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This paper presents a new numerical method to solve the integral equation defining
the early exercise boundary of an American option. It is shown that the early exercise
boundaries of standard American options are well approximated by linear splines with a
few knots, implying that the new solution method can actually be carried out on a
coarse grid of time points with reasonable accuracy. This leads to a fast and reasonably
accurate method to compute the early exercise boundaries, values, and hedge para-
meters of American options. In this connection, a brief survey of recent developments
in approximations to American option prices and hedge parameters are also given.

1. INTRODUCTION

The explosive growth in the use of derivatives by investors and institutions
(financial and otherwise) has fueled the need for their efficient and accurate
valuation. The problem of efficient and accurate valuation of American options
has a large literature, which can be broadly characterized by two directions. The
first involves a discretization scheme to approximate the continuous-time pricing
problem. This approach is used in the finite-difference method of Brennan and
Schwartz (1977), Courtadon (1982), and Wu and Kwok (1997) to solve the
corresponding free-boundary PDE, and in the binomial tree method of Cox,
Ross, and Rubinstein (1979), who approximate the underlying price process by a
discrete process on a tree to which a dynamic programming algorithm can be
applied.

To improve computational efficiency, a second direction has emerged whereby
analytical characterizations or approximations are sought to circumvent the fine
resolution required by direct discretization for accurate valuation. It can be
traced back to Geske and Johnson (1984), who first characterized American
options as compound European options and then used the Richardson extra-
polation (with three or four points, typically) for the numerical approximation
phase. The past few years have witnessed the emergence of a new approach to
approximate American option prices and hedge parameters, based on the
integral representation formula of the difference between American and Euro-
pean option prices due to Kim (1990), Jacka (1991), and Carr, Jarrow, and
Myneni (1992). Although the representation formula is exact, it requires the
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determination of the early exercise boundary for its implementation. This
integral representation formula also leads to an integral equation for the early
exercise boundary. Huang, Subrahmanyam, and Yu (1996) proposed to
approximate the integrands in both the integral representation formula and in
the integral equation by piecewise constant functions, with n =1, 2, and 3
pieces, yielding three crude approximations Pj, P,, and P; to the option price,
and then to combine them via a three-point Richardson extrapolation scheme so
that greater accuracy can be achieved. Instead of using piecewise constant
approximations to the integrands, Ju (1998) subsequently proposed to approx-
imate the boundary by a piecewise exponential function, for which the integral
in the representation formula can be evaluated in closed form. This approach
leads to greater accuracy than that of Huang, Subrahmanyam, and Yu (1996),
while maintaining the latter’s computational simplicity. Ju (1998) reported
numerical studies showing that his method with n =3 pieces substantially
improves those of Geske and Johnson (1984) and of Huang, Subrahmanyam,
and Yu (1996) and other approximations in the literature. By using the finite-
difference method to solve for the free-boundary PDE in one example, he
computed an approximation to the early exercise boundary and found it to differ
substantially from his piecewise exponential approximations with n = 1, 2, and 3
pieces. This led him to conclude that ““an accurate estimate of the early exercise
boundary is not required for pricing an American option accurately”.

AitSahlia and Lai (1999) recently carried out extensive computations of early
exercise boundaries for a wide range of maturities, interest rates, dividend rates,
volatilities, and strike prices via reparametrization to reduce American option
valuation to a single optimal stopping problem for standard Brownian motion,
indexed by one parameter in the absence of dividends, and by two parameters
otherwise. Their results show, however, that the early exercise boundary is
actually very well approximated by a piecewise exponential boundary which uses
a small number of pieces. This explains Ju’s finding that his method has superior
performance over other approximation approaches. In this paper, we make use
of Ju’s closed-form integration to develop (i) a new numerical method to solve
the integral equation defining the early exercise boundary and (ii) an improve-
ment of Ju’s approximation to the boundary. It involves three basic ideas. The
first is a change of variables under which the exercise boundary appears in the
integrand in a simpler form. Moreover, under this change of variables, an
exponential function is transformed into a linear function. The second idea uses
a numerically stable root-finding algorithm in solving for the boundary points at
successive times #;. The third idea is to use, instead of the usual step function
approximation to the boundary as in Kim (1990), a linear interpolation for the
boundary between two adjacent time points and to apply Ju’s (1998) closed-
form expression for the premium integral when the boundary is piecewise linear
in the transformed coordinates (or, equivalently, piecewise exponential in the
original coordinates).

The last idea above is of particular importance in developing a good
approximation to the boundary that involves only a few time points. Specifically,
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if the actual boundary for the transformed coordinates should be nearly linear
over a wide interval with endpoints t; and 7;_;, then interpolating the boundary
linearly between t¢; and ¢;,_; and using Ju’s analytic formula for the premium
integral between t; and t;_; would yield an almost exact value of the premium
integral even though ¢; and t;_; may be quite far apart. Solving the integral
equation for the early exercise boundary at narrowly spaced time points provides
a benchmark to compare approximations that solve the integral equation on a
coarse grid consisting of only a few points. This is done in Section 3 and
confirms that the boundary is indeed well approximated by a linear spline
having only a few knots. Hence, the three key ideas mentioned above also lead to
an efficient approximation to the early exercise boundary that involves finding
its values at a few time points and linearly interpolating elsewhere (in the
transformed coordinate system). This fast and accurate approximation to the
early exercise boundary yields an efficient method for the valuation of American
options, thanks to Ju’s (1998) closed-form expression for the premium integral.
Moreover, we also develop here a closed-form expression for the hedge
parameters using this piecewise linear approximation (in the transformed
coordinate system) for the early exercise boundary.

