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In this paper, the authors present a simple and accurate method for computing the
values and early exercise boundaries of American options. A key idea underlying the
method is the reduction of American option valuation to a single optimal stopping
problem for standard Brownian motion indexed by one parameter in the absence of
dividends and by two parameters in the presence of a dividend rate. Numerical results
obtained by this method show that, in the canonical scale, the stopping boundaries
are well approximated by certain piecewise linear functions that can easily be
tabulated, leading to new approximations for American option values and hedge
parameters.

1. INTRODUCTION

Except for McKean’s (1965) formula for perpetual contracts and Merton’s
(1973) result that American calls written on non-dividend-paying stocks reduce
to European calls, American option valuation lacks explicit formulas and has to
be performed numerically. There are four approaches to the valuation of
standard American options in the literature. The first is based on binomial
trees, introduced by Cox, Ross, and Rubinstein (1979), to approximate the
underlying geometric Brownian motion (GBM) price process by a discrete-time
process on a tree to which dynamic programming can be applied to solve the
optimal stopping problem associated with this valuation. The second approach,
introduced by Brennan and Schwartz (1977), uses finite difference methods to
solve the free boundary partial differential equation defining the function that
expresses the option value in terms of time to maturity and the stock price. The
third approach uses Monte Carlo simulation; see Boyle, Broadie, and Glasser-
man (1997) for a recent review. The fourth approach uses analytic approxima-
tions to reduce the computational task; see Ingersoll (1998), Ju (1998), and
AitSahlia and Lai (1999) for recent reviews of various approximations proposed.

The accuracy of these approximations to American option prices is assessed
by comparison with benchmark values obtained by the binomial tree method
(with 10000 or more steps). The binomial tree is constructed with the current
stock price as the root node. For different spot prices and maturities, different
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trees have to be constructed. Moreover, a particular tree stemming from a given
spot price as the root node may only have a few exercise nodes, which therefore
provide little information on the optimal exercise boundary for the underlying
GBM price process. In this paper, we propose an alternative approach which
uses a Bernoulli random walk to approximate Brownian motion after a space—
time transformation of the option pricing problem, thereby removing the
dependence on a prescribed root node in the binomial tree approach. It
computes not only the option price by a simple (backward) recursion, as in
the binomial tree method, but also the entire early exercise boundary after a
continuity adjustment to correct for the difference between the continuous
underlying Brownian motion and the discrete approximating Bernoulli random
walk.

The basic space-time transformation in our approach also has other
important advantages. It reduces all American option valuation problems to a
single canonical optimal stopping problem indexed by one parameter in the
absence of dividends and by two parameters when there is an additional
dividend rate. It also multiplies calendar time by o’ to transform it into
‘canonical’ time, where o is the volatility. This means that for values of o
(between .1 and .4) that are of practical interest, the time horizon o’T in the
canonical scale is only a small fraction of 7.

Section 2 describes the change of variables and the canonical optimal
stopping problem. Section 3 describes the Bernoulli walk approach for solving
the optimal stopping problem. Section 4 presents numerical results obtained by
applying this approach for a wide range of commonly used parameter values in
the case of American puts on non-dividend-paying stocks. These results show
that early exercise boundaries are well approximated, in the canonical space-
time scale, by linear splines with a few knots. They suggest two fast and accurate
approximations to American option prices and hedge parameters, presented in
Section 5. Section 6 gives similar results for put and call options on dividend-
paying stocks. Finally, Section 7 summarizes and concludes the paper.

