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Making Claims With
Statistics

MISUNDERSTANDINGS OF STATISTICS

The field of statistics is misunderstood by students and nonstudents
alike. The general public distrusts statistics because media manipula-
tors often attempt to gull them with misleading statistical claims.
Incumbent politicians, for example, quote upbeat economic statistics,
whereas their challengers cite evidence of wrack and ruin. Advertisers
promote pills by citing the proportion of doctors who supposedly recom-
mend them, or the average time they take to enter the bloodstream. The
public suspects that in the interest of making particular points, propa-
gandists can use any numbers they like in any fashion they please.

Suspicion of false advertising is fair enough, but to blame the problem
on statistics is unreasonable. When people lie with words (which they
do quite often), we do not take it out on the English language. Yes, you
may say, but the public can more readily detect false words than
deceitful statistics. Maybe true, maybe not, I reply, but when statistical
analysis is carried out responsibly, blanket public skepticism under-
mines its potentially useful application. Rather than mindlessly trash-
ing any and all statements with numbers in them, a more mature
response is to learn enough about statistics to distinguish honest, useful
conclusions from skullduggery or foolishness.

It is a hopeful sign that a considerable number of college and univer-
sity students take courses in statistics. Unfortunately, the typical sta-
tistics course does not deal very well, if at all, with the argumentative,
give-and-take nature of statistical claims. As a consequence, students
tend to develop their own characteristic misperceptions of statistics.
They seek certainty and exactitude, and emphasize calculations rather
than points to be drawn from statistical analysis. They tend to state
statistical conclusions mechanically, avoiding imaginative rhetoric (lest
they be accused of manipulativeness).

It is the aim of this book to locate the field of statistics with respect
to rhetoric and narrative. My central theme is that good statistics
involves principled argument that conveys an interesting and credible
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2 1. MAKING CLAIMS WITH STATISTICS

point. Some subjectivity in statistical presentations is unavoidable, as
acknowledged even by the rather stuffy developers of statistical hypoth-
esis testing. Egon Pearson (1962), for example, wrote retrospectively of
his work with Jerzy Neyman, “We left in our mathematical model a gap
for the exercise of a more intuitive process of personal judgment” (p.
395). Meanwhile, Sir Ronald Fisher (1955) accused Neyman and Pear-
son of making overmechanical recommendations, himself emphasizing
experimentation as a continuing process requiring a community of free
minds making their own decisions on the basis of shared information.

Somewhere along the line in the teaching of statistics in the social
sciences, the importance of good judgment got lost amidst the minutiae
of null hypothesis testing. It is all right, indeed essential, to argue
flexibly and in detail for a particular case when you use statistics. Data
analysis should not be pointlessly formal. It should make an interesting
claim; it should tell a story that an informed audience will care about,
and it should do so by intelligent interpretation of appropriate evidence
from empirical measurements or observations.’

CLAIMS MADE WITH STATISTICS: COMPARISON
AND EXPLANATION

How are claims developed in statistical tales? For most of this book, we
treat statistics in connection with systematic research programs, but to
begin, let us discuss the case in which purportedly newsworthy statis-

tical “facts” are picked up by roving reporters and presented in the
media.

Stand-Alone Statistics

Many of these statistics are isolated, stand-alone figures such as: “The
average life expectancy of famous orchestral conductors is 73.4 years”
(Atlas, 1978), or “adults who watched television 3—4 hours a day had
nearly double the prevalence of high cholesterol as those who watched
less than one hour a day” (Tucker & Bagwell, 1992), or “...college-edu-

Thereis a different light in which some people view the field of statistics. Data gathering
nay be seen as the archival activity of assembling “facts,” which at some later time may
se used according to the needs of particular investigators or administrators. Historically,
statistics began with the collection of tax and census records, and the term statistics derives
Tom the description of states (Cowles, 1989). Prime modern examples of archives that can
ater be used for various research purposes are census data, and public opinion survey data
»anks such as the General Social Surveys (Davis & Smith, 1991). Resources like these are
mportant, and I do not underestimate their value. Nevertheless, data banking is but the
reginning of certain research enterprises, not their culmination. It is the theoretical and
pplied payoff of data analysis that engages my attention in this book.
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cated vs}omen who are still single at the age of thirty-five ha_ve onlyab
percent chance of ever getting married” (“Too Latg,” 1986; discussed py
Cherlin, 1990; and Maier, 1991). The point of the h'fe-expectapcy stat1§-
tic was supposedly that conducting an orchestra is so fulﬁlhng that hlt
lengthens life. The cholesterol story was somewhat puzzhng, but t (el
implication was that increased junk foo'd consumption accompanie
heavy TV watching. The marriage statistic was basefi on shale projec-
tions of future trends, and could be variously egplgmgd or dismissed,
depending on who was doing the explaining or dismissing.