The paper is organized as follows. Section 2 describes our method to solve the
integral equation defining the early exercise boundary. Numerical results and
efficient linear spline approximation to the boundary are given in Section 3.
Section 4 gives closed-form expressions for the approximate computation of hedge
parameters. Section 5 compares our approximation of American option prices
and exercise boundaries with those of Ju (1998) and Huang, Subrahmanyam, and
Yu (1996) and provides a deeper understanding of their methods and results via
the benchmark developed in Section 2. In this connection, we also give a brief
review of other approximations in the literature. Section 6 summarizes and
concludes the paper.

2. A NUMERICAL METHOD TO SOLVE THE INTEGRAL
EQUATION FOR THE EARLY EXERCISE BOUNDARY

In the standard Black—Scholes environment with a riskless interest rate r and an
underlying asset having volatility o and paying dividend at rate u, the price of an
American option at time ¢ is the optimum value in the optimal stopping problem

U(t, P) = sup E[e """ f(P,) | P, = P], (1)

€T, 7

where P, = Pye"#%oWi with initial security price Py, {W,} is a standard
Brownian motion (so that the stochastic process {P,} is a geometric Brownian
motion), and 7, is the set of stopping times taking values between a and b with
b > a. Given a strike price K, the payoff f(P) in (1)is (K — P)" for a put, and
(P — K)* for a call. We shall focus on American puts, as American calls on
dividend-paying securities can be evaluated similarly.
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Kim (1990), Jacka (1991), and Carr, Jarrow, and Myneni (1992) have
obtained the following representation for an American put:

U(t, P) = Uglt, P)

T

+ J [rKe ™ ON(=dy(P, B,, T — 1)) — uPe "IN (~d,(P, B,. T — 1))] dr
t

2)

in which N(-) denotes the standard normal distribution function, B, is the early
exercise boundary, Uy the corresponding European put price given by

Ug(t, P) = Ke """ IN(=dy(P, K, T — 1)) — Pe " ON(=dy(P, K, T — 1)),

where
In(x/y) + (r — 02)1
ff«/?

Since U(t, B,) = K — By, it follows from (2) that B, satisfies the integral equation

dy(x,y,17) = and  dy(x, v, 1) =d(x, v, T) — 0A/T.

K — B, = Ug(t, B,)

T
+ J [rKe " ON(=dy(B,, B,, T — 1)) — uBe ""N(~d\(B,, B,, T — 1)]dr.

' A3)

Kim (1990) proposed to solve (3) numerically by dividing the interval [0, T] into

n subintervals [t;_1, t;], with ty =0, t, =T, and t; — t;_, = T/n, and replacing
(3) by the system of nonlinear equations

K — B, =Ug(t;, B,)+ Y _ [rKe "N (=dy(B,. B, . t; — 1))
j=it1

- /’LBtieWM(rj_ti)N( dl(Bt ’ Bt ’ J ))]T/}’l, (4)
which is solved recursively backwards with B, = K if u <rand B, =rK/u if
wu > r. The basic idea behind (4) is to approximate the integrand in (3) by a step
function, which gives good accuracy when n is large.

2.1 Change of Variables

The boundary B, appears in (3) (and therefore (4) also) in a complicated
manner. Letting p = r/o” and o = w/r, we introduce the change of variables

s=0(t=T),  z=log(P/K)—(p—ap—1)s, ®)

so that the boundary B, becomes z(s) in the new coordinate system, with B, =
Ke?WH-er=35 Note that a piecewise exponential boundary B, is transformed
into a piecewise linear function of s. Moreover, the integral equation (3) can be
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expressed in the simpler form

1 —eZ@+(p—an=hs _

P IN(26)/V/=5) = EN(=26)/ V=5 = /=)

0 - - _ -
+ peps JS I:GAWN<Z(M)M__Z§S)> . ae~(apu+%s)+z(s)N(Z(M)u__zis) _ \/M——S>} du.
(6)

The transformation (5) was introduced by AitSahlia and Lai (1999) to reduce
the optimal stopping problem (1) to a canonical form that involves only one
parameter, p, in the absence of dividends and two parameters, p and o, when
dividends are paid. An important advantage of this transformation is that for
values of o (between 0.1 and 0.4) that are of practical interest, the time horizon
o’T in the canonical scale is only a small fraction of T.

