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Abstract This paper investigates the impact of ENSO-based climate forecasts on optimal
planting schedules and financial yield-hedging strategies in a framework focused on down-
side risk. In our context, insurance and futures contracts are available to hedge against yield
and price risks, respectively. Furthermore, we adopt the Conditional-Value-at-Risk (CVaR)
measure to assess downside risk, and Gaussian copula to simulate scenarios of correlated
non-normal random yields and prices. The resulting optimization problem is a mixed 0–1
integer programming formulation that is solved efficiently through a two-step procedure,
first through an equivalent linear form by disjunctive constraints, followed by decomposi-
tion into sub-problems identified by hedging strategies. With data for a representative cotton
producer in the Southeastern United States, we conduct a study that considers a wide variety
of optimal planting schedules and hedging strategies under alternative risk profiles for each
of the three ENSO phases (Niña, Niño, and Neutral.) We find that the Neutral phase gener-
ates the highest expected profit with the lowest downside risk. In contrast, the Niña phase
is associated with the lowest expected profit and the highest downside risk. Additionally,
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yield-hedging insurance strategies are found to vary significantly, depending critically on
the ENSO phase and on the price bias of futures contracts.

1 Introduction

A typical farming business is mostly concerned with crop yields and the prices at which
they are sold at harvest. The source of this concern is rooted in climatic variations. Extreme
weather conditions, such as precipitations occurring too soon or too late, or in too little
amount, will likely result in low-yield crops, which may not generate enough revenues to
offset all crop-related costs. On the other hand, even ideal and timely precipitations can
adversely affect profits as abundant crops produced by competing farms may lead to sales
price drops.

To hedge against low-yields, the Risk Management Agency (RMA) of the United States
Department of Agriculture (USDA) offers three types of crop insurance policies: yield-based
insurance, revenue-based insurance, and policy endorsement. A yield-based insurance pol-
icy, such as the Actual Production History (APH), insures producers against yield losses
due to natural causes. A revenue-based insurance policy, such as Crop Revenue Coverage
(CRC), provides revenue protection. Catastrophic Coverage (CAT), a policy endorsement,
pays 55% of the price, established annually by RMA, of the commodity on crop yield short-
fall in excess of 50%. The cost of crop insurance includes a premium and an administration
fee. On the other hand, the uncertainty of commodity prices can be hedged through fu-
tures contracts, which are binding agreements between a buyer and a seller for delivery of a
particular quantity of a commodity at a specified future date, price, and place. Futures con-
tracts are highly standardized and are traded on exchanges such as the New York Mercantile
Exchange (NYMEX). The cost of a futures contract includes commissions and interest fore-
gone on margin deposit. A risk-averse producer may consider using insurance products in
conjunction with futures contracts for the best possible outcome. Substantial research ef-
forts have focused on crop risk-hedging using crop insurance and derivative securities such
as futures. Poitras (1993) studied a farmer’s optimal hedging problem when both futures
and crop insurance are available to reduce the uncertainty of price and production. Cham-
bers and Quiggin (2002) examined optimal producer behavior in the presence of area-yield
insurance. Mahul (2003) investigated the demand for futures and options to hedge against
price risk when crop yield and revenue insurance contracts are available. Coble et al. (2004)
investigated the effect of crop insurance and loan programs on demand for futures contracts.

1.1 Impact of ENSO climate forecasts on hedging strategies

The El Niño—Southern Oscillation (ENSO) phenomenon is a global event arising from
large-scale interactions between the ocean and the atmosphere. El Niño is a disruption of
the ocean-atmosphere system in the tropical Pacific that has important consequences on
weather around the globe. This condition results in a redistribution of rains with flood-
ing and droughts. Southern Oscillation refers to an oscillation (difference) in the surface
pressure (atmospheric mass) between the southeastern tropical Pacific and the Australian-
Indonesian regions. When the waters of the eastern Pacific are abnormally warm (an El Niño
event) sea level pressure drops in the eastern Pacific and rises in the west. The reduction in
the pressure gradient is accompanied by a weakening of the low-latitude. On the other hand,
when the east-west barometric pressure gradient is reversed, the eastern Pacific sea surface
temperature drops below normal. This is called a “La Niña” event. Sea surface temperatures
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within a normal range are called “Neutral”. These equatorial Pacific conditions, known as
ENSO phases, refer to different seasonal climatic conditions. As the Pacific sea surface tem-
peratures are statistically predictable, ENSO has become an index for forecasting climate
and, consequently, crop yields. Cane et al. (1994), Hansen et al. (1998), Hansen (2002),
and Jones et al. (2000) have investigated the connection between ENSO-based climate pre-
dictions and crop yields. More recently, some researchers have studied the impacts of the
ENSO-based climate information on the selection of optimal crop insurance policies. Cabr-
era et al. (2006) examined the impact of ENSO-based climate forecast on reducing farm risk
with optimal crop insurance strategy. Cabrera et al. (2007) included the interference of farm
government programs on crop insurance hedge under ENSO climate forecast.

1.2 Efficient frontiers, hedging strategies, and ENSO climate forecasts

Given an ENSO-based climate forecast, a farmer should also be able to optimally select a
planting schedule to maximize expected revenues. These expected revenues can be further
increased when hedging instruments such as crop-yield insurance and commodity futures
contracts are available. In this paper we develop a model resulting in an efficient frontier
that accounts for the trade-off between the risk attitude of the farmer and the desired ex-
pected revenues given ENSO-based climate forecasts. We adopt the Conditional-Value-at-
Risk measure (see, e.g., Rockafellar and Uryasev 2000) to assess the risk-aversion driving
the optimal planting schedule and selection of hedging instruments such as insurance and
futures contracts. In addition, as the sources of uncertainty for this model, namely the corre-
lated yield and price, are not necessarily normally distributed, we adopt the Gaussian copula
approach to capture their joint distribution.

