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1. Introduction 

The mean-variance tradeoff paradigm has been dominant for portfolio selection ever since its 

introduction in Markowitz (1952). Yet its practical implementation has encountered challenges that have 

hindered its effectiveness. They are primarily due to the difficulty in obtaining reliable estimates of 

fundamental parameters; namely, the expected values and the covariance matrix of the asset returns (cf. 

Brandt (2010) and Kan et al. (2022), among many others.) These econometric issues lead to allocation 

solutions that are unstable as the associated quadratic optimization is an ill-posed problem, where the 

optimal portfolio weights are mostly sparse and can switch from one extreme to another under minute 

perturbations in the input estimates (see, e.g., Brodie et al. (2009)). This situation was anticipated through 

the analytical approach based on parametric quadratic optimization of Best and Grauer (1991). They 

showed that a small increase in the mean of just one asset drops half of the securities from the portfolio. 

Over the years, a number of approaches have been proposed to either advance the estimation technique (cf., 

Jorion (1986), Ledoit and Wolf (2004, 2017, 2022)) or devise robust optimization and regularization 

formulations (cf. Goldfarb and Iyengar (2003), Brodie et al. (2009)), or both (cf. Dai and Wen (2018), Dai 

and Wang (2019), Dai and Kang (2021), Kan et al. (2022).) 

In this paper we take a different tack, where we want to reduce the number of investment options 

in some optimal mean-variance spanning sense without adversely affecting the risk-reward spectrum 

available through the original set. Where this exercise proves especially impactful is with respect to the 

often-uninformed allocation decisions of participants in Defined Contribution (DC) retirement plans. This 

important issue affects retirement systems in the U.S., Europe, and other developed nations. While recent 

regulation in the U.S. (e.g. the Pension Protection Act of 2006 and the Setting Every Community Up 

for Retirement Enhancement (SECURE) Act of 2019) has addressed the perceived crisis in the 

U.S. retirement system to improve participation rates in DC plans, little has been done to help 

participants with their asset selections. We show that our approach drastically reduces the number of 

funds from which investors in these plans may choose (from 18 to 6, on average), a significant benefit 
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considering that individuals typically prefer to choose among fewer alternatives.1 We also show that not 

only does the smaller subset identified by our method avoid adversely reducing the spectrum of risk 

preferences relative to the original set, it even spans better in many cases.  

We should emphasize at the outset that our approach does not seek to identify the actual 

allocation strategy across the identified subset, for four reasons: 1) within the broad context of optimal 

portfolio selection, we want to focus on the preliminary step pursuant to optimally reducing the number of 

investment options prior to applying quadratic optimization so as to mitigate the propensity of  the latter 

to generate sparse solutions; 2) alternatively, given the fierce debate that has taken hold regarding the lack 

of out-of-sample superiority of optimized strategies over the naïve even allocation2 (cf. De Miguel et al. 

(2009), Kritzman et al. (2010), Scherer (2011), Pflug et al. 2012, De Carvallo et al. (2012), Kirby and 

Ostdiek (2012), and Zakamulin (2017)), one may apply the latter directly on our subset;  3) empirical 

evidence showing a preference for concentrated positions, as in the study of the portfolio holdings of the 

entire Swedish population in Calvet et al. (2008), for example, which has been rationalized with some 

theoretical support in Roche et al. (2013) who show that the ratio of current wealth to income affects the 

degree of concentrated positions for an investor with CRRA utility function and deterministic income, a 

situation that is particularly common with employees early in their careers;  and 4) within the narrower 

context of defined contributions plans to which employees make contributions to fund their own 

retirements, the need for simplifying options for investors with limited financial literacy has become 

critical as we elaborate in the next section. Therefore, optimally identifying a subset of assets out of a 

larger menu for portfolio selection is indeed justified on multiple grounds.  

To support our simplifying proposal, we make use of mean-variance spanning tests under short-

sales constraints, which are particularly prevalent with the average investor. A set of assets is said to be 

mean-variance spanning if their efficient frontier cannot be enhanced with one or more assets from a 

                                                           
1 See Tversky and Shafir (1992), Iyengar and Lepper (2000), and Boatwright and Nunes (2001). 

2 Allocate 1/𝑛 of total wealth in each of the 𝑛 assets under consideration. 



4 

benchmark set of index funds (cf. Huberman and Kandel (1987).) It is then likely that the set will satisfy a 

variety of risk/return preferences. Given that the empirical validation of our selection approach rests on 

data for U.S. defined contributions plans, where positions cannot be held short, we resort to Wald tests, 

originally developed in Kodde and Palm (1986), as applied in De Roon et al. (2001).   

The key contribution of our work is to apply our simplifying proposal to DC plans for retirement 

in the United States. We reiterate that our proposal does not mandate any specific asset allocation 

between funds, thus allowing, if they so desire, for naive investment strategies that unsophisticated 

investors are known to be comfortable with, particularly an even allocation (i.e. 1/n) across available 

investment options.3 This simple strategy is easily explained and is intuitively attractive to the average 

person (Benartzi and Thaler (2001); Iyengar et al. (2004); Iyengar and Kamenica (2010)). While naive, 

this diversification strategy is also perfectly acceptable for many as recent work has shown that it is hard 

to persistently outperform (see, e.g., De Miguel et al., (2009), Pflug et al. (2012), and Zakamulin (2017)). 

Alternatively, plan participants may also consider managed accounts, which have grown in popularity, for 

help with allocation across the reduced set of funds. 