A problem in making a claim with an ‘1solated number is tha_xt thi‘
audience may have no context within which to-assess .th‘e meaning 0
the figure and the assertion containing it. How unusual isit to live untzl
age 73.4? Does “nearly double” mean I shou}dn’t wa_tch TV? If one can t{
answer such questions, then a natural reaction to this type of numerica
pronouncement would be, “So what?”

The Importance of Comparison

In the example about women and percentage marrying, a background
context is readily available, and most people would regard 5% as a
startlingly low marriage rate compared to the_ general average (qr
compared to what was true 50 years ago). The_ldg_a}"g_ﬁ comparison is
crucial. To make a point that is at all meaningful, statistical pregenta—
tions must refer to differences between observation and expectation, or
differences among observations. Observed differences lead to why ques-
tions, which in turn trigger a search for explgnatory factors. Thus, the
big difference between the 5% future marriage 'rate for 35-year-old,
college-educated single women and one’s 1mpressxon.tha‘t‘ some 80% or
90% of women in general will marry, evokes the questlpn, I wonder why
that is? Is it career patterns, the lack of appeal of marriage, or a shc.)rtfage
of eligible men?... Or maybe the 5% figure is bgsed ona faulty §tatlst1cal
procedure.” Such candidate explanations motivate the 1nvest31gators (or
their critics) to a reanalysis of existing evidence and assumptions, or the
collection of new data, in order to choose a preferred explanation.
Apart from the standard statistical questions of why there is a
difference between one summary statistic and another,‘or betwegn the
statistic and a baseline comparison figure, there occasmpally arises a
need to explain a lack of difference. When we expgct a d1ff$§encg an’d
don’t find any, we may ask, “W_hli’?.ﬁ,}l‘?_@_ﬁ?fﬁ,dlff‘?}f??lc,?- Gahlfeo e
fabled demonstration that heavy and light objects take the same time
to fall a given distance is a case in point. The obseryed constancy stands
in contrast with a strong intuition that a heavy object should fall faster,

thus posing a puzzle requiring explanation.
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Standards of Comparison

At ?;he outset of the explanation process, there is a complication. Given
a single statistic, many different observations or expectations may be
used as standards of comparison; what is compared with what may have
a substant.ial influence on the question asked and the answer given.
Why questions are said to have a focus.? The longevity datum on famous
orchestral conductors (Atlas, 1978) provides a good example. With what
should the mean age at their deaths, 73.4 years, be compared? With
;m{:)hestral players? With nonfamous conductors? With the general pub-
ic?
‘ All of the conductors studied were men, and almost all of them lived
in the United States (though born in Europe). The author used the mean
life expgctancy of males in the U.S. population as the standard of
comparison. This was 68.5 years at the time the study was done, so it
appears that the conductors enjoyed about a 5-year extension of iife—
_and indeed, the author of the study jumped to the conclusion that
involvement in the activity of conducting causes longer life. Since the
study appeared, others have seized upon it and even elaborated reasons
for a gausal connection (e.g., as health columnist Brody, 1991, wrote, “it
}s bglé;e)ved that arm exercise plays a role in the longevity of conduct(,)rs”
P .
' However, as Carroll (1979) pointed out in a critique of the study, there
is a sub’Fle flaw in life-expectancy comparisons: The calculat’ion of
average ll'fe expectancy includes infant deaths along with those of adults
who survive for many years. Because no infant has ever conducted an
orchestx.‘a, the data from infant mortalities should be excluded from the
comparison standard. Well, then, what about teenagers? They also are
much too young to take over a major orchestra, so their deaths should
also be excluded from the general average. Carroll argued that an
appropriate cutoff age for the comparison group is at least 32 years old
an estlrpate of the average age of appointment to a first orchestrai
conducting post. The mean life expectancy among U.S. males who have
already reached the age of 32 is 72.0 years, so the relative advantage, if
any, of being in the famous conductor category is much smaller th;m
suggested by the previous, flawed comparison. One could continue to
devise ever and ever more finely tuned comparison groups of noncon-
ductors w}_lo are otherwise similar to conductors. Thoughtful attention
to comparison standards (usually “control groups”) can substantially
reduce the occurrence of misleading statistical interpretations.