The remainder of this article is organized as follows. Section 2 details the optimization
model that we develop. Section 3 briefly reviews the copula approach to capture the joint
distribution of correlated random variables and calibrate the model to our data. Section 4
describes the data of a representative cotton producer in the Southeastern United States that
we used for our empirical study, which is then summarized in the concluding Sect. 5.

2 Optimization model

In this section we set up our optimization model to determine an efficient frontier to capture
the risk-reward structure inherent in the interplay between planting and financial hedging de-
cisions on one hand, and yield and price uncertainty on the other. First, we review our mea-
sure of risk, Conditional-Value-at-Risk (CVaR), and then define formally our optimization
model. To solve it, we express it as a mixed 0–1 integer programming formulation, where
we approximate expected values by their sample means. The latter result from a Monte
Carlo simulation of scenarios generated on the basis of empirical distributions, which will
be further described in our data Sect. 4.

2.1 The conditional-value-at-risk measure

The seminal work of Markowitz (1952) pointed to the possibility of assessing risk through
a statistical value, the variance or standard deviation, which has been widely adopted. One
of its drawbacks though is its limitation to random variables with finite variance. In addi-
tion, it does not distinguish between favorable outcomes (e.g., higher than a specific value)
and unfavorable ones (e.g., less than another specific value). In recent years, the alterna-
tive measure of Value-at-Risk (VaR) has been especially popular among those concerned
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Fig. 1 VaR and CVaR associated
with a loss distribution

with financial risk management (cf., Jorion 2000). It first gained acceptance at JP Mor-
gan in the early 1990’s. Specifically, for 0 < α < 1, VaRα evaluates the αth-percentile
of a loss distribution, with usually α = 0.90 or 0.95. When dealing with a gain distrib-
ution, the risk focus is then on negative values and α usually is typically set at 0.10 or
0.05. VaR however has undesirable properties, especially for outcomes with non-elliptical
distributions. In particular, it may violate the fairly well-accepted principle of diversifica-
tion; i.e., the VaR of a combination of portfolios may not be smaller than that of each
of its elements. This drawback stems primarily from the fact that VaR only considers a
specific (high) percentile of a loss distribution without regard to the magnitude of the
loss. As a consequence, a variant of VaR, usually labeled Conditional-Value-at-Risk (or
CVaR), has been steadily gaining acceptance in the past few years (cf. Artzner et al. 1999;
Szegö 2002). Formally, if ξ is loss random variable and α ∈ (0,1), we define

CVaRα(ξ) = E[ξ |ξ ≥ VaRα(ξ)].
Another reason for the adoption of CVaR in the efficient frontier context is practical. In
particular, Rockafellar and Uryasev (2000) showed that CVaR constraints in optimization
problems can be formulated as linear constraints. This linear property is crucial to the for-
mulation of our model as a mixed 0–1 linear programming problem that can be efficiently
solved.

2.2 A profit maximization model

We consider a farmer who plans to grow crops on a farmland of Q acres in a given year.
There are K possible types of crops and more than one crop can be planted at a time during
that year. For crop k, 1 ≤ k ≤ K , there are Tk potential planting dates, and Ik available
insurance policies. The decision variable xkti represents the acreage of crop k planted on
date t , 1 ≤ t ≤ Tk , with insurance policy i, i ∈ Ik . Let ηk , another decision variable, represent
the hedge position (in pounds) of crop k in a futures contract. We assume for each crop that
harvest will occur in one season and that it will be sold at one price, irrespective of when
it was planted (and thus when picked during the harvest season). Additionally, we assume
that the corresponding random yield Ykt (for crop k planted at time t ) and price Pk have
joint distributions specific to each of the three ENSO phases. The objective is to maximize
the expected value of the profit function

∑K

k=1 f (x̃k, ηk) resulting from the planting and
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insurance strategies x̃k = (xkti )t,i , and futures hedging strategy ηk for crops k = 1, . . . ,K ,
with

f (x̃k, ηk) = f P (x̃k) + f I (x̃k) + f F (ηk), (1)

where f P (x̃k), f
I (x̃k), and f F (ηk) are the corresponding random profits resulting from

production, crop insurance, and futures contracts, respectively, and are defined next. For
production, we assume that

f P (x̃k) = Pk

Tk∑

t=1

(

Ykt

∑

i∈Ik

xkti

)

− (Ck − Sk)

Tk∑

t=1

∑

i∈Ik

xkti , (2)

where Ck is the unit production cost for crop k and Sk the corresponding subsidy rate (per
unit of production). For insurance, three types of policies are considered: Actual Produc-
tion History (APH), Crop Revenue Coverage (CRC), and Catastrophic Coverage (CAT).
For APH, a farmer selects (i) the insured yield, a percentage α between 50 to 75 percent
with five-percent increments of the expected yield E(Yk), and (ii) the election price, a per-
centage β , between 55 and 100 percent, of the price P̂k established annually by RMA. If we
let IAPH denote the set of all APH insurance policies available to this farmer, the indemnity
for any crop 1 ≤ k ≤ K with insurance policy i ∈ IAPH is then defined as

Dki = max

[
Tk∑

t=1

(αiE(Yk) − Ykt )xkti ,0

]

× βiP̂k, (3)

where αi and βi are the corresponding insured yield and election price percentages, respec-
tively. For CRC, the producer selects a percentage of coverage level γ between 50 and 75
percent. With ICRC defined as the set of all available CRC policies, the indemnity of an
insurance policy i ∈ ICRC for crop 1 ≤ k ≤ K is