The funds we identify through our procedure either have low beta or they comprise the minimum-

variance portfolio of the menu of investment options available in the plan, in addition to relatively riskless 

funds. At first glance, the fact that the subset of funds identified by our selection process spans at least as 

frequently as the complete set of funds in the plan seems counterintuitive if all parameters are known with 

certainty. But it is not surprising when accounting for parameter uncertainty. In fact, our approach is 

germane to the three-fund strategy of Kan and Zhou (2007) who advocate for the use of a riskless asset, the 

sample tangency portfolio and the minimum-variance risk portfolio. Their argument is based on the fact 

that theoretical mean-variance analysis, which relies on precisely known parameters, is significantly altered 

by the inaccuracy of estimated expected returns and covariance, with ex-post performance falling short of 

                                                           
3 Huberman and Jiang (2006) find evidence that participants in U.S. DC plans indeed tend to allocate evenly across 
investment funds chosen. 



5 

ex-ante expectation. Furthermore, we show that because the mean-variance test we apply relies on a Wald 

statistic, the better spanning results of the subset can be explained by a higher concentration of covariance 

entries among the smaller set, which ultimately leads to a smaller Frobenius norm of the matrix associated 

with that statistic. In essence, the empirical mean-variance spanning performance of our low-volatility 

strategy is also consistent with the superior out-of-sample return performance of others relative to high-

volatility and high-beta strategies (see e.g., Baker et al., 2011; Frazzini and Pedersen, 2014). We therefore 

contribute to both the literature on mean-variance optimization and the literature on employee investment 

decision-making in DC plans.  

The remainder of the paper is organized as follows.  In Section 2 we relate the issue of optimal 

menu reduction to identifying the so-called Qualified Default Investment Alternatives designed to lessen 

the burden of retirement planning in U.S. DC plans, highlighting deficiencies regarding the popular 

current default QDIA option (i.e., target-date funds). Section 3 further details our proposal for plan menu 

simplification. Section 4 describes our data sources and contains sample details. Section 5 discusses our 

empirical results, including an illustration of how a subset based on our method can span better than the 

larger menu, and Section 6 concludes. 

 

2. U.S. Defined Contribution Plans: The Fiduciary Default Allocation Issue 

Defined contribution (DC) plans, such as those provided by employers under section 401(k) of 

the U.S. Internal Revenue Code, figure prominently in the retirement planning of tens of millions of 

working Americans despite their modest beginning in the early 1980s (Munnell and Sundén (2004)). In 

Europe, they are the subject of vigorous discussions regarding their implementation (cf. Hinrichs (2020), 

and Holzmann et al. (2021).) Though current views on defined contributions (i.e., nonfinancial DC) plans 

in Europe make them different than their U.S. versions, the experience on the latter over the past 40 years 

have much to offer the rest of the world. 
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DC plans place the burden of investment decisions on the shoulders of relatively unsophisticated 

investors and there has been a growing concern over a retirement crisis in the United States (Siegel, 2015) 

due partly to weak proactive participation and unwise strategies such as all equities or all bonds (Roche et 

al. (2013)). Many plan participants seem to exhibit limited effort, or even no effort, when making 

investment decisions in their retirement plan. For instance, Doellman et al. (2019) provide evidence that 

the average plan participant resorts to simply choosing funds from the top of the plan menu list. Many 

other employees follow the path of least resistance and rely on default decisions made by their employers 

(Choi et al., 2002; Carroll et al., 2009).  

To help such investors in their decision-making, the push for widespread financial education, as 

advocated by certain academics and policy makers, has not improved the situation (see, e.g., Fernandes et 

al., 2014). Based on research suggesting that a bewildering plan menu may hamper participation (cf. 

Iyengar et. al. (2004) and Iyengar and Kamenica (2010)) and the previously cited literature regarding the 

preference for fewer choices in decision making, a potentially more effective remedy would be to 

simplify the investment decision process for employees while improving the mix of investment assets in 

their retirement portfolios. 

Despite plan participants’ limited ability to make informed investment decisions, DC plan 

fiduciaries, such as sponsoring employers and plan providers, had long been reluctant to make fund 

recommendations to employees due to possible liability exposure. This changed to a degree in 2006 when 

the U.S. Congress passed the Pension Protection Act. This Act included relief from liability for plan 

fiduciaries making fund choices on the behalf of plan participants if they comply with the Department of 

Labor’s safe harbor rule. The latter was issued in October 2007 and provided guidance concerning 

Qualified Default Investment Alternative (QDIA) options in DC plans.   

The question of how to implement a practical QDIA in DC plans remains open despite the 

emergence of target-date funds (TDFs) as a popular option. With a TDF, an investor picks a retirement age 

(target date) and the fund manager makes allocation decisions that are pre-determined and which change as 
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the investor ages. The change in investment allocation over time is referred to as the “glide path,” and it 

typically starts with a tilt towards stocks and ends with more bonds by the target date. The passage of the 

Pension Protection Act in 2006, along with the QDIA designation of target-date funds and the move to 

automatic enrollment in DC plans, has led a growing proportion of employees to allocate their entire plan 

balances to TDFs. In light of the limitations of the average DC investor, this trend has led to some favorable 

outcomes. For instance, the average DC investor is now less likely to employ extreme portfolio allocations 

(i.e., all-equity, all-bond or all-money-market) (cf. Huberman et al. (2006) and Roche et al. (2013).)  

Certain characteristics of TDFs, however, have also made their increased use problematic for 

several reasons. More generally, a TDF’s investment strategy, or glide path, only takes into account the 

investor’s anticipated retirement age, as opposed to a more nuanced strategy that would take other factors 

into account (e.g. lifestyle preferences in retirement, health risks, child and possibly adult dependents, other 

income sources, etc.). In other words, all investors in a particular TDF are practically assumed to have 

homogenous goals and/or needs.  