2.2 Evaluation of Integrals

To solve (6), instead of using a step function approximation to the entire
integrand as in (4), we use a piecewise linear approximation to z(-). This is
clearly more accurate but requires evaluation of the integral, which has a closed-
form expression when z(-) is piecewise linear. First note that

por (e m(=2) -ty (=2 =) |

B Ju—s Ju—s
—ap—L - —z(s + [)
—1—e” — ez+(p ap %S(l _ eotps) _J e mN(Z Z(S )dt
0 Vi
4 g#H—ep—ps Jﬂ ape *P'N (%Z — 4D+ t) dr. (7)
0 Vi

To evaluate the last two integrals in (7), suppose that s =5, <--- <5, =0
divide the interval [s, 0] into m subintervals such that

Z(u) = Pu+y, fors;<u<siy (I1<i<m). (®)

Let 7, =5, —s5,. Then z(t+s,)—z=—(bit+¢;) for 7, <t<rt_,, where
b; = —B;, ¢; = z — y; — Bisy, noting that t; +s,, =s,. Let a; = /b7 + 2p. Then,
for 1 <i < m, we have

iy z—z(t+s,,,)) &
J pe ( NG

= e "IN + ¢t V) — e TN Til_/% + Citi:ll/z)

bi abe, _ -
+ %(a— =+ l)e( i=b) ’[N(airilﬁ + ciri_ll/z) — N(airil/2 + 1 1/2)]
b, _ .
+ %(—’ —~ 1)fe*<af+bf>0f [N(a;7] — et %) = N(a©!? — 5771, (9)
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which corresponds to equation (5) of Ju (1998). In the case where t; = 0, we
replace 7; by t >0 and take the limit as ¢ — 0, which amounts to setting
cl-r,-_l/2 =0, or oo, or —oo according as ¢; =0, or ¢; > 0, or ¢; < 0. Similarly,

letting b; = b; + 1 and a; = (b} + 2ap)'/?, we have

J T g peet N(Z_:i(EJFSm_W) dr
Vi

= RHS of (9) with (b;, 4;) replaced by (b;, ;) and p by ap, (10)

which corresponds to equation (6) of Ju (1998). When either (q; — b;)c; or
—(a; + b;)c; exceeds some large number (say 400), its exponential in (9) becomes
exceedingly large, causing numerical instability. In these situations, which
typically do not occur unless 7;,_; — 7; is very small, we evaluate the LHS of
(9) by the midpoint rule:

infl pe_p[N<Z — Zit/;‘ Sm)) dr = (e-—pri _ e-pril)N<Z — Z(\;;‘F Sm)) ; (1 1)

Whereﬁk = %(ri + 7;_1). We also evaluate the LHS of (10) by the midpoint rule if
(@ — b))c; or —(a; + by)c; is large. Since [ = Y7, [*', the integral on the
RHS of (7) can be expressed as a sum of terms in (9) and (10).

2.3 Solving for the Boundary at Successive Time Points

To solve the integral equation (6) recursively on a grid of time points s, =
0>s > >5,=—0T, we linearly interpolate the boundary between s; and
s;4+1 and use (7) together with (9), (10), or (11) to evaluate the integrals in (6) in
terms of simple sums. The recursion is initialized at s, =0 by z(0) =0 if
0<a<l! and z(0)=—Ine if a>1. For 1<m<n and 1< j<m, let
z; =12(s;) and t; =s; —s,. Suppose that Z,...,Z,_; have been determined.
Then b, = =B, = (z; — Z;.)/(sic1 — 8i), Vi = Zimg = Bisizys and ¢; =2 — 21+
Biti_y for 1 <i<m—1. To determine Z,, let z be a candidate value and let
b(2) = (2 = Zy 1)/ (St = ). a(2) = [62(2) + 2012, b(z) = b(z) + 1, and a(z) =
[6%(z) 4 2ap]'/?. Noting that ¢(2) := z — Z,,_; — ($p_1 — $,,)b(z) = 0 and 7,, = 0,
we obtain from (6)—(10) the following equation (in the variable z) defining Z,,:

| — o7 Ho—ap—bs,
= " [N(~2/y755) = €N (=2/ =50 = /=5 )]
+1—e — e”(”_"‘p_%)sm(l — ™) 4 e_‘”’”“N(b(z)r;/El) —
b(z)

b = 2+(p—ap—2)s
S ELCCURR B WO Rl

1

2

[V (i) 1]
HymeeNEER) + T A0 02

where A,(z) is given by the RHS of (9) and A,(z) by the RHS of (10).
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The nonlinear equation (12) can be solved by a Van Wijngaarden—Dekker—
Brent-type method (see Press er al. 1992). First, as shown by AitSahlia and Lai
(1999), the early exercise boundary z(s) is bounded above by z,(s) and bounded
below by z,(s), where

Zu(s) = =[p(1 — &) = }]s — (ina)*,
Z(s) = =[p(1 = @) = 3]s = In[6/(6 — 1],
6= ~[o(1 =) = 3] = {[p(1 — &) = 31" +2p)""2.

Let D(z) denote the difference between the two sides of (12); specifically,
D(z) = LHS — RHS. If D(z,,_;) =0, we have found the solution and can set
Zy =Zm_1. If D(Z,_1) <0, set 2 =z,_; and z’ = Z,(s,,) after checking that
D(Z") > 0. In the unlikely event that the latter condition is violated, set
Zp =Zmp_1. If D(Z,_1) >0, set 2/ =2, ; and 7 = Z,(s,,) after checking that
D(z') < 0, whose unlikely violation results in setting Z,, = z,,_;. After bracketing
the solution in this way between z' and z” with D(Z') < 0 and D(Z") > 0, we can
use successive linear approximations that replace D(z) by the linear function
Di(z) with D;(Z') = D(Z') and D(z") = D(z"). Let

2 =2 = D) —)/IDE) — D]

be the solution of D;(z) = 0. Note that z* lies between z' and z”. If D(z*) < 0,
reset Z' at z*. If D(z") > 0, reset z” at z*. Proceeding inductively in this way, the
procedure terminates when a solution is reached or when |z — Z”| falls below
some prescribed tolerance level.