Dki = max

[

γi

Tk∑

t=1

E(Yk)xkti × max[P b
k ,Pk] −

Tk∑

t=1

YktxktiPk,0

]

, (4)

where P b
k is its base (early-season) price and γi the corresponding (percentage) coverage

level. In other words, a policy i ∈ ICRC guarantees revenue γi

∑Tk

t=1 E(Yk)xkti ×max[P b
k ,Pk]

for crop k. Finally, CAT insurance pays 55% of the established price of the commodity
on crop losses in excess of 50%. Therefore, for crop 1 ≤ k ≤ K , the indemnity of a CAT
insurance policy i ∈ ICAT , where ICAT is the set of all such policies, is defined as

Dki = max

[
Tk∑

t=1

(0.5E(Yk) − Ykt )xkti ,0

]

× 0.55Pk. (5)

For crop 1 ≤ k ≤ K and Ik its associated set of available insurance policies, let Rki denote the
corresponding cost per acreage. Then the resulting total profit due to planting and insurance
strategy x̃k = (xkti )1≤t≤Tk,i∈Ik is

f I (x̃k) =
∑

i∈Ik

(

Dki − Rki

Tk∑

t=1

xkti

)

. (6)
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As for the futures strategy, we assume that the farmer selects the hedge position ηk (in
pounds) for crop k at the same time that strategy x̃k = (xkti )1≤t≤Tk,i∈Ik is determined (i.e.;
at the beginning of the planting period when the ENSO forecasts are available.) This is a
simplifying feature and we could as well incorporate, at the cost of slighter complexity, a
futures strategy that is also time dependent. Then the payoff at harvest of a futures contracts
strategy ηk for crop k is

πF
k = (Fk − fk)ηk, (7)

where Fk and fk are the corresponding futures prices at the start of the planting season and
harvest, respectively. It should be noted that fk is not exactly the price at which crop k is
sold at harvest, which is Pk . The resulting random difference Pk − fk , termed basis, can
be estimated with actual historical prices. The cost CF

k of a futures contracts strategy ηk

includes commissions and interest foregone on margin deposit to account for the so-called
marking to market of futures, leading to the profit function

f F (ηk) = πF
k − CF

k . (8)

In summary, we now have in (2), (6), and (8) explicit forms for the profit function (1) that
results from the planting and insurance strategies x̃k = (xkti )t,i , and futures hedging strategy
ηk for crops k = 1, . . . ,K . The objective is therefore to maximize

E

(
K∑

k=1

f (x̃k, ηk)

)

=
K∑

k=1

(E[f P (x̃k)] + E[f I (x̃k)] + E[f F (ηk)]), (9)

where for k = 1, . . . ,K each expectation is taken over the joint density of Yk and Pk . Addi-
tionally, we capture the producer’s risk attitude through a set of CVaR constraints, namely,
for k = 1, . . . ,K ,and given α and U ,

CVaRα(L(x̃k, ηk)) ≤ U, (10)

where L(x̃k, ηk) = −f (x̃k, ηk) and

CVaRα(L(x̃k, ηk)) = E[L(x̃k, ηk)|L(x̃k, ηk) ≥ ζα(L(x̃k, ηk))], (11)

with ζα(L(x̃k, ηk)) defined as the α-quantile of the loss distribution L(x̃k, ηk) and the expec-
tation taken again over the joint distribution of Yk and Pk .

2.3 A mixed 0–1 integer programming formulation

The optimization problem with objective function (9) and side constraints of the form (10)
is now complete. We further simplify it by appealing to results of Rockafellar and Uryasev
(2000) who provide an alternative expression for the CVaR quantity (11) and indicate that
it is robust to sample mean approximations of expected values. In particular, they show that
the CVaR constraint (11) can be replaced by the linear expressions

ζα(L(x̃k, ηk)) + 1

J (1 − α)

J∑

j=1

zj ≤ U, (12)

K∑

k=1

Tk∑

t=1

Ik∑

i=1

L(xkti , ηk) − ζα(L(xkti , ηk)) ≤ zj , (13)

0 ≤ zj , (14)
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where zj , 1 ≤ j ≤ J ,are supplementary variables and J is the number of scenarios (samples)
generated via Monte Carlo on the basis of the joint distribution of Yk and Pk . Furthermore,
if we let Yktj denote the j th realized (sampled) yield (pound per acre) of crop k planted on
date t , and Pkj denote the j th realized (sampled) cash price (dollar per pound) for crop k at
the time the crop will be sold, we can replace all expectations in (9) as follows:

E[f P (x̃k)] ≈ 1

J

J∑

j=1

K∑

k=1

Tk∑

t=1

(YktjPkj − Ck + Sk)

Ik∑

i=1

xkti , (15)

E[f I (x̃k)] ≈ 1

J

J∑

j=1

K∑

k=1

Ik∑

i=1

Dkij − Rki

Tk∑

t=1

xkti , (16)

E[f F (ηk)] ≈ 1

J

J∑

j=1

K∑

k=1

(πF
kj − CF

k ), (17)

where, depending on the contract type i, Dkij is one of the expressions (3), (4), or (5), with
Ykt replaced by Yktj and E(Yk) by Ȳk = 1

J

∑Tk

t=1

∑J

j=1 Yktj , and πF
kj = (Fk − fkj )ηk , with fkj

being the j th realized (sampled) futures price of crop k at harvest time.
As only one insurance policy can be selected for each crop k, we introduce binary vari-

ables θki subject to the conditions

Tk∑

t=1

xkti ≤ Q · θki , i ∈ Ik, (18)

Ik∑

i=1

θki = 1, (19)

where Q is the total acreage available for planting and

θki =
{

1 if crop k is insured by policy i,

0 otherwise.