From a more technical standpoint, Balduzzi and Reuter (2019) show that TDFs with similar target 

dates earn significantly different realized returns and follow glide paths with very heterogeneous ex-ante 

risks.   Investors also largely share many misconceptions regarding these funds, such as whether TDFs offer 

guaranteed income. Surz and Israelsen (2007) discuss how TDFs should be assessed and find that their risk-

adjusted performance falls short while Spitzer and Singh (2008) use simulation to show that TDFs have a 

higher shortfall risk than a constant equal-allocation between stocks and bonds. Scott et al. (2009) also 

show that glide-path strategies have higher shortfall risk compared to constant mix strategies. They observe 

that TDFs tend to lock in poor early returns, thereby decreasing the likelihood of portfolio recovery should 

returns improve. From a different perspective, Sandhya (2011) finds that TDFs are also subject to agency 

problems as some mutual fund companies use low quality funds to create TDFs. Additionally, as TDFs are 

funds of funds, their fees can be significant. Elton et al. (2015) provide evidence that these fees are 
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somewhat offset by the lower fees of the funds into which the TDFs are invested. On the whole, however, 

they show that the resulting alphas are generally lower than alternatives for any given fund family.4 

3. Plan Menu Simplification 

The fund selection approach we prescribe is mainly driven by portfolio efficiency, specifically, 

mean-variance spanning. Our approach is also motivated by the strong empirical performances of low-

volatility and low-beta portfolios (Karceski, 2002; Ang et al., 2009; Baker et. al., 2011; Frazzini and 

Pedersen, 2014) which was, in fact, anticipated as far back as Black (1972). This is especially true within 

the context of restricted borrowing that is characteristic of mutual funds.  

To determine the QDIA subset of a given plan, we first partition the plan’s options into two groups: 

equity-based (higher risk) funds and safer funds, which typically include stable value, money market, fixed 

income, target-date, and general conservative funds.5 We then perform a variance minimization on the 

equity funds and keep only the funds that are part of the optimal solution. Next, we combine these with the 

safer funds, which were excluded from the variance minimization altogether. This approach has the same 

flavor as the classical two-fund theorem; however, it differs from it since the two funds (or sets of funds, 

with a cardinality typically not exceeding three) are not necessarily on the efficient frontier. It is, in fact, 

comparable to the three-fund approach of Kan and Zhou (2007). 

We then perform a Wald spanning test (cf. De Roon et al. (2001)) on the combined set of funds to 

determine whether they can span the returns of index benchmarks. We show that the subset of funds tends 

to span at least as frequently as the full set of funds in a given plan. Thus, the manner with which we choose 

the subset of funds complies with the safe harbor provision that a QDIA must be “diversified so as to 

                                                           
4 Additional issues associated with TDFs are further presented in the review article of Spitzer and Singh (2012). 

5 Partitioning of funds is based on Morningstar categories.  We first determine all unique Morningstar categories in 
our data and then identify categories that represent equity based funds.  
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minimize risk of large losses” and “designed to provide varying degrees of long-term appreciation through 

a mix of equity and fixed-income exposures”.6  

4. Data 

Our primary dataset is provided by Brightscope, Inc., an independent information provider of 

retirement plan ratings and investment analytics to plan participants, sponsors, asset managers, and 

advisors. Brightscope’s proprietary dataset currently contains information on over 55,000 defined 

contribution (DC) plans, such as 401(k) and 403(b) plans. The specific dataset provided to us is a cross-

sectional snapshot of plans at the end of 2007, and it contains over 25,000 DC plans.  Items contained in 

the data that are important to our analysis include: plan menu investment fund options, plan size (net assets), 

individual fund balances, fund expense ratios, administrative costs, and plan sponsor and service provider 

information. 

In this study, we focus on companies’ primary DC plans as identified by using the Department of 

Labor codes, thus we eliminate any supplementary plans offered by the same plan sponsor.7 This initial 

sample includes 17,386 DC plans. We further require full return data availability for every mutual fund 

within a plan in the 2004-2008 period from either CRSP Mutual Fund Database or Morningstar Direct 

Database. Because of this return data constraint our final sample used in the analysis consists of 7,975 DC 

plans. Despite the loss of a large number of plans in the original sample, our final sample is significantly 

larger and richer than previous studies that have analyzed retirement plan menu efficiency. For instance, 

Elton et al. (2006) analyze a relatively small sample of 417 plans while Tang, et al. (2010) analyze a larger 

sample of 1,003, all of which are administered by one of the top mutual fund companies in the industry – 

                                                           
6 Final rule in Federal Register, published on Oct 24, 2007 and available at: 
https://www.dol.gov/ebsa/regs/fedreg/final/07-5147.pdf  
7 We do this because we do not typically have complete data for all of a company’s plans; thus, we simply analyze a 
company’s primary, or largest, DC plan. 
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Vanguard.8 In addition, our data covers both publicly traded and private companies of all sizes which hire 

many types of TPAs.9 

<< Insert Table 1 around here >> 

Table 1, Panel A provides comparative descriptive statistics for the initial and the final sample. The 

average plan in our initial sample has $22.1 million in total net assets and offers 22.1 funds as investment 

options.10 In contrast, the average plan in our final sample is larger than the average plan in the initial sample 

with $31.8 million in total assets and contains 18.2 fund options. For the majority of our sample we can 

also identify the third-party plan administrator (TPA), the financial institution in charge of designing and 

servicing the retirement plan. TPA categories used in our analysis can be found in Panel B of Table 1, along 

with plan size characteristics across these different categories. Mutual fund families represent a heavy 

majority of the subsample where we can identify the TPA. This is consistent with the overall retirement 

plan market where mutual fund companies hold a majority of the market share. In our sample, plans 

administered by investment banks, large commercial banks, asset management advisory firms, and mutual 

fund companies are considerably larger than plans administered by small/regional commercial banks, 

401(k) services companies, and insurance firms. This is not particularly surprising since the clientele of the 

latter groups are most likely to be smaller firms with fewer participants and lower retirement plan 

balances.11 

<< Insert Table 2 around here >> 

                                                           
8 Elton et al. (2006) uses a sample provided by Moody’s Investors Services that collects survey data from for-profit 
firms.  The sample used in Tang et al. (2010) is supplied by Vanguard, a company that is well known to provide low 
cost and well diversified portfolios with heavy preference to index funds.  