3. NUMERICAL RESULTS AND AN EFFICIENT APPROX-
IMATION TO THE EARLY EXERCISE BOUNDARY

Using even spacing in the choice of grid points sg =0 > sy > -+ > 5, = —o’T in
Section 2, i.e., §; — §;4 =6 := o’T/n for 0 <i <n—1, Table | gives values of
the early exercise boundary Z(-) obtained by using the method of Section 2 to
solve the Volterra integral equation (6) with § = 1072, 1073, or 107*. These
results show convergence of the method with diminishing §; moreover, they show
that the integral equation approach is already quite accurate for § = 107% and
—s > 0.05. Note that, for § = 1072, s = —0.01 corresponds to the first time point
at which the integral equation method computes a boundary value to start the
recursion and s = —0.05 is the fifth recursive stage.

For small 8, a much faster method to compute z(-) is the corrected Bernoulli
walk method introduced by Chernoff and Petkau (1986). This method has
recently been used to compute the benchmark values of early exercise bound-
aries of American options by AitSahlia and Lai (1999). Table 1 also gives for
comparison the values of z(-) computed by the corrected Bernoulli walk
method with time step size § = 1074, 107, or 107, The results show that,
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TABLE 1. Early exercise boundary, in canonical scale (5), using the Volterra integral
equation (6) or the corrected Bernoulli walk method for the American put with p = 0.5
and o = 0.

Volterra Bernoulli

—s 5=10"72 §=10"3 §=10"* s§=10"* §=1073 §=10"°

.0001 —0.03111 —0.01000 —0.02530 —0.02800
.0002 —0.03656 —0.02000 —0.03795 —0.03700
.0003 —0.04489 —0.03000 —0.04427 —0.04400
.0004 —0.05022 —0.04000 —0.05060 —0.05000
.0005 —0.05532 —0.05000 —0.05376 —0.05500
.0006 —0.05967 —0.06000 —0.06008 —0.06000
.0007 —0.06366 —0.06000 —0.06325 —0.06400
.0008 —0.06729 —0.06000 —0.06641 —0.06700
.0009 —0.07067 —0.07000 —0.06957 —0.07100
.0010 —0.08537 —0.07382 —0.07000 —0.07273 —0.07400
.0020 —0.09522 —0.09801 —0.10000 —0.09803 —0.09800
.0030 —0.11680 —0.11531 —0.12000 —0.11384 —0.11500
.0040 —0.12909 —0.12917 —0.13000 —0.12965 —0.12900
.0050 —0.14126 —0.14098 —0.14161 —0.14085 —0.14086

.0100 —0.22116 —0.18350 —0.18342 —0.18456 —0.18337 —0.18350
.0500 —0.32180 —0.32095 —0.32095 —0.32107 —0.32096 —0.32094
.1000 —0.39610 —0.39587 —0.39570 —0.39586 —0.39578 —0.39586
.2000 —0.47572 —0.47594 —0.47567 —0.47564 —0.47561 —0.47525
.2400 —0.49669 —0.49669 —0.49663 —0.49656 —0.49653 —0.49669
.2800 —0.51420 —0.51418 —0.51411 —0.51413 —0.51412 —0.51430

for .002 < —s < .005, the corrected Bernoulli walk method needs § = 107¢ to
give boundary values comparable to those obtained by using the method of
Section 2 to solve the integral equation (6). For this range of —s, using § = 1074
in the corrected Bernoulli walk method produces a substantial relative error for
the boundary. For —s < .001, Table 1 shows that even smaller values of § than
107° are needed for the corrected Bernoulli walk method.

Although the numerical procedure of Section 2 is computationally expensive
for small values of § because of the large number of computations and memory
needed in evaluating A;(z) and A,(z) for 1 <i < m — 1 and different values of z
in (12) when m is large, it is very fast when m (< n) is small. For 7 =1 and
o=.1,n=0"T/8 = 10 if we choose § = 102, which gives quite accurate results
for the boundary values at —s > 0.05. On the other hand, the Bernoulli method
with 10 time steps (8§ = 1072) is grossly inaccurate.