In addition, we may impose

K∑

k=1

Tk∑

t=1

Ik∑

i=1

xkti = Q. (20)

The equality in this constraint can be replaced by an inequality (≤) to represent a farmer’s
choice to not grow the crops when production is not profitable.

Note that the maximum objective function contains indemnities Dkij that include a max
term shown in expressions (3), (4), and (5). To implement the model as a mixed 0–1 lin-
ear problem, we transform these equations to an equivalent linear formulation by disjunc-
tive constraints (Nemhauser and Wolsey 1999). For example, (3), Dkij = max[∑Tk

t=1(αi Ȳk −
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Yktj )xkti ,0] × βiPk , can be represented by the set of mixed 0–1 linear inequality constraints

Dkij ≥ 0,

Dkij ≥
[

Tk∑

t=1

(αi Ȳk − Yktj )xkti

]

× βiPk,

Dkij ≤
[

Tk∑

t=1

(αi Ȳk − Yktj )xkti

]

× βiPk + MZkij ,

Dkij ≤ M(1 − Zkij ),

[
Tk∑

t=1

(αi Ȳk − Yktj )xkti

]

× βiPk ≤ M(1 − Zkij ),

[
Tk∑

t=1

(αi Ȳk − Yktj )xkti

]

× βiPk ≥ −MZkij ,

(21)

where M is a large number and Zkij is a 0–1 variable. Equations (4) and (5) can be trans-
formed into a set of mixed 0–1 linear constraints in the same way. Consequently, the optimal
crop production and hedging problem can be formulated as a mixed 0–1 linear programming
problem.

2.4 Further decomposition for efficient computations

Although the mixed 0–1 linear programming problem can be solved with optimization soft-
ware, its computation time increases exponentially as the problem becomes large. To im-
prove computational efficiency, the original problem is decomposed into sub-problems in
which each crop is insured by a specific insurance policy. The original problem contains K

types of crops, and for the kth type of crop there are Ik eligible insurance policies. Therefore,
the number of the sub-problems is equal to the number of all possible insurance combina-
tions of the K crops,

∏K

k=1 Ik . The sub-problems are the same as the original problem except
that the index i’s are fixed and (18) and (19) are removed. Solving the sub-problems gives
the optimal production strategy and futures hedge amount under a specific combination of
insurance policies for K crops. The solution of the sub-problem with the highest optimal
expected profit gives the optimal solution of the original problem. The optimal production
strategy and futures hedge position are provided from the said sub-problem solution and the
optimal insurance coverage is the specific insurance combination of the sub-problem.

3 Model calibration and simulation: a copula approach

To investigate the impact of ENSO-based climate forecast on the optimal production and
risk management decisions, we calibrate the joint distribution of crop yields and price for
individual ENSO phases based on the historical yields and prices of the years classified
to the ENSO phase. Then, random yield and price scenarios associated with the ENSO
phase are generated by Monte Carlo simulation. The correlations between yields in various
planting dates and between yields and price are considered and modeled by copula method.
Copulas are functions describing dependencies among variables and provide a way to create
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distributions to model correlated multivariate data. Sklar’s theorem (Sklar 1959) states that
given a joint distribution function F on Rn with marginal distribution Fi , there is a copula
function C such that for all x1, . . . , xn in R,

F(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)).

Furthermore, if Fi are continuous then C is unique. Conversely, if C is a copula and Fi are
distribution functions, then F as defined by the previous expression is a joint distribution
function with margins Fi . In this paper, we apply the Gaussian copula method to generate
the correlated non-normal multivariate distribution. The Gaussian copula is given by:

Cρ(F1(x1), . . . ,Fn(xn)) = �n,ρ(�
−1(F1(x1)), . . . ,�

−1(Fn(xn))),

which maps the observed variable xi , i.e. yield or price, into a new variable yi using the
transformation

yi = �−1[Fi(xi)], (22)

where �n,ρ is the joint distribution function of a multivariate Gaussian vector with a mean
of zero and correlation matrix ρ and � is the cumulative distribution function of a standard
Gaussian random variable. In moving from xi to yi the observation from the assumed dis-
tribution Fi is mapped into a standard normal distribution � on a percentile to percentile
basis.

Given the non-linear transformations involved in (22) above, we use the rank correlation
coefficient ρs , Spearman’s rho, to calibrate the Gaussian copula to the historical data. In this
manner, the x and y vectors satisfy the same indexed order (cf., Embrechts et al. 2002). For
n pairs of bi-variate random samples (Xi, Yi), define RX

i = rank(Xi) and RY
i = rank(Yi).

Spearman’s sample rho is then given by

ρs = 1 − 6

∑n

i=1(R
X
i − RY

i )2

n(n2 − 1)

and measures the association only in terms of ranks. The rank correlation is preserved under
the monotonic transformation in (22). Furthermore, there is a one-to-one mapping between
the rank correlation coefficient ρs and the linear correlation coefficient ρ for bi-variate nor-
mal random variables (y1, y2) (Kruksal 1958):

ρs(y1, y2) = 6

π
arcsin

ρ(y1, y2)

2
.