2A shift in the focus of question and answer is well illustrated by a joke beloved among
10-year-old children: “Why did the turkey cross the road?” ... “Because it was the chicken’s
day of.‘f.” The reader who doesn’t understand children’s jokes can get the idea of focus by
studying the effect of underlining different words in a why question. See Lehnert (1978).

Choosing Among Candidate Explanations

For any observed comparative difference, several possible candidate
explanations may occur to the investigator (and to critics). In a given
case, this set of explanations may include accounts varying widely in
their substance and generality, ranging from a dismissal of the observed
difference as a fluke or an artifactual triviality to claims that the
observations support or undermine some broad theoretical position. In
our orchestra conductors example, the set of candidate explanations
includes at least the following: (a) The result arose fortuitously from the
particular sample of conductors included; (b) the comparison standard
is still flawed, as it does not account for subpopulations with shorter life
spans who are also ineligible to become conductors (e.g., the chronically
ill); and (c) conductors do live longer, because of some common genetic
basis for longevity and extraordinary musical talent, health benefits
from the activity of conducting (or from a larger class of activities that
includes conducting), or health benefits from something associated with
conducting, such as receiving adulation from others, or having a great
deal of control over others.

It is the task of data analysis and statistical inference to help guide
the choice among the candidate explanations. The chosen explanation
becomes a claim. (If this term implies more force than appropriate, we
may use the blander word point.) In the conductor example, it is risky
to make a claim, because of a lack of relevant data that would help
winnow the set of explanations. It would be helpful to have information
on such matters as the life expectancy of well-known pianists, actors,
professors, lawyers, and so forth; the life expectancy of eminent conduc-
tors who retire early (for reasons other than health); the life expectancy
of siblings of famous conductors (ideally, twin siblings—but there would
not be enough cases); and the comparative life expectancies of elderly
people who stay active and those who are inactive (for reasons other
than poor health).

Experimentalists would despair at the vagueness of specification of
the needed evidence (how should one define “poor health,” “active”
“retire”), and the sinking feeling that there are just too many variables

(some of them unknown) that might be associated with longevity. The™

experimental investigator would be in a much more comfortable position
if he or she could isolate and manipulate the factors assumed to be
relevant in one or more of the proposed causal accounts. An experi-
menter, as distinct from an observer, tries to create (or re-create)
comparative differences rather than just to observe them passively.
Consider the possible explanation that orchestral conducting is so
personally satisfying or otherwise beneficial that it extends life beyond
the age at which the individual would have died in the absence of this
activity. The standard experimental way to try to recreate such an effect

-



6 1. MAKING CLAIMS WITH STATISTICS

would be to assemble a group of potentially outstanding conductors,
arrange for a random half of them to have prestigious orchestra posts
whereas the other half have less involving career activities, and then
collect longevity data on all of them. Of course this test would be
absurdly impractical. I mention it because it suggests the possibility of
conceptually similar experiments that might be feasible. For example,
one could recruit a group of elderly people, provide a random half of them
with social or physical activities, or social control, and monitor their
subsequent feelings of well-being and state of health relative to that of
the other half, who had received no intervention.? The bottom line for
the conductors example, though, is that casual, one-shot tabulations of
statistical observations will almost certainly be difficult to interpret.
Therefore it is rhetorically weak to make claims based on them, and
such claims deserve to be regarded with great skepticism. Well-justified
explanations of comparative differences typically depend on well-con-
trolled comparisons such as can be provided by careful experiments, and
therefore we emphasize experimental data in this book. (Sometimes, one
can also do well by the sophisticated collection of converging lines of
evidence in field observations.) The quality of explanation improves
dramatically when there are many interrelated data sets, some of them
repeated demonstrations of the core result(s) or of closely related re-
sults, some of them ruling out alternative explanations, and yet others
showing that when the explanatory factor is absent, the result(s) fail to
appear.

Systematic Versus Chance Explanations

To understand the nature of statistical argument, we must consider
what types of explanation qualify as answers to why questions. One
characteristic type, the chance explanation, is expressed in statements
such as, “These results could easily be due to chance,” or “A random
model adequately fits the data.” Indeed, statistical inference is rare
among scientific logics in being forced to deal with chance explanations
as alternatives or additions to systematic explanations.

In the discussion to follow, we presume that data are generated by a
single measurement procedure applied to a set of objects or events in a
given domain. We suppose that the observations comprising the data set
differ, some from others, and we ask why. A systematic factor is an
influence that contributes an orderly relative advantage to particular
subgroups of observations, for example, a longevity gain of a certain
number of years by elderly people who stay active. A chance factor is an

3There is in fact a growing literature in the field of health psychology that speaks to
precisely this idea (Langer & Rodin, 1976; Okun, Olding, & Cohn, 1990; Rodin, 1986).
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influence that contributes haphazardly to each observation, with the
amount of influence on any given observation being unspecifiable.