As noted by AitSahlia and Lai (1999), the Chernoff-Petkau continuity
correction to compute the optimal stopping boundary z(-) at s via the Bernoulli
walk approximation to Brownian motion requires boundedness of the derivative
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z'(+) in some neighborhood of s and is not applicable around s = 0. Since the
corrected Bernoulli walk method can be applied for s < —.005, we can restrict
ourselves to 0 > s > —.005 in applying the preceding numerical procedure to
solve the integral equation that defines the optimal stopping boundary. In
particular, with § = 107, the range 0 > s > —.005 only involves n = 50 time
steps. Let sy = —.005 and 1y = T + so/0°. Having computed Z(-) for 0 > 5 > s,
by using the preceding procedure to solve the integral equation defining z( - ), we
can use (13) below together with (9) and (10) to evaluate the value function at s,
as the terminal payoff of the corrected Bernoulli walk method that computes z( - )
by backward induction for s < —s,. As shown by Lai, Yao, and AitSahlia (1999),
this hybrid approach that combines the corrected Bernoulli walk method of
Chernoff and Petkau (for s < sy) with the integral equation method (for
s) <s<0) has o(+/8) error in computing the boundary Z(-). Note the
computational efficiency of this hybrid approach, which exploits the recursive
nature of the corrected Bernoulli walk method and only involves —s, /8 time steps
for the integral equation method applied to the initial time segment [—s,, 0).
Figure 1 plots the graphs of z(s) for —0.3 < s <0, with p =0.5, and for
different values of «, computed by the preceding approach with § = 1074 It
shows that z(-) is well approximated by a linear spline with knots at s =0,
—.005, —.025, —.05, —.1, —.15, —.3. For 0 = .1, s = —.3 corresponds to a very
long maturity T of 30 years. The approximate piecewise linearity of z(-) shown
in Figure 1 is also confirmed by extensive numerical computations over a wide
range of p and « values for puts and calls in AitSahlia and Lai (1999). Hence,
using a small number of time steps in the procedure of Section 2 results in a
reasonably accurate and fast approximation to the early exercise boundary.

0.0 -

BM state

~1.0 [ . . . . L L 4
-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.0

Canonical time

FIGURE 1. Optimal stopping boundaries: standard put with p = 0.5.
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4. APPLICATION TO VALUATION AND HEDGING

As in Section 2, we again focus on American puts since the treatment of
American calls on dividend-paying securities is similar. After the change of
variables (5), the value of (2) can be written as

U(t, P) = Ke"[N(=2/v/=5) = & FN(=z/y/=s = /=5)]

0 = = \
—+ ,oKe"SJ |:e‘p”N<Z(L;)\/T_SZ> — ae_“p“_%”ZN(% —Ju— s)] du. (13)

Suppose that z(-) can be approximated by a piecewise linear function of the
form (8). Then, in view of (7) and [, =", [*', we can express the integral
in (13) as a sum of the terms in (9) and (10) (in which ciril/ % is set to be equal to 0,
00, or —oo according as ¢; = 0, or ¢; > 0, or ¢; < 0 when 7; = 0) or in (11) when
(a; — b;)c; or —(a; + b;)c; is too large.

Formula (13) also leads to explicit expressions for the hedge parameters
through differentiation. In particular, the parameter delta can be expressed as

—§ A—PT - _
—3—%([, P) = —eOtPSN<__ z _ ,_—S) _ pe—z—(p—ap—% sJ e—n(M) dr
0

N NN
S et —z—1 SeTT (At +s)—z—7
S R e e R B e L

where n(x) = e / ~/ 27 is the standard normal density function. Suppose that
z(s) can be approximated by a piecewise linear function of the form (8). Then the
second integral in (14) can be written as

= 2T Hs)—z—7
pe N(—) dr
Jo VT
- —zZ(t+s)+1
=1—e* ——J ape "WN<Z—Z— dr,
0 Vg

which can therefore be expressed as a sum of terms of the form (10), with s = s,,,.
Since a? = b? + 2p, the first integral can also be written as a sum of the terms

Tile P (Z(t+5,)—z d
L ﬁ”( NG )

i

_ Jti_l e__ir.n(b‘flﬂ +C'Tl/2)df
. «/? i i

Ti-1

— —b.c — Yyt

= (2n)"%e b‘C‘J et ) 4
Ti

= a; "N (a7} + it ) = N(am? + er; )]

—|—al~_le_(ai+bi)6i[N(aiT~11% —c _L_—l/z) —_ N(ai-,;l/Z — Cif_l/z)]. (15)

i iYi—1 i i
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TABLE 2. Accuracy of three-piece linear spline approximation (LSP3) relative to
binomial and hybrid benchmarks. Case I: T=3, ¢ =0.1, r = 0.06; Case Il: T =0.5,
0=0.2, r=0.06.