To generate correlated multivariate non-normal random variables with margins Fi and
Spearman’s rank correlation matrix ρs , we generate the random variables yi ’s from the mul-
tivariate normal distribution �n,ρ with linear correlation

ρ = 2 sin

(
πρs

6

)

by Monte Carlo simulation. The actual outcomes xi ’s can be mapped from yi ’s using the
transformation

xi = F−1
i [�(yi)].
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Table 1 Historical years
associated with ENSO phases,
1960–2003

EL Niño Neutral La Niña

1964 1987 1960 1975 1984 1994 1965 1989

1966 1988 1961 1978 1985 1995 1968 1999

1970 1992 1962 1979 1986 1996 1971 2000

1973 1998 1963 1980 1990 1997 1972

1977 2003 1967 1981 1991 2001 1974

1983 1969 1982 1993 2002 1976

4 Case study

Following Cabrera et al. (2006), we consider a representative farmer who grows cotton in
a non-irrigated farm of 100 acres in Jackson County, Florida. Dothan Loamy Sand, the
dominant soil type in the region, is assumed. The farmer may buy futures contracts on the
New York Board of Trade and/or purchase crop insurance to hedge against crop yield and
price risks. Three types of crop insurance, Actual Production History (APH), Crop Revenue
Coverage (CRC), and Catastrophic Coverage (CAT), are available for cotton yield-hedging.
For each crop, the farmer may select only one insurance policy or opt for no insurance at all.
For APH, the eligible coverage levels of yield are from 65% to 75% with 5% increments, and
the election price is assumed to be 100% of the established price. In addition, the available
coverage levels of revenue for CRC are from 65% to 85% with 5% increments.

For numerical implementation, we used Historical climate data from 1960 to 2003.
ENSO phases during this period included 11 years of El Niño, 9 years of La Niña, and the
remaining 24 years of Neutral, according to the Japan Meteorological Agency’s definitions
(Japan Meteorological Agency 1991).

Cotton yields during the years 1960 through 2003 were simulated using the CROPGRO-
Cotton model (Messina et al. 2005) in the Decision Support System for Agrotechnology
Transfer (DSSAT) v4.0 (Jones et al. 2003) based on the historical climate data collected at
Chipley weather station. The input for the simulation model followed the current manage-
ment practice of variety, fertilization, and planting dates in the region. More specifically, a
medium to full season Delta & Pine Land® variety (DP55), 110 kg/ha Nitrogen fertiliza-
tion in two applications, and four planting dates, Apr 16, Apr 23, May 1, and May 8, were
included in the yield simulation, which was further stochastically re-sampled to produce a
series of synthetically generated yields following the historical distributions (for more de-
tails see Cabrera et al. 2006).

It was assumed that the cotton would be harvested and sold in December. Therefore,
December cotton futures contracts were used to hedge price risk. Historical settlement prices
of December futures contracts on the last trading date from 1960 to 2003 were collected from
the New York Board of Trade. The statistics and rank correlation coefficient, Spearman’s rho
matrix of yields, and futures prices are summarized in Table 2. They show that crop yields for
different planting dates are highly correlated and that correlation of yields decreases when
the two corresponding planting dates are farther apart. In addition, a negative correlation
between yields and futures price is found in the El Niño and Neutral phases, but not in La
Niña.

We further estimated local bases (cf. (7)) using monthly historical data on average cotton
prices received by Florida farmers from the USDA National Agricultural Statistical Service
(1979 to 2003), which were assumed to be the local cash prices for cotton. We estimated
the historical local basis by subtracting the futures price from the local cash price. Using the
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Table 2 Marginal distributions and rank correlation coefficient matrix of yields of four planting dates and
futures price for the three ENSO phases

ENSO Variable Statistics of marginal
distribution

Rank correlation coefficient matrix spearman’s rho

Mean Standard
deviation

Yield
(4/16)

Yield
(4/23)

Yield
(5/1)

Yield
(5/8)

Futures
price

El Niño Yield on 4/16 815.0 71.7 1.00 0.93 0.75 0.74 −0.36

Yield on 4/23 804.6 79.4 0.93 1.00 0.63 0.57 −0.23

Yield on 5/1 795.4 99.8 0.75 0.63 1.00 0.75 −0.22

Yield on 5/8 793.7 79.1 0.74 0.57 0.75 1.00 −0.42

Futures Price 0.5433 0.1984 −0.36 −0.23 −0.22 −0.42 1.00

Neutral Yield on 4/16 808.9 108.8 1.00 0.84 0.77 0.62 −0.16

Yield on 4/23 818.4 100.6 0.84 1.00 0.75 0.64 −0.28

Yield on 5/1 825.8 86.2 0.77 0.75 1.00 0.75 −0.01

Yield on 5/8 824.5 68.0 0.62 0.64 0.75 1.00 −0.19

Futures Price 0.5699 0.1872 −0.16 −0.28 −0.01 −0.19 1.00

La Niña Yield on 4/16 799.1 99.8 1.00 0.97 0.67 0.60 0.13

Yield on 4/23 790.7 85.3 0.97 1.00 0.73 0.68 0.20

Yield on 5/1 793.9 90.6 0.67 0.73 1.00 0.97 −0.13

Yield on 5/8 809.3 94.1 0.60 0.68 0.97 1.00 −0.08

Futures Price 0.4669 0.1851 0.13 0.20 −0.13 −0.08 1.00

Table 3 Parameters of crop
insurance (2004) used in the farm
model analysis

Source: www.rma.usda.gov

Crop insurance parameters Values

APH premium 65%–75% $19.5/acre–$38/acre

CRC premium 65%–85% $24.8/acre–$116.9/acre

Established price for APH $0.61/lb

Average yield 814 lb/acre

Input Analyzer in the simulation software Arena, it was found that the best fitted distribution
based on minimum square error method was a beta distribution with probability density
function, −0.13 + 0.15 × BETA (2.76, 2.38).

The Gaussian copula was calibrated based on the sample rank correlation coefficient
matrix for the three ENSO phases. For each ENSO phase, 2,000 scenarios of correlated
random yields and futures price were sampled by Monte Carlo simulation, based on the
Gaussian copula and the empirical distributions of yields and futures price. Further, the
basis was simulated and the local cash price was calculated from the futures price and basis.

The futures commissions and opportunity cost of margin was assumed to be $0.003 per
pound, the production cost of cotton was $464 per acre, and the subsidy for cotton in Florida
was $349 per acre. Finally, the parameters of crop insurance are listed in Table 3.