The Tendency to Exaggerate Systemaﬂc Factors

Inexperienced researchers and laypeople alike usually overestimate the
influence of systematic factors relative to chance factors. As amateur
everyday psychologists and would-be controllers of the world around us,
we exaggerate our ability to predict the behavior of other people. We
have difficulty thinking statistically about human beings.

Kunda and Nisbett (1986) showed that in matters of human ability,
especially athletic ability, there is some degree of appreciation of inex-
plicable variations in performance from one occasion to the next. We
understand, for example, that a tennis player might be on his game one
day but flat the next, so that a sample of performances is necessary to
make a reliable judgment of ability. Even so, the relative importance of
chance influences is seriously underestimated in many athletic con-

texts. Abelson (1985) asked baseball-wise psychologists to consider

whether or not a major league batter would get a hit in a given turn at
bat, and to estimate the proportion of variance in this event explained
by differences in the skill of different batters, as opposed to chance
factors affecting the success of a given batter. The median estimate was
around 25%, but the true answer is less than one half of 1%! In part this
is due to the highly stingy properties of “explained variance” as a
measure of relationship between two variables (Rosenthal & Rubin,

1979), but more interestingly, it is because we as baseball fans are prone |

to regard a .330 hitter as a hero who will almost always come through
in the clutch, and the .260 hitter as a practically certain out when the
game is on the line.

The underappreciation of chance variability extends to other do-

mains. For events such as lottery drawings in which skill plays no
objective role whatever, subjects under many conditions act as though
some control can be exerted over the outcome (Langer, 1975). Kunda
and Nisbett (1986) concluded that in matters of personality, inferences
based on a single encounter are made with undue confidence, ignoring
the possibility of situational influences that vary over time and place.
We tend to feel, for example, that the person who is talkative on one
occasion is a generally talkative person (the “fundamental attribution
error,” Ross, 1977).

The upshot of all this is a natural tendency to jump to Systematic
conclusions in preference to chance as an explanation. As researchers,
we need principled data-handling procedures to protect us from invent-
ing elaborate overinterpretations for data that could have been domi-
nated by chance processes. We need to understand that even though
statistical calculations carry an aura of numerical exactitude, debate
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necessarily surrounds statistical conclusions, made as they are against
a background of uncertainty. A major step in the winnowing of explana-
tions for data is to make a judgment about the relative roles played by
systematic and chance factors.

Inasmuch as chance is not well understood—even by those who have
had a bit of statistical training—we introduce whimsical, hopefully
memorable metaphors for the operation of chance factors (chap. 2).

LANGUAGE AND LIMITATIONS OF NULL
HYPOTHESIS TESTS

A staple procedure used in psychological research to differentiate Sys-
tematic from chance explanations is the significance test of a null
hypothesis. Elementary statistics texts describe many varieties of them
but students often regard null hypothesis testing as counterintuitive:
and many critics (e.g., Cohen, in press; Falk & Greenbaum, in press;
Tukey, 1991) find much to fault in null hypothesis tests. It is Worthwhile:
to set forth here the quirky logic of these tests, so that later on when we
refer to their application, the reader will be well informed about their
role in statistics, and the reasons for complaint about them.

. Consider the simplest type of laboratory experiment, in which sub-
Jects are assigned at random to either an experimental group or a control
group. Members of the two groups perform the identical experimental
!:ask, except for the additional manipulation of a single factor of interest
in 'th'e experimental group—say, the receipt of prior information or
training, or the administration of a drug. The experimenter wishes to
test whether the experimental factor makes a systematic difference on
some appropriate measure of task performance.

Presumably, performance measures on the task differ from individual
to individual, and we ask a rhetorical why question. The systematic
explanatory factor is the manipulation introduced by the experimenter.
To say that this factor is systematic is to assume that on average it
improves (or damages) task performances in the experimental group by
some unknown amount over and above performances in the control
group. We can try to estimate the magnitude of this systematic effect
simply by calculating the difference between the mean performance
scores of the two groups.