9 We categorize TPAs in our sample into one of seven categories: mutual fund families, large/small (greater than or 
less than $50 billion in assets) commercial banks, insurance companies, asset management advisory companies, 
investment banks, and 401(k) services companies 

10 The average plan size in our initial sample is very comparable to the average plan size ($25.2 million) in EBRI’s 
2007 dataset, the largest provider of information on 401(k) plan. 

11 One exception is the insurance company group.  One drawback of our dataset is the fact that insurance firms are 
underrepresented due to the common use of proprietary funds that do not exist in our return data sources (CRSP or 
Morningstar). 
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In Table 2, we provide more details on the types of funds offered in investment menus of plans in 

the sample. As summarized in Panel A, an average retirement plan in our sample offers 12.3 domestic 

equity funds, 1.8 domestic bond funds, 1.9 international funds and 0.6 low risk investments such as money 

market funds, stable value funds, guaranteed investment contracts, or annuities (MSGA).12 Not surprisingly, 

almost all retirement plans include at least one domestic equity fund while 97% of plans offer at least one 

domestic bond fund and one international fund in their investment menus. Additionally, about 60% of plan 

menus contain at least one MSGA, while 4% of plans in the sample also include company stock as one of 

investment choices.13 Plan participants in our sample, on average, direct 68% of their retirement wealth to 

domestic equity funds, 9% to domestic bond funds, 14% to international funds and 9% to MSGA options. 

When company stock is offered in the DC plan, the average plan participant also invests 13% of plan assets 

in the stock.14 Further, Panel B reports the average number of unique Lipper Investment Objective 

categories covered by plans in the final sample. On average, 13 different objective categories are 

represented in plan menus. 

<< Insert Table 3 around here >> 

For purposes of spanning, we use two sets of benchmark funds. We obtain all return data for these 

benchmarks from DataStream. Table 3 lists both sets of benchmark indexes and provides descriptive 

statistics on monthly returns over the analysis period (2004-2008). Despite some changes in management 

company affiliations, the first set of benchmarks are identical to sets used by the related spanning literature, 

including Elton et al. (2006) and Tang et al. (2010). In the first set, the Barclays Capital Aggregate Bond 

Index, Credit Suisse High Yield Bond Fund, and Citigroup World Government Bond Non-US$ Index 

capture returns of fixed income securities; the Russell 1000 Growth, Russell 1000 Value, Russell 2000 

Growth, and Russell 2000 Value indices capture returns of large-, mid- and small-cap equities; and the 

                                                           
12 In our analysis we only focus on mutual funds in the plan and exclude company stock and all MSGA options.  

13 Interestingly, retirement participants of about 92% of plans in our sample have also borrowed against their retirement 
wealth, on average 8.3% of their plan balance. 

14Although this figure seems quite high, often there are special incentives in investing in company stock for employees. 
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MSCI EAFE Index provides international exposure. In the second set, each of the investment categories 

are represented with more benchmark indices. This set is widely used in the style analysis literature (cf. 

Sharpe (1992) and is further discussed in the next section. In this set, fixed income benchmarks are Barclays 

Government Intermediate, Barclays US Aggregate Long Government/Credit, Barclays Investment Grade: 

Corporates, Barclays US Agency Fixed Rate MBS, Citigroup World Government Bond Index World 5+ 

Year Non-USD; equity benchmarks are Standard and Poor’s 500/ Citigroup - Value; Standard and Poor’s 

Midcap 400/ Citigroup - Value; Standard and Poor’s Midcap 400/ Citigroup - Growth; Standard and Poor’s 

Smallcap 600/ Citigroup- Value; Standard and Poor’s Smallcap 600/ Citigroup - Growth, and finally, the 

international benchmarks are MSCI Europe, MSCI Pacific, and S&P IFCI Emerging Market Index. This 

set then differs from that used by Elton et al. (2006) and Tang et al. (2010) by disentangling the small and 

mid-cap groups and by differentiating between the international regions. As summarized in Table 3, the 

average monthly returns on most benchmark indices were negative in the 2004-2008 period due to the 

financial crisis of 2008.15 

 

5. Mean—Variance Testing Implementation and Results 

Given that our proposal reduces the number of funds to consider in a given plan, it is natural to ask 

whether the resulting subset would span less than the original in the mean-variance sense, potentially 

reducing the spectrum of risk-return trade-offs that would otherwise be available to participants. We resort 

to employing Wald tests, developed originally by Kodde and Palm (1986), as advocated in DeRoon et al. 

(2001) in the context of regression-based mean-variance spanning when short-sales constraints such as 

those in DC plans are present. Specifically, denote by 𝑟 the 𝑁-dimensional vector of fund returns (e.g., the 

full plan or its subset) the mean-variance spanning of which are to be assessed against a  𝐾-dimensional 

                                                           
15 Average monthly returns are positive for all indices in both sets if year 2008 returns are removed from the descriptive 
statistics. Note that a positive arithmetic average monthly return does not imply that the corresponding average 
compounded return is positive. 
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vector 𝑅 of benchmark returns. Through the multivariate linear regression specification (using notation 

from DeRoon et al. (2001)) 

                                                        𝑟 = 𝑎 + 𝐵𝑅 + 𝜀,                                                                   (1) 

where 𝑎 and  𝐵 are of dimensions  𝑁 and 𝑁 × 𝐾, respectively, we test the hypothesis (cf. (15) on p. 727 

of DeRoon et al.(2001)) 

                                                                  𝜐𝑎 + (𝐵𝑖௄ − 𝑖ே) ≤ 𝟎,                                                              (2) 
 

where 𝜐 is a mean discount factor, set to 
ଵ

ଵା௥೑
 given the presence of a risk-free rate 𝑟௙, 𝑖௄ and 𝑖ே are unit 

vectors of size  𝐾 and 𝑁, respectively, and 𝟎 is a zero-vector of size 𝑁16. The rejection of (2) is then 

 interpreted as the N funds not spanning. In keeping with the current literature labelling (e.g., Elton et al.  