Price Delta
" P Binomial  Hybrid LSP3 Binomial  Hybrid LSP3
Case I .09 80 22.787 22.787  22.787 —0.754 -0.754  —-0.754
90 15.706 15.706 15.707 —0.655 —0.655 —0.655
100 9.843 9.843 9.844 —0.511 —-0.511  —0.511
110 5.561 5.561 5.562 —0.346 —0.346  —0.346
120 2.840 2.840 2.840 —0.204 —0.204  —0.204
.06 80 20.000 20.000 19.982 —1.000 —1.000 —1.000
90 11.593 11.598 11.603 —0.686 —0.682  —0.683
100 6.087 6.082 6.101 -0.425 —0.428 —0.423
110 2.870 2.870 2.883 —0.231 —0.231  -0.230
120 1.221 1.221 1.230 —0.110 —0.110  -0.110
.03 80 20.000 19.998 19.994 —1.000 —1.000 —0.997
90 10.057 10.051 10.064 -0.905 —0.904 —0.899
100 3.964 3.962 3.965 -0.383 —0.383  —0.386
110 1.449 1.448 1.445 —0.152 —0.152  -0.153
120 0.489 0.488 0.487 —0.055 —0.055 —0.056
.00 80 20.000 19.992 19.971 —1.000 —1.000 —0.994
90 10.000 9.984 10.017 —1.000 —1.000 —1.000
100 2.723 2.727 2.734 —0.366 —0.365 —0.368
110 0.706 0.705 0.706 —0.096 —0.096  —0.096
120 0.178 0.178 0.187 -0.025 —0.025  —0.023
Case IT .09 80 20.802 20.803  20.803 —0.906 —0.906 —0.906
90 12.422 12.422 12.422 —0.748 —0.748  —0.748
100 6.183 6.183 6.183 —0.491 —0.491 —-0.491
110 2.535 2.534 2.535 —-0.250 —0.250 -0.250
120 0.865 . 0.865 0.865 —0.100 —0.100  —0.100
.06 80 20.093 20.094  20.055 -0.949 —0.949  —0.945
90 11.545 11.545 11.542 —0.742 —0.742  —0.740
100 5.504 5.504 5.510 —0.462 —0.462  —0.462
110 2.154 2.154 2.158 —-0.223 —0.223  —0.223
120 0.701 0.701 0.702 —0.085 —0.085  —0.085
.03 30 20.000 20.000 19.968 —1.000 —1.000 —0.995
90 10.953 10.953 10.906 —0.760 —0.760  —0.759
100 4.961 4.961 4.940 —0.442 —0.443  —0.440
110 1.843 1.843 1.841 —0.200 —0.200  —0.200
120 0.570 0.570 0.571 -0.072 —0.072  -0.072
.00 80 20.000 20.000 19.996 —1.000 —1.000 —0.996
90 10.522 10.523 10.524 -0.794 —0.794  —0.794
100 4.493 4.492 4.493 —-0.427 —0.427  —0.427
110 1.578 1.577 1.582 —-0.180 —0.180  —0.181
120 0.462 0.462 0.465 —0.061 —0.061  —0.062
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The last equality in (15) can be derived by using the change of variables

x:aif1/2+cifl/2, y:airl/z—cit‘l/z,

so that
dx = J(a;v " — ¢t dx, dy = la;7 ' + ;7P dx,

and, by using the identity

—172 Y -172 ~3,2
2 (a7 =)+ (@ P+ et
2ai ’

Similarly, letting l;,« =b;+1landqg; = (l;,»2 + 2ap)'/? as before, we can express the
third integral as a sum of the terms

r-l e_“’”n 2(t+s,)—z—1 dr
BN NG

= JTH ¢ n(l;»rl/2 + c~r“1/2) dr
ﬁ 1 1

T

=a;! ol@=be; [N(di _[ilﬁ s Ti:ll/z) _ N(&iril/2 s ‘L’«_l/z)]

+a; e @ N (Gt - ot ) — N(a? — e )] (16)
When 7; = 0 in (10), (15), or (16), we take ciri_l/2 =0, or oo, or —oo according
as¢; =0,0r¢; >0, or¢; <0.

The closed-form valuation and hedge parameter formulas given by (13)-(16),
together with (9) and (10), are based on the piecewise linear approximation (8)
to the early exercise boundary after the change of variables (5). We have seen in
Section 3 that z(-) can be well approximated by a linear spline with a few knots
that are determined by using the numerical method of Section 2. Table 2 gives
the results for the option prices and deltas computed by using a three-piece
linear approximation (denoted by LSP3) of z(-), which places the first knot at
s = —.005 and evenly spaces the remaining two knots and which limits the
solution of (12) to only five iterations to achieve greater speed than previously
proposed approximations. These results are overwhelmingly within 0.1% of the
corresponding benchmark values computed by (i) using (13) and z(-) deter-
mined by the hybrid method in Section 3 with § = 107*, and (i1) using the
binomial tree method with 10000 steps.

5. COMPARISON WITH OTHER APPROXIMATIONS

Shortly after the Geske—Johnson approximation which is reviewed in Section 1,
McMillan (1986) and Barone-Adesi and Whaley (1987) developed an alternative
analytic approximation of the option price. The basic idea is to approximate the
PDE for the difference between American and European option prices by an
ODE. Applying the boundary conditions to the ODE gives a nonlinear equation
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for a constant (time-invariant) approximation P* to the exercise boundary, and
a closed-form expression involving P* yields an approximation to the American
option price. Although the method is fast and gives an adequate approximation
to the option price when the maturity is short or very long, it suffers from lack of
accuracy for intermediate lifespans. Moreover, P* fails to capture the shape of
the time-varying exercise boundary.

Bunch and Johnson (1992) introduced a modification of the Geske—Johnson
method. Broadie and Detemple (1996) developed upper and lower bounds for
an American option and used a convex combination of these bounds with
empirically determined weights to approximate the option price. Carr (1998)
discretized the time dimension of the PDE with a few points and used a
randomization method to approximate the option price. Ju (1998) has carried
out an extensive numerical study, comparing these approximations with his
own and that of Huang, Subrahmanyam, and Yu (1996), and has found that
his piecewise exponential approximation to the early exercise boundary using
three evenly spaced pieces gives the best performance in terms of both speed
and accuracy. We shall therefore focus mainly on Ju’s method but also
consider briefly the closely related method of Huang, Subrahmanyam, and
Yu (1996).