2. A CANONICAL OPTIMAL STOPPING PROBLEM

In the standard Black—Scholes environment, the price of an American option is
the value in the optimal stopping problem sup,., , E[e”" f(P,)], where, for a
given strike price K, f(P) = (K — P)" or (P — K)* for a put or a call,

P, = Pyelr 1o, (1)

P, is the initial security price, {W,} is a standard Brownian motion (so that the
stochastic process {P;} is a GBM), and 7, is the set of stopping times taking
values between a and b with b > a. In (1), r is the riskless rate of return, w stands
for the dividend rate paid by the underlying security, and o is the standard
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deviation of the security’s return. Using arbitrage arguments, Karatzas (1988)
has shown that the American option price U(t, P,) at time ¢ € [0, T] is given by

U(t, P) = sup E[e "V f(P,) | P, = P], )

el r

where the expectation is taken with respect to the risk-neutral measure.
The stopping (early exercise) region £ for the optimal stopping problem (2)
has the following characterization:

U(t, P)= f(P) if (t,P) e,
U(t, P) > f(P) if (t,P)¢E.

It is known that £ is a closed subset of [0, 7] x R consisting of all (¢, P) with
0<t<T such that P< P(t) for puts and P> P(t) for calls, where P is a
monotone continuously differentiable function, except for the case of a non-
dividend-paying call (i« = 0) whose optimal exercise time is T (see Merton 1973,
Van Moerbeke 1976, Karatzas 1988, Jacka 1991). Therefore, when we refer to
the American call option in the following, we implicitly assume u > 0. An
analytic reformulation of the optimal stopping problem (2) is provided by the
following variational inequality: find £ and U satisfying

(t,P)eE = Ut P)= f(P),

(t, P) > f(P), 3)
LP¢EE = U U | 5, 8U
———|—rU—(r—,u,)Pﬁ——§GPa?—

ot 0.

We now reduce the number of parameters (K, 7T,r, u,0) in the optimal
stopping problem (2) by certain space—time transformations. First, by dividing
all prices by K, we can reduce the problem to the case K = 1, which we shall
assume throughout what follows. Next, we introduce the change of variables

t=t—T,

1 P

=l
Y e e

u(t',y) = e U(t(t), P(Z, y)).

4)

In this system of coordinates, (3) can be restated as
t,nesS = ul,y)=h{y),
u(t', y) > h(t', y),
E.nES = Jou | du

4177 o,
8t’+2 3})2
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where

h(t/ y) = e—rt’(l B e(r—u—%az)t’+6y)+
in the case of a put,

]’l(t/, y) = e—rt’(e(r— Dt toy 1)+

in the case of a call (with p > 0), and S represents the stopping set in the new
coordinate system. Since 9/dt + %82 / 8y2 is the infinitesimal generator of space—
time Brownian motion, we have therefore expressed the valuation of an
American option in terms of the following optimal stopping problem for
Brownian motion:

u(l',y)= sup E[h(t, W), Wy =y. )

‘[ETIJ‘O
To further reduce the number of parameters, let s = o°t' and z = oy, so that

s=0o(t—T),

, ©)
z=1In(P/K) — (p —ap —3)s.
Since {o7'W,2,} is also a standard Brownian motion, we have the following
reduction of American option pricing problems.

THEOREM 1. Let p = r/o* and o = u/r. The value of an American option can be
obtained from the value function

w(s, z) = sup E[g(z, W)l W, =z, @)

€T,

where {W} is a standard Brownian motion, g(s, z) = e_p‘y(e[p(l_“)_%]s“ — Dt fora
call, and g(s, z) = e (1 — P12y £ 4 put.

Note that for problem (7) the horizon is always 0, and therefore, for a given
set of parameters (p, a), only one numerical program need be implemented for
all expiration dates 7. Also, from (6), s = —o”T at time ¢t = 0. Hence, for values
of o (between .1 and .4) and T (between .08 and 1.5) that commonly arise in
practice, o°T is typically small (not exceeding .3). Finally, a solution to (7) is a
pair (w, z), where w, the value function, is defined on (—o0, 0] x R, and z, the
optimal stopping boundary, is defined on (—o0, 0]. Thus, we retrieve the solution
(U, P) for the original pricing problem by mapping back as follows:
U(t, P) = Ke”w(s, z) and P(f) = Ke*®Hp—ar=s

It is known (see e.g. Kim 1990) that, as t — T,

K if r>u,

PO~ {(r/u)K ifr <,

in the case of a put, while

_ K if r<u,
P(r)a{ fr<u
K i > g,
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in the case of a call. In the canonical scale (6), these limits translate to
lim,_, 4 z(s) = kp for a put and lim,_, z(s) = k¢ for a call, where