But there are also chance factors in this situation—things that add
noise to individual measurements in an unknown way. We mention two
categories here: sampling errors and measurement errors. Sampling
errors arise from the “luck of the draw” in randomly assigning subjects
to the two groups; the experimental group may contain a predominance
of people with somewhat higher (or lower) task ability than members of
the control group, thus introducing a mean difference that could be
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mistaken for a systematic effect. Measurement errors refer to unknown
and unrepeatable causes of variability in task performance over time,
place, and circumstance. The laboratory room may be too warm when
Subject 17 performs the task; Subject 42 may have a headache that day;
and so on.

In qualitative terms, there are three possible accounts for the data
arising from this experimental design: (a) The variability of task scores
can be entirely explained by the systematic factor, (b) the variability of
task scores can be entirely explained by chance factors (sampling and
measurement errors), or (c) the variability requires explanation by both
chance factors and the systematic factor.

The first and the second accounts are simpler, and parsimony would
suggest that they be tested before falling back on the third account. Why
tell a complicated story if a simpler story will do? The third account can
be held in reserve if both of the first two accounts are inadequate. The
first possibility, completely systematic data with no chance variability,
would be immediately apparent in the data set: All the scores in the
experimental group would be equal, and different from all the equal
scores in the control group. This outcome may be approximated in the
physical and biological sciences, where chance variability is typically
very small. With psychological data, however, this outcome is quite
rare—but if and when it occurs, statistical inference is not used (Skin-
ner, 1963).

Setting aside these rare, errorless cases, we are left with the choice
between the all-chance explanation, and the systematic-plus-chance
explanation. We can tell if we need to invoke a systematic factor by first
testing the all-chance explanation; if chance factors do not adequately
account for the data, then the systematic factor is needed. This is in
essence the justification for significance tests of the null hypothesis.

The Language of Null Hypothesis Testing

A null hypothesis test is a ritualized exercise of devil’s advocacy. One
assumes as a basis for argument that there is no systematic difference
between the experimental and control scores—that except for errors of
sampling and measurement the two groups’ performances are indistin-
guishable. If (according to a formal procedure such as a ¢ test) the data
are not sharply inconsistent with this conception, then an all-chance
explanation is tenable, so far as this one data set is concerned. This is
often described as “accepting the null hypothesis.” If, on the other hand,
the data are inconsistent with the all-chance model, the null hypothesis
is rejected, and the systematic-plus-chance model is preferred.

An important caveat here is that the standard terms, “accept” or
“reject” the null hypothesis, are semantically too strong. Statistical tests
are aids to (hopefully wise) judgment, not two-valued logical declara-
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tions of truth or falsity. Besides, common sense tells us that the null
hypothesis is virtually never (Cohen, 1990; Loftus, 1991) literally true
to the last decimal place. It is thus odd to speak of accepting it. We often
use other terms for this outcome, such as “retaining the null hypothesis”
or “treating the null hypothesis as viable.” Similarly, rejection can be
softened with alternative phrases like, “discrediting the null hypothe-
sis.”

In any case, the investigator wanting to show the influence of some
experimental factor proceeds by discrediting the assumption that it
doesn’t matter. The backhandedness of this procedure reflects the fact
that null hypothesis tests are motivated by rhetorical considerations.
Suppose an experimental investigator announces that the data
demonstrate—despite considerable variability from case to case—the
systematic efficacy of a particular educational or medical intervention
or the operation of a particular theoretical principle, but a critic counters
that the data could easily have arisen from fortuitous sampling or
measurement errors. Who wins this scientific debate? The critic does,
unless the investigator can come up with a counter-counter, to the effect
that the data are in fact quite unlikely to be explained entirely by chance
factors. With such a rebuttal, the investigator discredits the null hypoth-
esis (and therefore the critic will in practice usually be deterred from
raising this argument in the first place).

Significance Tests Provide Very Limited Information

The answer to the simple question, “Is there some systematic difference
between the experimental group and the control group?” is not usually
electrifying. As mentioned earlier, there is virtually always some differ-
ence caused by sensible experimental manipulations. Indeed, the only
examples where the exact satisfaction of the null hypothesis is worth
considering occur when there is widespread disbelief that some strange
phenomenon exists at all. For example, the null hypothesis is interest-
ing when discrediting it implies that mental telepathy is possible, or
that stimuli below the level of conscious awareness can have reliable
effects on attitudes and behavior. The complementary case is also
interesting, in which everybody believes beforehand that an effect must
exist. For instance, virtually everyone who follows sports believes that
there is such a thing as “streak shooting” in basketball, and it caused a
considerable furor when Gilovich, Vallone, and Tversky (1985) argued
from a set of sensitive statistical tests on sequences of shots that the
null hypothesis of no streak shooting is tenable.