(2006) and Tang et al. (2010)) that reflects the dichotomy spanning vs. non-spanning, we will similarly  

refer to failure to reject as spanning, despite it not necessarily being the case strictly speaking17. We refer 

 to the appendix for the details of our evaluation method. 

As a reminder, we determine the QDIA-compliant subset of funds by first partitioning a plan’s 

options into equity-based funds and all other funds. Next, we perform a variance minimization on the equity 

funds and keep only the funds that are part of the optimal solution. Finally, we combine the funds from this 

optimal solution with the other, safer funds that were excluded from the variance minimization to constitute 

our proposed QDIA-compliant subset of funds. Furthermore, in order to address the arbitrariness of the 

benchmark choice and potential collinearity issues with the benchmark indexes, we perform spanning tests 

where their returns are re-expressed in terms of those of all their principal components (see, e.g., Lai and 

Xing, 2008, pp. 41--44, or Connor and Korajczyk, 2010, pp. 401—418.) 

<< Insert Table 4 around here >> 

                                                           
16 DeRoon et al. (2001) use an additional superscript for the regression parameters 𝑎 and 𝐵 as they derive their 
expression (15) based on running the regression (1) above using only a subset of 𝑅 that is associated with non-
binding short-sales constraints. However, in their Appendix they argue that for implementation purposes, the correct 
identification of such a sub-vector is not practical and that even if done incorrectly will be asymptotically negligible. 
17 The proper label should be “fail to reject spanning” at the given (5%) significance level. 
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<< Insert Table 5 around here >> 

Table 4, Panel A, shows that relative to the same benchmarks used by Elton et al. (2006) and Tang 

et al. (2010), we find that 46% of plans span when considering all fund options in the plan (“All Funds”). 

On the other hand, with QDIA-compliant subsets of funds (“QDIA Funds”), spanning occurs around 49% 

of the time. Should our alternative benchmark of 13 indices be used instead, spanning occurs at much lower 

rates: 28% for all funds and 31% for QDIA- compliant subsets of funds, as reported in Panel B of Table 4. 

The first important finding from these results is that the spanning rates markedly differ according 

to the two benchmark sets. However, as shown in Table 5, the proportion of spanning increases dramatically 

for both sets of funds (All Funds and QDIA--compliant subsets of Funds) and both sets of benchmarks 

when the principal components of the funds are used as regressors. These results clearly highlight the 

significance of the correlation among fund returns. We also note that our selection approach tends to reduce 

the number of choices by almost two-thirds, with a reduction from a mean (median) of 18.2 (17) funds to a 

mean (median) of 6.2 (5) in a typical plan. 

The second, more important takeaway from Tables 4 and 5 is that limiting the plan menu to QDIA-

compliant subsets of funds does not impair the spanning opportunities offered by the complete set of menu 

options in the plan. However, given the abovementioned issues with offering the full menu to participants, 

the suggestion of QDIA-compliant subsets of funds could greatly alleviate the burden of the investment 

decision for the participants. If the TPA and/or the plan sponsor would choose to offer, through managed 

accounts, for example, guidance on the set of funds in the plan menu that are part of the minimum-variance 

optimized portfolio, together with the conservative funds, then a plan participant is more likely to create an 

investment portfolio that spans a set of benchmark indices. In this fashion, fiduciaries have an objective 

basis for their fund recommendations, which may otherwise be viewed under a cloud of suspicion.18  

                                                           
18 Highlighted in a recent Government Accountability Office (GAO) report –“401(k) Plans: Improved Regulation 
Could Better Protect Participants from Conflicts of Interest.” available at http://www.gao.gov/new.items/d11119.pdf. 
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Our approach is in contrast to Tang et al. (2010) who further assess the impact of the deviation of 

the risk-adjusted performance across all participants relative to the mean-variance efficient portfolios and 

conclude that while plans may be spanning, individuals’ portfolio constructions are overwhelmingly 

inefficient. Their recommendation is then to support strategies targeting behavioral change including 

improved default strategies and educational programs. However, behavioral change is difficult to achieve 

(see, e.g., Iyengar and Kamenica (2010)) and financial education has a very short “shelf life”, thus severely 

limiting its efficacy (see, e.g., Fernandes et al. (2014)). In addition, the estimation issues that arise in the 

course of mean-variance optimization have led some to question the practicality of mean-variance efficient 

portfolios, leading some to further wonder whether the “1/N” strategy could be a viable strategy (see De 

Miguel et al. (2009) and Zakamulin (2017), among others).  