Since a piecewise exponential exercise boundary B, is equivalent to a piecewise
linear z(s) after the change of variables (5), our method and Ju’s basically use
the same functional form to approximate the early exercise boundary. However,
there are important differences. First, like the actual boundary, our approxima-
tion is continuous; it is a linear spline. On the other hand, Ju chooses the
coefficients Q,, and g,, of the exponential function Q,,e%"" separately for each of
three pieces, resulting in discontinuities at the time points between successive
intervals. Secondly, instead of even spacing between successive time points, we
allow unevenly spaced knots to better fit the shape of the early exercise
boundary as explained in Section 3, and the number of pieces in our piecewise
linear approximation depends on ¢°T and may vary between 1 and 6. Thirdly,
our algorithm in Section 2 to solve (10) for z(s,,) is simpler than Ju’s method,
which has to determine the two (instead of one) parameters Q,, and g,
recursively.

The differences between our method and Ju’s are primarily due to major
differences in the rationale behind the two approaches. The motivation behind
our use of the linear spline approximation to z( - ) with a few knots comes from an
extensive numerical study in which we computed z( - ) almost exactly for different
values of p and o and which shows that z( - ) can indeed be well approximated by
such linear splines. In contrast, Ju (1998) was motivated by his attempt to use the
closed-form expression for the integral in (2) when B, is piecewise exponential to
improve on the much cruder approximation of Huang, Subrahmanyam, and Yu
(1996) that treats the entire integrand as piecewise constant even though the
interval [0, T]is coarsely partitioned into three subintervals of equal width. Since
he felt that the actual exercise boundary might differ substantially from a
piecewise exponential curve with three or fewer pieces, he used two adjustable
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parameters g,, and Q,, to fit an exponential function in each piece. The following
example illustrates the adequacy of Ju’s three-piece approximation (with jump
discontinuities) to the early exercise boundary and compares it with ours and that
of Huang, Subrahmanyam, and Yu (1996).

Example 1. Ju (1998, p. 635) has considered the following American put with
K =100, T = 3 (years), o0 = .2, r = .08, and p = .12, and has reported values of
the coefficients ¢¥, 0% (m=1,2,3) in the three-piece exponential curve
(denoted by EXP3) to approximate the early exercise boundary. Using these
values, Figure 2 plots Ju’s approximation and the “exact” (benchmark)
boundary, which is computed by the hybrid approach described in Section 3
with § = 107*. Also shown in Figure 2 is our linear spline approximation with
four unevenly spaced pieces (denoted by LSP4), with the first knot at s = —.005
followed by three evenly spaced knots. The figure shows that our approximation
is close to the early exercise boundary. Although the first piece of Ju’s
approximation is not very close, it has little effect on the integrand in (13), as
shown in Figure 3 which plots the integrands in (13) for P = 100 using the exact,
Ju’s, and our exercise boundaries, showing close agreement between them. On the
other hand, if we approximate the integrand by a piecewise constant function
using four pieces as in Huang, Subrahmanyam, and Yu (1996, p. 287), then its
graph (denoted by HSY4), also shown in Figure 3, differs substantially from that
of the integrand associated with the exact boundary, explaining why their method
performs worse than Ju’s as shown in Ju’s Table 2. Also shown in Figure 2 is the
step function approximation of Huang, Subrahmanyam, and Yu (HSY4) that
differs substantially from the exact boundary.

100

95

Stock price
O
f=)

o0
w
T

80 |

75

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Actual time

FIGURE 2. Approximations to early exercise boundary.
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FIGURE 3. Approximations to premium integrand.

To solve for (q(”) (”)) recursively in an n-piece exponential approximation to
B,, Ju needs two nonlinear equations f;(¢™, 0%) =0 and f (g™, 0%) =0,
Where fi comes directly from (3) by writing the integral on the RHS as

> f ‘! ‘and f, comes from the integral equation obtained by differentiating
the RHS of (2) with respect to P and setting it equal to —1 (= derivative of
K — P) when P = B,. These two nonlinear equations are solved by Newton’s
method, which requires good starting values. In contrast, the method in Section
2 to solve (12) for z(s,,) only involves a one-dimensional search, which can be
carried out by the Van Wijngaarden—Dekker—Brent method, a method that is
numerically much more stable than Newton’s method.

As indicated by Ju (1998), his n-piece exponential approximation to the early

exercise boundary involves besides the 2n parameters q(") Q('Z> . qg,”), f{’) of
the n pieces also the 2(n — 1) parameters q1 ,Q(l), (" y Q(" D of the
I-piece, ..., (n — 1)-piece approximations. The reason 1s that he wuses

(g7 G=1 Q(’ 1)) as the starting value for solving the two nonlinear equations
deﬁnmg the parameters of the function Q(]) exp(q(’)t) for (j—1)T/j<t<T.
In particular, to initialize the one-piece approximation, he can rely on the good
time-invariant approximation (0, P*) to the early exercise boundary provided
by MacMillan (1986) and Barone-Adesi and Whaley (1987) whose method is
described at the beginning of this section. For i > 2, (ql(”>1, Q(")l) is used as the
starting Value for solving the nonlinear equations defining (ql") Q(")) This
“bottom-up” approach requires the determination of P* and 2(rn — 1) addi-

tional parameters simply to initialize q(") Q(I"). In contrast, our method is more
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direct and involves n equations, one for each z(s;), in our n-piece linear
approximation to z(-).