4A good way to think about what it means to retain a null hypothesis of no mean
difference is that the analyst is insufficiently confident to assert which mean is larger
(Tukey, 1991). See chapter 3, footnote 1.

Single Siudies Are Not Definitive

imple
Even in these rare cases, though, where the outcome of a simp

;onificance test may have scientific (and po.s51b'1y popular)ﬁlews ‘;ﬁlﬁt
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prove wrong. To take an example from the physical sciences, SKep
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about the existence of «cold fusion” prevailed after a year or two of debate

(Pool, 1988) over a claim of success. The opposite outcome f’f debate 1s

. oy ey
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ulus registration without awareness—that after a perio
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Debate about the existence of extrasensory perception (ESP) went on

i i : Utts,
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PERSUASIVE ARGUMENTS: THE MAGIC CRITERIA

There are several properties of data, and its analysis and preseﬁtig?g,
that govern its persuasive force. We labe} these by tl;e ac?,(:;grer;tingness,’
which stands for magnitude, articulation, generality, U

and credibility.” |
quality of statistical evidence and its

f validity (internal, external, construct,
ll-known alternative (Campbell,

5There are other schemes for classifying the
presentation. The enumeration of various forms ° hd
i icti )is a
trait, discriminant, ecological, predictive, etc.) 1
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Magnitude

The strength of a statistical argument is enhanced in accord with the
quantitative magnitude of support for its qualitative claim. There are
different ways to index magnitude, the most popular of which is the
so-called “effect size” (Cohen, 1988; Glass, 1978; Hedges & Olkin, 1985;
Mullen, 1989; Rosenthal, 1991). In the basic case of the comparison
between two means, effect size can be simply given as the difference
between the means; often, however, this difference is divided by the
standard deviation of observations within groups. In chapter 3, we bring
up a number of alternatives, and introduce the concept of “cause size,”
which also bears on the interpretation of magnitudes of effects.

Articulation

By articulation, we refer to the degree of comprehensible detail in which
conclusions are phrased. Suppose, for example, that the investigator is
comparing the mean outcomes of five groups: A, B, C, D, E. The
conclusion “there exist some systematic differences among these means”
has a very minimum of articulation. A statement such as, “means C, D,
and E are each systematically higher than means A and B, although
they are not reliably different from each other” contains more articula-
tion. Still more would attach to a quantitative or near-quantitative
specification of a pattern among the means, for example, “in moving
from Group A to B to C to D to E, there is a steady increase in the
respective means.” The criterion of articulation is more formally treated
in chapter 6, where we introduce the concepts of ticks and buts, units of
articulation of detail.

Generality

Generality denotes the breadth of applicability of the conclusions. The
circumstances associated with any given study are usually quite narrow,
even though investigators typically intend their arguments to apply
more broadly. To support broad conclusions, it is necessary to include a
wide range of contextual variations in a comprehensive research plan,
or to cumulate outcome data from many interrelated but somewhat

1960; Cook & Campbell, 1979). The analysis of validity has been very useful, but it has
never caught on as a coherent whole. It strikes the student as rather formal and esoteric.
Another system has been given in an exquisitely sensible little book on the importance of
statistical analysis in medical research (Hill, 1977). This author named but did not
elaborate on criteria similar to mine. If my approach has any claim to novelty, it is that I
have chosen and developed my criteria within the unifying premise of statistics as
argument, and I know of no previous source that has systematically pursued such an
approach.

P

different studies, as can be done within the context of meta-analys%s
(Mullen, 1989; Rosenthal, 1991). In chapter 7, we present an analysis
of variance framework for interpreting generalization.

High-quality evidence, embodying sizeable, well-articulated, anfl
general effects, is necessary for a statistical argument to. have maxi-
mal persuasive impact, but it is not sufficient. Also vital are the
attributes of the research story embodying the argument. We discuss
two criteria for an effective research narrative: interestingness, and

credibility.

Interestingness

Philosophers, psychologists, and others have pondered variously w.hat
it means for a story to be interesting (e.g., Davis, 1971; Hidi & Baird,
1986; Schank, 1979; Tesser, 1990), or to have a point (Wilensky, 1983).
Our view in this book is that for a statistical story to be theoretigally
interesting, it must have the potential, through empirica! analysis, to
change what people believe about an important issue. This conceptu_al
interpretation of statistical interestingness has several features requir-
ing further explanation, which we undertake in chaptgr 8. For now, the
key ideas are change of belief—which typically entails surprising re-
sults—and the importance of the issue, which is a function of the number
of theoretical and applied propositions needing modification in light of
the new results.