We close this section by providing an illustration explaining how a subset selected through our 

procedure can span better than the original menu of options. The rejection of the null hypothesis captured 

by (2) is predicated on large values of the Wald statistic 

𝜉 = min
ఊஹ଴

(𝛾෤ − 𝛾)ᇱΣ෨ିଵ(𝛾෤ − 𝛾),     (3) 

where 

𝛾෤ = −
ଵ

ଵା𝑟𝑓
 𝛼ෝ − 𝛽መ × 𝑖௄ + 𝑖ே, 

with   𝛼ෝ  and 𝛽መ  being the respective estimates for the regression (1), and 

                                          Σ෨ = ൬
ଵ

ଵା𝑟𝑓
𝐼ே   − 𝐴൰ Ω ൬

ଵ

ଵା𝑟𝑓
𝐼ே   − 𝐴൰

ᇱ

                             (4) 

where 𝐼ே is the 𝑁 × 𝑁 identity matrix, 𝐴 is the Kronecker product 𝐼ே⨂𝑖௄
ᇱ, and Ω is the 

(𝑁 + 𝑁𝐾) × (𝑁 + 𝑁𝐾) covariance matrix between the multivariate intercept 𝛼 and the loading 

matrix 𝛽 in the regression (1).  

<< Insert Table 6 around here >> 
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Table 6 shows the matrices that result from the estimates  𝛼ෝ  and 𝛽መ . Observe that the covariance 

between these terms is stronger for the QDIA subset, leading to a more robust matrix                                

Σ෨, based on both determinant and Frobenius norm values, and ultimately yielding a distance-

defining Σ෨ିଵ that clearly tilts the Wald statistic toward smaller values for the QDIA subset as 

captured by its Frobenius norm. One can explain this mechanism by the way that the subset is 

chosen. It consists of assets with low risk or which minimize the risk, thus close to the efficient 

frontier of the original set. Given that the benchmark indexes are efficient, it is not surprising to 

see that the estimates of the regression of the subset on the benchmark indexes result in a 

covariance matrix with larger terms than those of the original set as assessed via the Frobenius 

norm of Ω and the min, max, and median values. 

 

6. Conclusion 

 Through either direct retail channels or indirect institutional channels such as retirement 

plans, average or unsophisticated investors constitute a very significant segment of the financial 

universe. In the U.S., recent regulations concerning employer retirement plans, such as the 

Pension Protection Act of 2006 and the Setting Every Community Up for Retirement 

Enhancement (SECURE) Act of 2019, have focused on improving access to these plans and 

increasing participation by employees. Yet much remains to be done to help participants with 

their asset selections.  

 In view of the empirical evidence pointing out that individuals prefer fewer choices when 

making complex decisions such as investments, we propose a systematic procedure that not 

only reduces the number of options without limiting the risk-return opportunities relative to the 

original offering but can also capture better risk-return tradeoffs thanks to its reliance on risk 
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minimization. Using data on U.S. defined contribution plans, we show a reduction of the menu 

options by an average of 2/3 relative to the original set. From a practical standpoint, an average 

investor, say a participant in a defined contribution plan, will not need to try to determine which 

options to select out of the myriad investments choices offered there. Instead, this participant 

may opt to invest in the much smaller subset identified for that plan by our approach and may, if 

desired, allocate evenly across the resulting options. This strategy has been found to not only be 

intuitive to the average investor but also to be particularly competitive when the options are 

diversified, as are mutual funds, which are typical offerings in defined benefit plans.    

 

APPENDIX 

Methodological Approach Used in Empirical Section 

For each plan (or its QDIA subset) in the sample, run regressions where the dependent variables 

and the independent variables are: 

a) the returns on the benchmark indices and the returns on all the funds in the plan, 

respectively when testing all plans; 

b) the returns on the benchmark indices and the returns on the funds in the QDIA subset in 

the plan, when testing the QDIA subsets. 

The outcome of theses regressions consists of 

(i) an intercept vector 𝛼ො of dimension 𝑁 × 1, where 𝑁 is either 8 or 13; 

(ii) a matrix of factor slopes/sensitivities 𝛽መ  of dimension 𝑁 × 𝐾, where 𝐾 ≤ number of 

funds in the plans; 
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(iii) a covariance matrix Ω (via COVB option in SAS) between all the 𝑁 + 𝑁𝐾 estimated 

parameters 𝛼ො and 𝛽መ. Represent the matrix Ω in the form 

Ω = ൬
Ωଵଵ Ωଵଶ

Ωଶଵ Ωଶଶ
൰, 

where Ωଵଵis 𝑁 × 𝑁, Ωଵଶis 𝑁 × 𝑁𝐾, Ωଵଵ =  Ωଵଶ
்  is 𝑁𝐾 × 𝑁,and Ωଶଶis 𝑁𝐾 × 𝑁𝐾. 

Algorithmic and statistical steps (based on Kodde-Palm (1986)): 

1. Compute the 𝑁 × 𝑁𝐾 matrix 𝐴 = 𝐼ே ⊗ 𝑖௄
் , where 𝐼ேis the 𝑁 × 𝑁 identity matrix and 

𝑖௄
்  is a 𝐾 × 1 vector of 1’s. 

2. Compute the 𝑁 × 𝑁 matrix Σ෨ (see (2.5) on their page 1244): 

Σෘ = ൬−
1

1 + 𝑟
𝐼ே       − 𝐴൰ Ω ൬−

1

1 + 𝑟
𝐼ே       − 𝐴൰

்

, 

where 𝑖ே is an 𝑁 × 1 vector of 1’s and 𝑟 is the risk-free rate. 

3. Compute 𝛾 = −𝛽መ × 𝑖௄ + 𝑖ே. 

4. Compute 𝛾෤ = 𝛾 − ΣଶଵΩଵଵ𝛼ො, with the 𝑁 × 𝑁 matrix Σଶଵ = −𝐴 × Ωଶଵ. 

5. Compute the Wald statistic (optimization performed in SAS with NLP procedure) 

𝜉 = min
ఊஹ଴

(𝛾 − 𝛾)்Σෘିଵ (𝛾 − 𝛾) 

6. In our application, we are in “Case 2” of Kodde-Palm (1986) (cf. their pages 1243 

and 1245), with, in their notation, 𝑞 = 0 and 𝑝 − 𝑞 = 𝑁.  