{0 if 0<a<l, ®
Kp —
P —Ina ifa>1,

0 ifa>1,
Ko = 9
¢ {—lna if0<a<l1. ©)

For perpetua_ﬂ options (corresponding to the case 7 = 00), McKean (1965) has
shown that P(t) is constant and equal to 6K /(6 — 1) for a put and BK/(8 — 1) for
a call, so we can express McKean’s stopping boundary in the canonical scale
(6) as :

’ ) — o1 — @)~ 1Is (102)

ﬁ@:mg_l

for a perpetual put, where § = —[p(1 — &) — %] —{[p(1 —a) — %]2 +2p}2, and
as

=60 =1n(525) = 101 —a) -1 (105)

for a perpetual call, where 8 = —[p(1 — &) — D+ {le(1 — ) — %]2 +2p}/%. The
optimal stopping boundary actually lies between (10) and a line parallel to it, as
shown by the following theorem.

THEOREM 2 The stopping boundaries, z¥ and zC, for the canonical optimal
stopping problems of the put and the call, respectively satisfy

20(5) <) <zu(s) and  z{(s) <29(s) < 2L (s)
for all s <0, where z& and zg are given by (10a) and (10b), and
) =—(p—ap—Ds+rp and z{(s) = ~(p—ap 15 +c.

with kp and k¢ defined in (8) and (9), respectively.

Proof. With g defined in Theorem 1, let H(s, z) = (3/ds + 3*/32z%)g(s, z). Van
Moerbeke (1976) has shown that the optimal stopping boundary belongs to the
region {(s, z) : H(s, z) < 0}. Since

H(s,z) = e_ps(ozpe”(”_""’_%)s -p) for puts,
= e_”s(—ape”(p_“p‘é)s +p) for calls,

it follows that zF(s) < 28 (s) and z(s) > z5(s). In fact, for dividend-paying calls,
Section 4.4 of Van Moerbeke (1976) has given these bounds for the optimal
stopping boundary. To facilitate reference, Van Moerbeke’s parameters (o, B, §)
are related to those of our canonical problem as follows: o =1, B=p,
§=p—ap—4% O
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3. ANUMERICAL METHOD USING BERNOULLI WALKS INSTEAD
OF BINOMIAL TREES

The classical binomial tree method is based on using a binomial tree, with root
node P, at time 0, to approximate the GBM process (1) so that (2) can be
computed via a backward induction algorithm to solve the corresponding
optimal stopping problem for the approximating binomial tree. The change of
variables (6) transforms (2) into the optimal stopping problem (7) for Brownian
motion (with E[dW,] = 0 and Var[dW,] = ds). In view of the functional central
limit theorem, a standard Brownian motion can be approximated by a
symmetric Bernoulli random walk, so (7) can likewise be computed via the
following backward induction algorithm applied to the approximating random
walk.

First choose a small § > 0 and discretize time and space as follows. Let s = 0
and s; =s;_ — & for j> 1. Let

Zs = {x/gn :n is an integer} = {0, +V8, £2v5, ... }.

Approximating Brownian motion by a symmetric Bernoulli random walk with
time increment § and space increment /8 X;, where the X; are independent
Bernoulli variables with P(X; = 1) =% = P(X; = —1), we can approximate (7)
by the backward recursion

w(s;, z) = max{g(s;, 2), S[w(s;i_y, z + V&) +w(siig,z— «/3)]}, (11)

with w(sy, z) = ¢g(0, z) and with z € Z;, noting that s;_; = s; + 8.