Credibility

Credibility refers to the believability of a research claim. It 1.'equires both
methodological soundness, and theoretical coherence.. Claims based on
sloppy experimental procedures or mistaken statistical analyses will
fall victim to criticism by those with an interest in the results. Chfles
suggested by funny-looking data or wrongly framed pr‘ocedures pl"ov_lde
skeptics with information that something is amiss' in the statlstlc.al
analysis or research methodology. (Of course, you might yourself be in
the role of critic, whereby you can track these clues in other people’s
research reports.) o

Many extensive catalogs of methodological and stat1st1(:'al errors
already exist in the literature (Aronson, Brewer, & Carlsm}th, 1?85;
Campbell & Stanley, 1963; Evans, 1991; King, 1986). Our d}scussmns
differ from standard ones in two ways. We classify statistical errors
“bottom up”—that is, in terms of various odd appearances in data, fr9m
which types of error may be induced (chap. 5); and we trgat a selection
of research design errors in the context of how they might affect the
ongoing debate between an investigator and a critic (chap. 9).
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The credibility of a research claim can sustain damage from another
source—the claim may violate prevailing theory, or even common sense.
The research audience cannot bring itself to believe a discrepant claim,
such as a purported demonstration of extrasensory perception, which
would require vast revision of existing views. In such cases, debate tends
to occur on two fronts simultaneously. The critic will typically pick on
suspected methodological errors, thus accounting for the claim as a
methodological artifact. The investigator must be prepared to try to rule
out such accounts. Also, a theoretical battle will develop, in which the
investigator is challenged to show that her alternative theory is coker-
ent, that is, capable of explaining a range of interconnected findings. If
result A requires explanation X, result B calls forth explanation Y, and
result C explanation Z, where explanations X, Y, and Z have little
relation to each other, the narrative of results A, B, and C is incoherent
(Thagard, 1989). On the other hand, if a single explanatory principle
accounts for several different results, the story is coherent. When the
results would be unrelated were it not for sharing the same explanation,
the story is not only coherent, it is elegant. In chapter 9, we refer to
coherent bundles of results as signatures.

The outcome of a theoretical debate depends on the comparative
adequacy of the respective accounts of existing data. But the contest
may also hinge on who has the burden of proof in the exchange of
criticisms and rebuttals. Usually, this burden rests with the investiga-
tor, especially at the outset. Critics are often freewheeling in their
invention of counterexplanations: It could be this, it may be that, it’s
merely such-and-so. Some types of counterexplanations are so vague as
to be untestable—which gives the critic a substantial debating advan-
tage. Nevertheless, despite occasional abuse of the ability to criticize,
science is better off being tolerant of kibitzers and second-guessers. The
critic is often right. Anyway, science should have both a conservative
bias—which prevents rapid and bewildering shifts of views—and ultj-
mate openness, such that persistent innovators can ultimately triumph
if their claims are indeed meritorious. These issues are discussed more
deeply in chapter 9.

The requisite skills-for producing credible statistical narratives are
not unlike those of a good detective (Tukey, 1969). The investigator must
solve an interesting case, similar to the “whodunit” of a traditional
murder mystery, except that it is a “howcummit”—how come the data
fall in a particular pattern. She must be able to rule out alternatives,
and be prepared to match wits with supercilious competitive colleagues
who stubbornly cling to presumably false alternative accounts, based on
somewhat different clues. (This is analogous to the problems faced by
heroic fictional detectives who must put up with interference from
cloddish police chiefs.)
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STYLE AND CONVENTION

Our five major criteria for an effective statist%cal argumenﬁ depgnd'on
the quality of the data and on the skill of the investigator in des1.gn.1n%
research and presenting results. There are other aspgcts 'of statistica

arguments that depend hardly at all on data or on skill—instead, they
are matters of taste and convention.

Style

For our oses, the style of the statistical argument vxfithin a reseax.‘ch
px?esent:tlilg; can be loosely represented by a dimension along wI-uch
different possible presentations of the same results can be arrayed: At
one extreme is an assertive and incautious style, running tow'a%'d reck-
less and excessive claims; at the other extreme is a timid and rigid s'gyle,
with an unwillingness to make any claims other than the most obvious
ones. In practice, styles are not usually at the extremes, but rather at
intermediate positions nearer to one pole than the other. We label these
the liberal style and the conservative style (chap. 4). .