It is natural to try to bypass Ju’s bottom-up approach by initializing the
solution for (qé") Q(”)) more directly without using (q1 - Q(” D), which in turn
involves (q1 ) Q" 2)) () o Q(l)) as was done by Gao, Huang, and
Subrahmanyam (2000) in the1r extension of Ju’s approximation to American
barrier options. An obvious way is to initialize with the (0, P*) of MacMillan
(1986) and Barone-Adesi and Whaley (1987). Another way is to initialize with
(0, By), as suggested by Gao, Huang, and Subrahmanyam (2000), in which
By = Kmin(l,r/u). A third way is to initialize with the first piece of our
piecewise linear approximation for the transformed coordinates (5), which yields
the starting value (g, Q) for (q(") Q(I")), where

g = [2(0) — Z(s)In/T +r — pu — Lo7, Q = Bye 7, (17)

noting that 7'/n is the width of each subinterval when [0, T] is partitioned into n
subintervals of equal width.

TABLE 3. Comparison of benchmark values (binomial) of American option prices

(K=100, T=3, 0=0.2, r=0.08) with five fast approximations: LSP4, EXP3,

Ju(0, P*), Ju(0, Br), Ju(q, Q)) The last three represent initializing Ju’s method at three
alternative starting values.

" P Binomial LSP4 EXP3 Ju(0, P¥) Ju(g, Q) Ju(0, Br)
12 80 25.658 25.658 25.657 25.656 25.656 *
90 20.083 20.075 20.082 20.082 20.082 *
100 15.498 15.505 15.497 15.498 15.497 *
110 11.803 11.809 11.802 11.803 11.802 *
120 8.886 8.890 8.885 8.885 8.885 *
.08 80 22.205 22.193 22.208 22.198 * *
90 16.207 16.201 16.211 16.198 * *
100 11.704 11.700 11.707 11.694 * *
110 8.367 8.365 8.369 8.357 * *
120 5.930 5.929 5.932 5.921 * *
.04 80 20.350 20.345 20.351 20.347 20.347 *
90 13.499 13.491 13.500 13.487 13.486 *
100 8.944 8.939 8.947 8.931 8.930 *
110 5912 5.907 5.915 5.898 5.898 *
120 3.897 3.893 3.900 3.885 3.885 *
.00 80 20.000 20.000 20.000 20.000 * *
90 11.697 11.698 11.699 11.692 * *
100 6.932 6.932 6.935 6.922 * *
110 4.155 4.154 4.157 4.145 * *
120 2.510 2.510 2.512 2.501 * *
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In his extensive numerical study comparing his method with other approxima-
tions in the literature, Ju (1998) uses three pieces and no more than three
iterations in applying Newton’s procedure to solve the two nonlinear equations
for the (g, Q) of each piece, after initializing the procedure in the way described
above. This small number of pieces and of iterations makes his method faster
than many other approximations in the literature, as shown in Tables 1-4 of his
paper. Since he builds the three-piece approximation “bottom-up” from the
one- and two-piece approximations, it is natural for him to combine the option
values obtained from the one-, two- and three-piece approximations by using
the Richardson extrapolation to obtain a slightly more accurate approximation
than that involving only the three-piece approximation.

Table 3 compares Ju’s method involving a three-piece exponential approxima-
tion (EXP3), whose results are taken from Table 2 of Ju (1998), with our linear
spline approximation LSP4. To be comparable with Ju in speed, we have limited
the number of iterations in our solution of (12) to 5 in Table 3 and Figure 2.
LSP4 and EXP3 are in close agreement with the benchmark values computed by
the binomial tree method with 10000 steps. Table 3 also considers the three
simpler ways to initialize (q<13), Q(13)) described above, namely, starting with
(0, P*) or (0, By), or with the (7, Q) defined in (17). It shows the superiority
of Ju’s elaborate choice of the starting value over other equally plausible choices,
which produce either less accurate or numerically unstable results. In particular,
the entries marked by * in Table 3 denote results where the Newton’s iterative
procedure to solve Ju’s simultaneous nonlinear equations is terminated because
of a singular (or nearly singular) Jacobian matrix.

6. CONCLUSIONS

AitSahlia and Lai (1999) used the corrected Bernoulli walk approach introduced
by Chernoff and Petkau (1986) to compute the early exercise boundary of a
standard American option. In this paper, we use a different approach based on
numerical solution of the integral equation defining the early exercise boundary.
More importantly, by combining both approaches, we obtain a hybrid method
that is an improvement over either approach in accuracy and speed. A new
method is also developed to solve the integral equation numerically.

The approximately piecewise linear shape, with a few unevenly spaced pieces,
of the early exercise boundary in the canonical scale, already noted by AitSahlia
and Lai (1999), suggests that our new method to solve the integral equation
defining the early exercise boundary can be applied to a coarse grid with a few
time points to yield a fast and reasonably accurate approximation. It also
explains why Ju’s (1998) method that involves solving simultaneous nonlinear
equations for the parameters of piecewise exponential approximations to the
early exercise boundary (in the original coordinates) is both faster and more
accurate than previous approximations in the literature. We have noted in
Section 5 that another ingredient for the success of Ju’s method is his elaborate
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starting value for the iterative solution of these simultaneous nonlinear equa-
tions, and that other equally plausible starting values can result in singular or ill-
conditioned Jacobian matrices in the Newton-type iterations used by Ju to solve
the simultaneous nonlinear equations. In contrast, our method to solve for Z(t;)
involves a numerically stable one-dimensional search and has superior conver-
gence properties.
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