4.1 Results and discussion

This section reports the results of optimal planting schedules and hedging strategies for
the three predicted ENSO phases. First, optimal decisions when crop insurance is the only

http://www.rma.usda.gov
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hedging instrument are investigated. Then the best solutions when both insurance and futures
contracts are available are analyzed.

4.1.1 Optimal production with only crop insurance coverage

Table 4 shows the optimal planting schedule and hedging strategy considering crop insur-
ance as the only hedging instrument for each ENSO phase, with various 90%CVaR upper
bounds ranging from −$20,000 to −$2,000. Since the indemnity of CRC depends on the
futures price, it is assumed that the futures market is unbiased, i.e., F = E(f ), where F is
the futures price at planting time and f is the random futures price at harvest time. Table 4
shows that ENSO phases affect the expected profit and the feasible region of the downside
risk. A Neutral year has the highest expected profit and lowest downside loss. In contrast,
a “La Niña” year has the lowest expected profit and highest downside loss. Additionally,
when the upper bound of 90%CVaR constraint is lower than a specific value, which depends
on the ENSO phase, the 65%CRC and 70%CRC crop insurance policies are desirable for
the optimal hedging strategy in all ENSO phases. In contrast, the APH insurance policy is
not desirable for any ENSO phase with 90%CVaR upper bounds. Furthermore, risk can be
managed by changing the planting schedule. The last two rows associated with the Neutral
phase show that planting 100 acres on date 3 provides a 90%CVaR of −$6,000, which can
be reduced to −$8,000 by planting 85 acres on date 3 and 15 acres on date 4. Finally, chang-
ing both the insurance coverage and the planting schedule may reduce the downside risk. In
La Niña phase, planting 100 acres on date 4 provides a 90%CVaR of −$4,000, which can be
reduced to −$10,000 by purchasing a 65%CRC insurance policy and shifting the planting
date from date 4 to date 1.

Table 4 Optimal insurance and production strategies for each climate scenario under various 90%CVaR
tolerance levels

ENSO
phases

90%CVaR upper
bound

Optimal
expected
profit

Optimal
insurance
strategy

Optimal planting schedule

Date1 Date2 Date3 Date4

El Niño <−18000 infeasible

−16000 28364 CRC70% 100 0 0 0

−14000 to −4000 28577 CRC65% 100 0 0 0

>−2000 28691 No 100 0 0 0

Neutral <−20000 infeasible

−18000 31149 CRC70% 0 0 100 0

−16000 to −10000 31240 CRC65% 0 0 100 0

−8000 31779 No 0 0 85 15

>−6000 31793 No 0 0 100 0

La Niña <−12000 infeasible

−10000 to −6000 20813 CRC65% 100 0 0 0

>−4000 21572 No 0 0 0 100

Note: Negative CVaR upper bounds represent profits. Four planting dates: ‘Date1’ = April 16, ‘Date2’ =
April 23, ‘Date3’ = May 1, ‘Date4’ = May 8. “No” stands for no insurance



Ann Oper Res (2011) 190:201–220 213

4.1.2 Hedging with crop insurance and futures contracts

Before proceeding with futures-related hedging strategies, we first highlight a particular
aspect of these financial contracts, namely price bias, which is defined as the difference
between the current futures price and the expected spot price on the same date as the futures
contract. Futures bias significantly affects the costs and benefits of futures-based hedging
strategies. Beside speculators, major economic agents attempt to properly interpret futures
price bias for their individual optimal strategies for production, storage, and consumption.
The existence of such bias has been variously attributed to either systemic risk or to the
so-called hedging pressure from transaction costs and asymmetric information in the futures
market (cf., Dusak 1973; Black 1976, and Jagannathan 1985 for the former, and Keynes
1930; Hicks 1939, for the latter, with a more recent literature allowing for both explanations
to occur concurrently, as in Stoll 1979, Hirshleifer 1988, 1989 and de Roon et al. 2000). A
number of authors have attempted to estimate such bias, with mixed results, in part due to
the volatility of futures prices. As a consequence, Gorton and Rouwenhorst (2006) opted
instead to estimate a related quantity, namely the return on a commodity futures index and
found it to be significantly different than zero. In fact, they were surprised to find that it is on
average similar to the S&P 500 index and with a slightly lower volatility. With data covering
the period July 1959 to December 2004, their average monthly percentage estimates were
0.89 and 0.93, with corresponding standard deviations of 3.47 and 4.27, respectively.

A futures-based strategy is identified by the hedge ratio of the futures contract, which
is defined as the hedge position in the futures contract divided by the expected production.
We first illustrate the optimal hedging strategies and the optimal planting schedule. Then,
the performance of the optimal hedge and planting strategies are gauged via the efficient
frontier of expected profit versus CVaR risk. Table 5 shows the optimal insurance policy and
futures hedge ratio associated with different 90%CVaR upper bounds for the three ENSO
phases. When the futures price is unbiased or positively biased, the futures contract is the
only desirable instrument for crop risk management and no insurance policy is needed in the
optimal hedging strategy. On the other hand, when the futures price is negatively biased, the
optimal hedging strategy includes 65%CRC (or 70%CRC in some cases) insurance policies
and a futures contract in the El Niño phase for all feasible 90%CVaR upper bounds. In the
Neutral phase, the optimal hedging strategy consists of the 70%CRC insurance policy and
a futures contract for all CVaR upper bounds with −10% biased futures prices as well as
for CVaR upper bounds between −18000 and −14000 with −5% biased futures prices. In
addition, no insurance policy is desirable under La Niña phase.