The liberal style is oriented more toward exploration of data a.nd
discovery of possibly systematic effects. By contrast, the conservative
style reflects a confirmatory attitude towgrd research results, wh_ere one
is willing to forego claims about marginal or une?cpected findings in
order to be more confident about the remaimng clalrr}s. .

It might seem that one should be able to calibrate just hoW liberal to
be if one could place relative costs on making too many cla1m§ versus
making too few claims. Indeed, there are timgs when resgarch is exph.c-
itly exploratory, with open season on speculations, and times when it is
explicitly confirmatory, requiring the utmost pru_dence..B‘ut most re-
search falls somewhere in the middle, and even in explicit cases, the
required decision calculation is impractical becausg the costs of t.he two
types of errors are not sensibly quantifiable. Therg isa boun@a}'y in data
interpretation beyond which formulas and quantitative decision proce-
dures do not go, where judgment and style enter.

Conventions

Sometimes this subjective element is disguised by "che‘use of conven-
tions. There are many such, the most prominent of which is the notorious
p = .05 as the “conventional” significance level. If everyone follovys.t.he
conventions, individual investigators are freed from‘the respons1b.1ht‘y
(but denied the opportunity) for using their own judgment. This is
relatively benign as long as conventions are reasonable, and everyone
realizes that they are conventions rather than commandments.
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The Inevitability of Uncertainty

An analogy can be drawn with a legal system. The dispensation of justice
is fraught with uncertainty. There are imponderable costs associated
with declaring a guilty person innocent, or an innocent person guilty.
The balance between these two types of mistake is set by the legal
conventions of a society, in particular, how weighty the evidence of a
defendant’s guilt must be to justify convicting him. In the Anglo-Amer-
ican tradition for capital offenses, guilt must be established “beyond a
reasonable doubt.” Such a convention, though it may convey a reassur-
ing illusion that the decision policy is exact (provided that nobody is
lying), is itself subject to ambiguity and alternative interpretation. By
and large, nonetheless, wise use of this imprecise tradition serves us
well.

In applications of statistics in the social sciences, some element of
subjectivity is always present, and the research investigator is cast in
a role analogous to that of a legal advocate. In this metaphor, the
scientific audience plays the part of judge or jury hearing the testimony
of the investigator and of those who may disagree. Though it may take
several judicial proceedings, a judgment is eventually reached.

THE BOTTOM LINE

A research story can be interesting and theoretically coherent, but still
not be persuasive—ifthe data provide only weak support for the rhetoric
of the case. On the other hand, a lot of high-quality rhetoric can be
squandered by a poor narrative—for example, if the research is so dull
that no one cares which way the results come out. Thus rhetoric and
narrative combine multiplicatively, as it were, in the service of persua-
sive arguments based on data analysis. If either component is weak, the
product is weak. The argument is strong only when it has the MAGIC
properties of forceful rhetoric and effective narrative. In making his or
her best case, the investigator must combine the skills of an honest
lawyer, a good detective, and a good storyteller.

Elementai'y
Arguments and the
Role of Chance

I'have proposed that the proper function of statistics is to formulate good
arguments explaining comparative differences, hopefully in an interest-
ing way. In this chapter the four most elementary kinds of statistical
arguments are introduced, with a pithy illustration of each. All four are
affected by some manifestation of chance. The first two arguments each
involve a comparison between a set of observations and a chance
expectation; the arguments differ in whether or not a comparative
difference is claimed. The next pair of arguments compare the means of
two sets of observations with each other; one argument claims that the
observed mean difference could have been due to chance, whereas the
other claims a systematic difference on top of chance effects.

Common sense tells us that an explanatory argument is better if
concise, with overexplanation giving grounds for skepticism. If John
excuses his absence from work by claiming that his grandmother died,
and besides, he had a bad cold, we are inclined to doubt his sincerity. He
has violated one of Grice’s (1975) axioms of normal discourse, namely
that a speaker should give sufficient information to be understood, but
no more. _

As with everyday explanations, even more so with scientific explana-
tions. The ideal of parsimony gives preference to the simplest explana-
tion adequate to account for a given corpus of data. In chapter 1, we
noted that in the social sciences, part of the job of the investigator is to
sort out the relative contributions to data from chance factors and from
systematic factors. The most parsimonious (though often not the most
welcome) kind of explanation is that the data can be attributed entirely
to chance factors. This case of pure chance serves as a very low-level,
baseline explanation that may be altered to include systematic factors
if statistical analysis shows them to be necessary. The role of chance in
the four simple arguments (and more complex ones to come later) is not
entirely transparent, and requires discussion. In this chapter we offer
two conceptions of chance—random generation and random sampling—
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