The lower bound for the critical value for the Wald statistic is obtained with the 

number of degrees of freedom 𝑑𝑓 = 1, that is 2.706 at the 5% level. 

The upper bound for the critical value for the Wald statistic is obtained with the 

number of degrees of freedom 𝑑𝑓 = 𝑁. For 𝑁 = 8, this upper bound is 14.853 at the 

5% level, and for 𝑁 = 13, this upper bound is 21.742 at the 5% level. 
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7. If the Wald statistic falls below the lower bound, the null hypothesis (2) for spanning 

is not rejected (and use the same loose label “span” used by both Elton et al. (2006) 

and Tang et al. (2010)). 

If the Wald statistic falls above the upper bound, then the hull hypothesis (2) is 

rejected and the plan (or the QDIA subset) does not span. 

8. If the Wald statistic falls within the lower and upper bound, we resort to Monte Carlo 

simulation to determine the critical value as follows.  

 Generate 1,000 vectors from the multivariate normal distribution with (vector) 

mean 0 and covariance matrix Σ෨. Call these 𝛾ොଵ, 𝛾ොଶ, … , 𝛾ොଵ଴଴଴, each of which 

being of dimension 𝑁. 

 Compute: 

𝑤ෝଵ,ே the proportion of the above vectors that have exactly 1 positive element 

out of their 𝑁 elements. 

𝑤ෝଶ,ே the proportion of the above vectors that have exactly 2 positive elements 

out of their 𝑁 elements…. 

𝑤ෝே,ே the proportion of the above vectors that have exactly N positive elements 

out of their 𝑁 elements. 

 

 Through MATLAB functions chi2cdf and fzero, determine critical value 𝑐 as 

the solution of (cf. (2.17) in Kodde-Palm (1986)): 

෍ 𝑤ෝ௞,ே

ே

௞ୀ଴

𝑃{𝜒ேି௞
ଶ > 𝑐} = 0.05 
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 If the Wald statistic is greater than 𝑐, reject the null hypothesis (2); otherwise, 

do not. 

9. Finally, compute the proportion of plans that “span” and the proportion of QDIA 

subsets that “span”. 
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Table 1. Plan-Level Descriptive Statistics 

Panel A reports descriptive statistics for plan size and fund balances (both in U.S. dollars) for 401(k) plan data provided by Brightscope, Inc.  Based on data 
filters such full return availability, the original sample of 17,386 plans is reduced to 7,975. Plan Size is the sum of all fund balances held within the plan while 
Average Fund Balance is the balance within each mutual fund. Number of Fund Options provides the size of plan menu for participants.  

 Panel B reports descriptive statistics on plan size by the type of company administering the 401(k) plan, i.e. third-party administrator (TPA). 
 

Panel A. Plan and Fund Balance Size 
 

Original Sample 
N = 17,386 

Mean 
Standard 
Deviation 

10th percentile 25th percentile Median 75th percentile 90th percentile 

Plan Size (000’s) 22,100 111,000 1,157 2,534 5,894 13,700 34,200 

Average Fund Balance (000’s) 1,228 8,456 63 133 313 734 1,865 

Number of Fund Options 22.13 15.00 11 15 19 26 32 
        

Final Sample 
N = 7,975 

Mean 
Standard 
Deviation 

10th percentile 25th percentile Median 75th percentile 90th percentile 

Plan Size (000’s) 31,827 136,058 1,141 2,684 6,697 17,172 52,676 

Average Fund Balance (000’s) 1,891 8,564 77 180 426 1,059 3,110 

Number of Fund Options 18.21 6.78 10 13 17 23 28 
 
 
Panel B. Plan Size by Category 
 

Plan Size (000’s) 
Number of 

Plans 
Mean 

Standard 
Deviation 

Min Median Max 

Mutual Fund Families 2,340 60,089 272,790 37 13,448 9,641,714 

Asset Management Advisory 519 40,030 204,915 49 6,557 2,602,408 

Investment Banks 183 91,400 355,811 14 14,628 4,040,556 

Large Commercial Banks 725 41,197 139,039 70 8,508 2,261,397 

Small/Regional Comm. Banks 203 12,821 33,027 10 4,756 349,804 

Insurance Firms 435 15,002 32,758 147 5,826 470,023 

401(k) Services Companies 362 18,860 62,782 15 4,091 5,825,942 

TPA Unknown 3,224 13,183 52,622 3 4,090 1,146,085 
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Table 2. Plan Menu Options Descriptive Statistics 

Panel A provides frequency data on the different types of funds available in the final sample, across all plans (unconditional) and across only the plans that offer 
those types (conditional). The last three columns refer to the proportion of plan assets directed to the types of funds listed.  
 
Panel B reports descriptive statistics on the number of different Lipper Investment Objective categories available in the sample plans.   

 
Panel A. Fund Type Coverage 

 

 Number of Fund Options 
(unconditional) 

Number of Fund Options 
(conditional) 

% of Plans Assets Held 
in (unconditional) 

% of Plans Assets Held 
in (conditional) 

% of Plans 
Containing 
at least one  Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Domestic Equity Funds 12.36 6.01 12.37 6.00 68.18% 13.50% 68.24% 13.35% 99.92% 

Domestic Bond Funds 1.82 1.16 1.88 1.13 8.97% 19.72% 9.25% 19.96% 96.98% 

International Funds 1.86 1.16 1.92 1.13 14.36% 9.63% 14.82% 9.43% 96.90% 

Money Market/ Stable Value/ GIC/ 
Annuity (MSGA) 

0.63 0.57 1.06 0.29 8.80% 11.77% 14.88% 11.99% 59.12% 

Company Stock 0.04 0.21 1.06 0.23 0.51% 3.95% 12.97% 15.36% 3.93% 

Participant Loans     7.67% 9.32% 8.32% 9.43% 92.17% 

 
 
Panel B. Lipper Objective Category Coverage 

 
Unique Lipper Category Coverage by Plan     

Mean Standard Deviation 10th percentile 25th percentile Median 75th percentile 90th percentile 

13.21 6.03 6 9 12 17 22 
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Table 3. Benchmark Indices 

Listed below are descriptive statistics on the performance of the two sets of benchmark sets used in the mean-variance 

spanning test. They cover the period 2004-2008. The performance is measured as monthly returns net of fees. 