Mahul (2003) showed that the hedge ratio contains two parts: a pure hedge component
and a speculative component. The pure hedge component corresponds to the hedge ratio
associated with unbiased futures price. A positively biased futures price causes the farmer
to select a long speculative position and a negatively biased futures price implies a short
speculative position. Therefore, the optimal futures hedge ratio under positively (negatively)
biased futures prices should be higher (lower) than that under the unbiased futures price.

However, the optimal hedge ratios in Table 5 do not agree with this conclusion when the
futures price is negatively biased. The optimal hedge ratios in the La Niña phase illustrate
how optimal futures hedge ratios change with the bias of the futures price. Figure 2 shows
the bias of futures price versus the optimal hedge ratio curves associated with different 90%
CVaR upper bounds in the La Niña phase. When the CVaR constraint is not strict (i.e. the
upper bound of 90%CVaR equals zero,) the optimal hedge ratio curve follows the pattern
claimed in Mahul (2003). The hedge ratio increases (decreases) with the positive (negative)
bias of futures price in a decreasing rate. However, when the CVaR constraint becomes
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Table 5 Optimal insurance policy and futures hedge ratio under biased futures prices

ENSO
phases

90%
CVaR
upper
bound

Bias

-10% -5% 0% 5% 10%

Ins. H.R Ins. H.R Ins. H.R Ins. H.R Ins. H.R

El Niño −28000 x x

−24000 x x No 1.00 No 1.24

−20000 x 65CRC 0.48 No 0.70 No 1.33 No 1.57

−16000 70CRC 0.20 65CRC 0.15 No 0.52 No 1.60 No 1.87

−12000 65CRC −0.01 65CRC −0.07 No 0.35 No 1.86 No 2.16

−8000 65CRC −0.20 65CRC −0.24 No 0.19 No 2.11 No 2.44

−4000 65CRC −0.39 65CRC −0.41 No 0.02 No 2.35 No 2.73

0 65CRC −0.58 65CRC −0.58 No 0.00 No 2.60 No 3.01

Neutral −30000 x

−28000 x No 1.06

−24000 x x No 1.19 No 1.42

−20000 x No 0.66 No 0.60 No 1.46 No 1.68

−18000 70CRC 0.28 70CRC 0.12 No 0.50 No 1.57 No 1.80

−16000 70CRC 0.10 70CRC −0.02 No 0.40 No 1.68 No 1.92

−14000 70CRC −0.04 70CRC −0.12 No 0.30 No 1.79 No 2.04

−12000 70CRC −0.16 No 0.20 No 0.20 No 1.89 No 2.15

−8000 70CRC −0.39 No 0.00 No 0.01 No 2.10 No 2.38

−4000 70CRC −0.62 No −0.21 No 0.00 No 2.30 No 2.59

0 70CRC −0.86 No −0.42 No 0.00 No 2.49 No 2.81

La Niña −20000 x x

−16000 x x No 1.04 No 1.23

−12000 x No 0.67 No 0.55 No 1.33 No 1.51

−8000 No 0.33 No 0.27 No 0.23 No 1.57 No 1.77

−4000 No −0.10 No −0.08 No 0.00 No 1.80 No 2.02

0 No −0.49 No −0.41 No 0.00 No 2.02 No 2.27

Note: Negative CVaR upper bounds represent profits. “Ins.” stands for Insurance coverage. “H.R.” stands for
hedge ratio. “No” stands for no insurance. “x” represents infeasible

stricter (i.e., the CVaR upper bound equals −$8,000), the optimal hedge ratio increases not
only with the positive bias but also with the negative one. This is because the higher negative
bias of futures price implies a heavier cost (loss) is involved in the futures hedge. It makes
the CVaR constraint become stricter, requiring a higher pure hedge component to satisfy
the constraint. The net change of the optimal hedge ratio, including an increment in the
pure hedge component and a decrement in the speculative component, depends on the loss
distribution, the CVaR upper bound, and the bias of futures price.

Table 6 shows the optimal planting schedules for different biases of futures price in the
three ENSO phases. For El Niño phase, the optimal planting schedule (i.e., planting 100
acres on date 1) was not affected by the biases of futures price and the 90% CVaR upper
bounds. For the Neutral phase, however, the optimal planting strategy was to plant on date
3 and/or date 4, depending on the 90% CVaR upper bounds. More specifically, date 3 is the
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Fig. 2 Bias of futures price versus the optimal hedge ratio curves associated with different 90% CVaR upper
bounds in the La Niña phase

optimal planting date for all risk tolerance levels under unbiased futures market. When fu-
tures prices are positively biased, the lower the 90%CVaR upper bounds (i.e., the stricter the
CVaR constraint), the more planting acreages moved to date 4 from date 3. This result ex-
presses the fact that there is no insurance coverage involved in the optimal hedging strategy.
With negatively biased futures prices, the optimal planting schedule has the same pattern as
positively biased futures markets but is affected by the existence of insurance coverage in
the optimal hedging strategy. For example, when the 90%CVaR upper bounds are within the
range of −$18,000 and −$14,000 under a −5% biased futures price, the optimal planting
acreage on date 4 goes down to zero due to a 75%CRC in the optimal hedging strategy. For
La Niña, the optimal planting schedule is to plant 100 acres on date 4 when future prices are
unbiased or negatively biased. When the futures price is negatively biased, the stricter the
CVaR constraint, the more planting acreage is shifted from date 4 to date 1. For deep pos-
itively biased futures price, together with a strict CVaR constraint (i.e., 10% biased futures
price and −$18,000 90%CVaR upper bound), the optimal planting schedule includes date
1, 2, and 4.

