 12 knots 75% 0.95 

––––––––––––––––––––––––––––––––––––––––––––––––– 

 

Note:  Value of discriminability parameter  for these datasets were estimated, as the necessary 

values were not explicitly provided in the Daan & Murphy (1982) source article. 

 



 

Figure 1 

 

Calibration curves, generated by RST simulations, illustrating distinction between miscalibration 

due to consistent overprediction (or underprediction) of target event probability versus that due to 

judgments which are overly (or insufficiently) extreme. 

 

 
 

Note: Neglect model predictions based on RST simulation assuming no focal bias ( = 0) and  

fixed judgmental extremity ( = 1).  Over/underprediction curves constructed assuming fixed 

discriminability ( = 1) with varying target event base rate (BR = 20% for overestimation; BR = 

80% for underestimation).  Over/underextremity curves constructed assuming fixed base rate 

(BR = 50%) with varying discriminability ( = 2.0 for overextremity;  = 0.5 for 

underextremity). 



 

Figure 2 

 

Confidence as predicted by normalized direct ratings of support, for basketball game predictions 

(Koehler, 1996; Tversky & Koehler, 1994) and general knowledge questions (Varey, Griffin, & 

James, 1998). 

 

 

 

 
Note:  Basketball data compares mean judged probability assigned to predicted winning team 

(inferred from full-range probability assigned to home team) with normalized direct ratings of 

“team strength” obtained from the same group of subjects.  General knowledge data compares 

mean confidence in selected 2AFC answer with direct ratings of “proportion of evidence” 

supporting chosen alternative obtained from a separate group of subjects. 



 

Figure 3 

 

Physicians.  Calibration of physicians’ judgments, represented by circle (very low BR), square 

(low BR), and triangle points (high BR), compared with predictions of neglect model.  See Table 

1 for details of these studies. 

 

 

 

 
 

 

Note:  Neglect model predictions based on RST simulation assuming no focal bias ( = 0) and  

fixed judgmental extremity ( = 1).  Discriminability (D) and base rate (BR) are approximately 

matched to the empirical datasets as follows: For low D,  = 0.7; for high D,  = 1.0; very low 

BR = 5%; low BR = 30%; and high BR = 80%. 



 

Figure 4 

 

Physicians.  Calibration curves for heart patient survival predictions reported by Poses et al. 

(1997) compared with predictions of neglect model.  Triangles represent 90-day (BR = 81%) 

prognoses; squares represent 1-year (BR = 64%) prognoses. 

 

 

 
 

 

Note:  Neglect model predictions based on RST simulation assuming no focal bias ( = 0) and  

fixed judgmental extremity ( = 1).  Discriminability ( = 0.41 for 90-day prognoses and 0.33 for 

1-year prognoses) and base rate are matched to values reported by Poses et al. (1997). 



 

Figure 5a 

 

Physicians and patients.  Calibration curves from Weeks et al. (1998) study of yoked patient 

(circles) and physician (squares) predictions of patient survival (BR = 44.7%), compared with 

neglect model predictions. 

 

 
 

 

Note:  Neglect model predictions based on RST simulations with fixed judgmental extremity      

( = 1).  Discriminability ( = 0.82 for physicians and  = 0.57 for patients) and base rate are 

matched to values reported by Weeks et al. (1998), assuming positive (“optimistic”) focal bias  

( = 2) for patients but not for physicians ( = 0). 



 

Figure 5b 

 

Physicians and patients.  Calibration curves from Arkes et al. (1995) study of yoked patient 

(circles) and physician (squares) predictions of patient survival (BR = 70%), compared with 

neglect model predictions. 

 

 
 

Note:  Neglect model predictions based on RST simulations with fixed judgmental extremity      

( = 1).  Discriminability ( = 0.87 for physicians and  = 0.22 for patients) and base rate are 

matched to values reported by Arkes et al. (1995), assuming positive (“optimistic”) focal bias   ( 

= 2) for patients but not for physicians ( = 0). 



 

Figure 6 

 

Meteorologists.  Calibration of weather forecasts in Daan & Murphy (1982) study, represented by 

circles (very low BR), squares (low BR), and triangles (high BR), compared with predictions of 

neglect model (derived from RST simulations).  See Table 2 for details of these forecasts. 

 

 
Note:  Neglect model predictions based on RST simulation assuming no focal bias ( = 0) and  

fixed judgmental extremity ( = 1).  Discriminability (D) and base rate (BR) is matched to 

average values from the Daan & Murphy (1982) study, with  = 1.19, 0.86, and 0.96 in the very 

low (BR = 6%), low (BR = 29%), and high (BR = 75%) base rate conditions, respectively. 



 

Figure 7 

 

Lawyers.  Calibration curves from Dutch lawyers (Malsch, 1989; represented by circles) and 

American lawyers (Goodman-Delahunty et al., 1998; represented by triangles), compared with 

predictions of neglect model. 

 

 
 

Note:  Neglect model predictions based on RST simulations assuming no focal bias ( = 0) and 

fixed judgmental extremity ( = 1).  Discriminability and base rate (BR) are matched to values 

from original studies, with  = 0.54 and BR = 47.5% for Malsch (1989), and  = 0.15 and BR = 

56% for Goodman-Delahunty et al. (1998).  Neglect model curves are truncated for purposes of 

presentation.  



 

Figure 8 

 

Economists.  Calibration of economists’ forecasts of recession (i.e., decrease in real gross 

national product) at varying forecast horizons of one to four quarters beyond time of prediction 

(Q0 to Q3, respectively; Braun & Yaniv, 1992), compared with predictions of neglect model. 

 

 

 

 
 

Note:  Neglect model predictions based on RST simulations assuming no focal bias ( = 0) and 

fixed judgmental extremity ( = 1), assuming that discriminability decreases at longer forecast 

horizons ( = 1, 0.7, 0.4, and 0.1 for Q0 to Q3, respectively).  Accuracy values of calibration 

curves estimated from Exhibit 1 of Braun and Yaniv (1992); data points representing 20 or fewer 

observations have been excluded, and neglect model curves truncated accordingly.  Base rate line 

indicates approximate historical base rate probability of recession from 1947 to the time the 

forecasts were made (see Braun & Yaniv, 1992, pp. 224-227). 



 

Figure 9 

 

Sportswriters and stockbrokers.  Calibration curves from Onkal and Ayton (1997) study of 

sportswriters predicting winners in upcoming English (moderate BR, represented by circles) and 

Turkish (high BR, represented by triangles) football (soccer) games, and from Onkal and 

Muradogui (1996) study of expert stock market predictions (very low BR, represented by 

squares), compared with neglect model predictions. 

 

 
Note:  Neglect model predictions based on RST simulations assuming no focal bias ( = 0) and 

fixed judgmental extremity ( = 1).  Base rate values for soccer predictions matched to those 

reported by Onkal and Ayton (1997) for English (BR = 56%) and Turkish (BR = 83%) games, 

assuming common discriminability ( = 1.07).  Base rate (BR = 3%) and discriminability ( = 

0.45) for stock predictions matched to data reported by Onkal and Muradogiu (1996). 

 