Benchmark Index Set 1 is consistent with Elton et al. (2006), Tang et al. (2010), while Benchmark Index Set 2 is 

aligned with the indexes used for style analysis in Sharpe (1992). 
 

  Monthly Returns 

 
Mean 

Standard 
Deviation 

Benchmark Index Set 1     

MSCI EAFE Index 0.28% 4.76% 

Barclays Capital Aggregate Bond Index 0.37% 1.34% 

Credit Suisse High Yield Bond Fund -0.04% 2.96% 

Citigroup World Gov’t Bond Non-US$ Index 0.50% 2.36% 

Russell 1000 Growth -0.22% 4.09% 

Russell 1000 Value 0.01% 3.78% 

Russell 2000 Growth -0.05% 5.64% 

Russell 2000 Value 0.14% 4.99% 

   

Benchmark Index Set 2 
  

Barclays Government Intermediate 0.06% 0.93% 

Barclays US Aggregate Long Government -0.02% 2.89% 

Barclays Investment Grade - Corporates -0.32% 2.10% 

Barclays US Agency Fixed Rate MBS 0.44% 0.91% 

Citigroup World Gov’t Bond Index World 5+Yr Non-US$ 0.57% 2.57% 

S&P 500 / Citigroup - Value -0.28% 3.90% 

S&P Mid-cap 400 / Citigroup - Value -0.03% 4.75% 

S&P Mid-cap 400 / Citigroup - Growth 0.01% 4.90% 

S&P Small-cap 600 / Citigroup - Value 0.05% 4.95% 

S&P Small-cap 600 / Citigroup - Growth 0.14% 5.01% 

MSCI Europe Index 0.03% 4.99% 

MSCI Pacific Index 0.13% 4.86% 

S&P IFCI Emerging Market Index 0.77% 7.35% 
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Table 4. Spanning Test Results: Effect of Choice of Benchmark Indexes 

This table summarizes spanning test results at 5% significance level. Panel A reports results with Benchmark Set 1 indices while Panel B reports results with 
Benchmark Set 2, as described in Table 3. “All Funds” refers to the number of plans that either span or do not span using the all funds within a given plan. “QDIA 
Funds” the number of plans that either span or do not span when the plans are restricted to the subset of funds picked by our QDIA procedure.  

 
Panel A: Results Based on Benchmark Index Set 1 

 
 

                Span          No Span                                 Total 
   

All Funds 
3,630      4,345                                    7,975               

45.52%      54.48%                                 100%  

QDIA Funds 
3,875      4,100                                   7,975 

48.59%     51.41%                                100% 

 
Panel B: Results Based on Benchmark Index Set 2 

 
 

        Span   No Span                             Total 
   

All Funds 
        2,239 5,736                                  7,975 

       28.08% 71.92%                               100% 

QDIA Funds 
       2,468 5,507                                  7,975 

      30.95% 69.05%                              100% 
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Table 5. Spanning Tests Based on Principal Component Analysis 

This table summarizes spanning test results at 5% significance level. Principal component returns are constructed from returns of funds in plans. In “All Funds”, 
principal component returns are based on all the funds in a given plan.  In “QDIA”, only the funds selected via the QDIA procedure are involved. Panel A and 
Panel B refer, respectively, to the index benchmark sets described in Table 3.  

Panel A: Results for Benchmark Index Set 1 

 
 

                Span          No Span                                 Total 
   

All Funds 
7,966      9                                    7,975               

99.89%      .11%                                 100%  

QDIA Funds 
7,970      5                                   7,975 

99.94%     0.06%                                100% 

 
Panel B: Results for Benchmark Index Set 2 

 
 

                Span          No Span                                 Total 
   

All Funds 
7,967      8                                    7,975               

99.90%      0.10%                                100%  

QDIA Funds 
7,975      0                                   7,975 

100%     0%                                100% 
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Table 6. Illustration of a Subset Spanning Better Than the Original Set of Assets  

This table compares the three matrices that affect the Wald statistic used to assess spanning relative to Benchmark Index Set 1 given in Table 3.  In “QDIA”, only 
the funds selected via the QDIA procedure are involved.  Ω is the covariance matrix between all the coefficients in the multivariate regression of a set on the 

benchmark indices.  Σ෨ is the matrix given in (5) and  Σ෨ିଵ defines the metric associated with the Wald statistic. In this example, the original set consists of  𝑁 =

30 funds and its QDIA subset consists of  𝑁 = 11 funds. Ω is of size 270 x 270 for the original set and 99 x 99 for the QDIA subset. Σ෨   (and thus its inverse) is 

of size 30 x 30, for the original set, and 11 x 11, for the QDIA subset.     

 

 𝛀 𝚺෩ 𝚺෩ି𝟏. 

 Original QDIA Original QDIA Original QDIA 

Min -14.3914 -24.7539 -0.2842 -12.1019 -3.6234 -0.1804 

Max 27.2468 43.7524 3.2838 22.6728 13.0576 3.2352 

Median 0  −2.00 × 10ି଺ 0.0238 0.0244 -0.0205 0.1043 

Frobenius norm       56.6224        136    3.5996      51.4421     26.0142     3.4296 

Determinant  

   0.00148 1.31 × 10଺ 

 
 