Each point z in the lattice Z; can be determined to be a stopping or
continuation point at time s; depending on whether w(s;, z) = g(s;,z) or
w(s;, z) > g(s;, z). Chernoff and Petkau (1986) propose to use the stopping
boundary associated with (11) and a continuity correction to compute the
optimal stopping boundary in the corresponding problem for Brownian motion.
In the case of the canonical optimal stopping problem (7), Ilet
|x] =max{z € Zs:z<x}and [x] = min{z € Z; : z > x}, and define

Zy(s;) =max{z € Zy : z < [24(s5))] + V8, w(s;, 2) = g(s;, )} for puts,
=min{z € Z;:z> |z,(s)] — V8, wis;, 2) = g(s;, 2)}  for calls, (12)

where z,(-) and z,(-) are the upper and lower bounds for the early exercise
boundary in Theorem 2 (i.e. z, = zﬁ and z, = ZE for puts). Letting

23(s;) = Z3(s;) + /8, zy(s;) = Z(s;) + 2v/8  for puts, (13a)
2(s) = Zs(s) — N8, zi(s) = Zs(s;) — 248 for calls, (13b)
D(s) = g(s;. zg(si)) — w(s;, zi(s)), for j=0,1, (14)
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the Chernoff-Petkau continuity correction involves adding to Zs(s;) a term that
depends on Dy(s;), D;(s;), and +/8. Specifically, the early exercise boundary at s,
can be computed from Zs(s;) via this continuity correction as follows:

Z(s;) = 23(s;) = V8| D1(5,)/[2D1 (s;) — 4Dy(s,)]

; (15)

where the 4 and — signs apply to the call and the put, respectively.

Roughly speaking, zJ(s;) and zi(s;) are the continuation points in Z;(s;) that
are closest and second closest to the stopping region at s;, and the adjustment
factor in (15) comes from an extrapolation scheme that uses the values of
Ai(2) := g(si, 2) — w(s;, z) at the two points z)(s;) and zl(s;) to fit a certain
functional form of A;(z) in a neighborhood of z(s;). This functional form is
derived from a Taylor expansion of the continuous-time value function w(s;, z)
in (7) about z = z(s;), using the condition of smooth fit at the continuous-time
optimal stopping boundary and corresponding results in Chernoff and Petkau
(1976) for the approximating Bernoulli walk. Under certain conditions, it can be
shown that such continuity corrections can approximate the continuous-time
boundary with o(+/8) error; see Chernoff and Petkau (1976) for a special case
and Lai, Yao, and AitSahlia (1999) for the general theory.

One such condition underlying (15) is boundedness of the derivative of the
optimal stopping boundary in some neighborhood of s;. In the case of American
options, it is known that z(s) is continuously differentiable for s < 0 and that
lim,_,¢|z'(s)] = oo. Numerical results in Section 4 show that the derivative z’(s)
is large only in a very small neighborhood of s = 0, so (15) can be applied when
5; < —.005. For 0 > s > —.005, z(s) is close to k¢ or kp, and the uncorrected Zg(s)
typically suffices to approximate this small portion of the early exercise
boundary An alternative approach for computing z(s) near s = 0 is given in
AitSahlia and Lai (1999).

We end this section by describing some enhancements of the simple
numerical scheme (11). Since (11) only computes w(s;, z) for z € Z;, the value
of w(s;, z) at z ¢ Z; can be computed by interpolation, e.g. by using Lagrange’s
interpolation formula with ‘a quadratic interpolation polynomial. We can
likewise obtain the value of w(s, z) for s ¢ {so, s1, ...} by interpolation. Instead
of a fixed step size §, one can take a time-varying step size so that a finer grid is
used near s = 0 to address the unboundedness of certain derivatives there. This
idea is used in Lai, Yao, and AitSahlia (1999) to give a Bernoulli walk scheme,
with O(n) time steps, that computes the continuous-time value (7) with O(n™")
error. Finally, although (11) can be used to compute w(s;, z) for all z in the
countably infinite set Z;, we can restrict z to a finite subset, since in practice
there are maximum and minimum values of z at s, (corresponding to the range
of asset prices of interest at an initial date). Moreover, because w(s, z) can be
evaluated for any z and s via a closed-form expression given in Sections 5 and 6
once z( - ) is determined, we can in fact restrict z to the narrow range of values
bounded below by |z,(s;)] — +/8 and above by [z,(s;)] + +/8, where z,(-) and
zy(+) are the lower and upper bounds for z(-) given in Theorem 2.
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4. NUMERICAL RESULTS FOR PUTS WITHOUT DIVIDENDS