Figure 3 shows the mean-CVaR efficient frontiers associated with various biased futures
prices for different ENSO phases. With the efficient frontiers, the farmer makes the optimal
decision based on the trade-off between expected profit and downside risk while staying
within his/her downside risk tolerance. The three graphs show that the Neutral phase has the
highest expected profit and lowest feasible CVaR upper bound. In contrast, La Niña phase
has the lowest expected profit and highest feasible CVaR upper bound. The pattern of the
efficient frontiers in the three graphs is the same. Higher positive bias of the futures price
leads to higher expected profit. However, the higher negative bias of futures price provides
a higher expected profit under a looser CVaR constraint and a lower expected profit under a
stricter CVaR constraint.

5 Conclusion

This article proposed a mean-CVaR model to determine the optimal crop planting schedules
and financial hedging strategies when crop yields and prices are uncertain and depend sig-
nificantly on ENSO climate phases. Due to the linear property of CVaR, the optimal planting
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Table 6 Optimal planting schedule for different biases of futures price in the three ENSO phases

Bias 90%CVaR
upper bound

El Niño Neutral La Niña

Date1 Date2 Date3 Date4 Date1 Date2 Date3 Date4 Date1 Date2 Date3 Date4

−10% −20000 x x

−18000 100 0 0 0 0 0 97 3

−16000 100 0 0 0 0 0 100 0

−12000 100 0 0 0 0 0 100 0 x

0 to −8000 100 0 0 0 0 0 100 0 0 0 0 100

−5% −24000 x x

−20000 100 0 0 0 0 0 39 61

−18000 100 0 0 0 0 0 100 0

−16000 100 0 0 0 0 0 100 0

−14000 100 0 0 0 0 0 100 0 x

−12000 100 0 0 0 0 0 44 56 0 0 0 100

−8000 100 0 0 0 0 0 85 15 0 0 0 100

−4000 100 0 0 0 0 0 92 8 0 0 0 100

0 100 0 0 0 0 0 93 7 0 0 0 100

0% −24000 x x

−20000 100 0 0 0 0 0 100 0

−16000 100 0 0 0 0 0 100 0 x

0 to −12000 100 0 0 0 0 0 100 0 0 0 0 100

5% −28000 x x

−24000 100 0 0 0 0 0 47 53

−20000 100 0 0 0 0 0 68 32 x

−16000 100 0 0 0 0 0 92 8 38 0 0 62

−12000 100 0 0 0 0 0 100 0 35 0 0 65

−8000 100 0 0 0 0 0 100 0 33 0 0 67

−4000 100 0 0 0 0 0 100 0 38 0 0 62

0 100 0 0 0 0 0 100 0 37 0 0 63

10% −32000 x

−28000 x 0 0 31 69

−24000 100 0 0 0 0 0 54 46

−20000 100 0 0 0 0 0 75 25 x

−18000 100 0 0 0 0 0 87 13 33 17 0 50

−16000 100 0 0 0 0 0 96 4 45 0 0 55

−12000 100 0 0 0 0 0 100 0 47 0 0 53

−8000 100 0 0 0 0 0 100 0 54 0 0 46

−4000 100 0 0 0 0 0 100 0 59 0 0 41

0 100 0 0 0 0 0 100 0 63 0 0 37

Note: Negative CVaR upper bounds represent profits. Four planting dates: ‘Date1’ = April 16, ‘Date2’ =
April 23, ‘Date3’ = May 1, ‘Date4’ = May 8. “x” represents infeasible
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Fig. 3 Effect of biased futures prices on efficient frontiers in the three ENSO phases

and hedging problem can be formulated as a mixed 0–1 linear programming problem that
can be efficiently solved by many commercial solvers such as CPLEX. The mean-CVaR
model is powerful in the sense that it inherits the advantage of the return versus risk frame-
work (Markowitz 1952) and further utilizes CVaR as a (downside) risk measure that can
cope with general loss distributions. Compared to using utility functions for modeling risk
aversion, the mean-CVaR model provides a more intuitive way to define risk. In addition,
a problem with nonlinear side constraints can also be formulated linearly under the mean-
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Fig. 3 (Continued)

CVaR framework, which can be solved more efficiently compared to the nonlinear formula-
tion from the utility function framework.

A case study was conducted using data of a representative cotton producer in Jackson
County, Florida, to examine the optimal crop planting schedule and risk hedging strategy
under the three ENSO phases. The available hedging instruments for cotton included fu-
tures contracts and three types of crop insurance policies: APH, CRC, and CAT. When crop
insurances are the only available hedging instruments, the 65%CRC or 70%CRC was the
optimal insurance coverage as the CVaR constraint becomes strict. Furthermore, the opti-
mal hedging strategy was examined when crop insurance policies and futures contracts are
available. When futures prices are unbiased or positively biased, no crop insurance policy is
desirable and the optimal hedging strategy only includes futures contracts. However, when
the futures prices are negatively biased, the optimal hedging strategy depends on the ENSO
phases. Otherwise, the optimal hedging strategy includes only futures contract. In La Niña
phase, the optimal hedging strategy contains only futures contract for all CVaR upper bound
values and all biases of futures prices in a significant range. The optimal futures hedge ratio
increases with the CVaR upper bound when the insurance strategy is unchanged. For a fixed
CVaR upper bound, the optimal hedge ratio increases when the positive bias of futures price
increases. However, when the futures price is negatively biased, the optimal hedge ratio
depends on the value of CVaR upper bound.

The case study provides some insight into how planting schedule, insurance and futures
hedging may account for the downside risk of a loss distribution. The small sample size
for the El Niño and La Niña phases may limit the case study results. In addition, the cost
of futures contract was assumed to be the commission plus an average interest foregone
for margin deposit. The risk of daily settlement, which may require a large amount of cash
for margin account, was not considered. This may reduce the value of futures hedging for
risk-averse farmers.
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