In this and the next section, we consider puts without dividends so that the
canonical stopping problem involves only one parameter p. Table 1 illustrates
convergence of the Bernoulli walk algorithm (11)—(15) in the case p =0.5as 1/§
varies from 3° to 3'2, through even powers of 3. Note that if § is a positive even
power of § then Z; is a subset of Zy. Thus the space—time grids from these
values of § are nested and increase as & decreases.

Table 1 shows that, for § <37° = 97*, the optimal stopping boundary and
values w(s, z) of the optimal stopping problem (7) computed by the Bernoulli

TABLE 1. Convergence of stopping boundary z and values w of canonical problem for
American put with no dividend (o = .5). The actual put prices in the case K =100,
T=1,0=.2, r=.02 are indicated in parentheses.

§=23° §=3"% §=3"10 §=3"12
s=—5x3° Z(s) —0.158403  —0.155849  —0.158798  —0.159090
( = 0.8285) (85.3506) (85.5688) (85.3169) (85.2920)

w(s, —37%) 0.050865 0.051805 0.051912 0.051924

(P = 96.3640) (5.0691) (5.1628) (5.1734) (5.1746)
wis, =2 x 373 0.074905  0.077231  0.077488  0.077517
(P = 92.8603) (7.4649) (7.6967) (7.7223) (7.7252)
wis, =3 x 373 0.106228  0.106653  0.106704  0.106710
(P=89.4839)  (10.5864)  (10.6288)  (10.6339)  (10.6345)

s=—10x 37 #(s) —0.214455  —0.205380  —0.205645  —0.206001
(t = 0.6571) (80.6981)  (81.4338)  (81.4122)  (81.3832)

wis, —2x 373)  0.085042  0.085588  0.085650  0.085656
(P = 92.8603) (8.4461) (8.5003) (8.5065) (8.5071)
wis, —3x 373  0.110081  0.111441  0.111592  0.111609
(P =89.4839)  (10.9329)  (11.0679)  (11.0829)  (11.0846)
wis, —4 x 373 0.139470  0.139743  0.139775  0.139779
(P=862303)  (13.8517)  (13.8788)  (13.8820)  (13.8824)

§=—20x 3°° 2(s) 0261933 —0.263467 —0.262932  —0.263122
(t = 0.3141) (76.9563)  (76.8383)  (76.8794)  (76.8648)

wis, —4x 373)  0.145948  0.146230  0.146260  0.146264
(P=86.2303)  (14.3960)  (14.4238)  (14.4267)  (14.4271)
wis, —5x373)  0.171994  0.172598  0.172664  0.172671
(P=83.0950)  (16.9651)  (17.0247)  (17.0312)  (17.0319)
w(s, =6 x 373)  0.200048  0.200165  0.200178  0.200180
(P=80.0737)  (19.7323)  (19.7438)  (19.7451)  (19.7453)
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walk method change little with §, so choosing § = 1074 already gives very
accurate results. These values can be easily transformed to the American put
prices U(t, P) = Ke”w(s, z), where t = T + s/o” and P = Ke** P is the stock
price at time ¢. The put prices are indicated in parentheses in Table 1 for the case
K=100,T=1,0=.2,and r = .02.

Table 2 tabulates the values of the optimal stopping boundary z(s) computed
by this method with § = 107*, for s = —.005, —.025, —.05, —.1, —.15, —.3 and
p=.01, .05, .1, .2, ..., 2 in the case of American puts without dividends.
Figures 1-3 plot the graphs of the optimal stopping boundaries z(s)
(—.3 <5 < 0) computed by this method, with § = 107, and the linear splines
using the tabulated boundary values in Table 2 as the knots together with
z(0) = 0. They show that the simple method of approximating z(-) by splines
with these knots performs very well.

TABLE 2. Stopping points for linear spline approximation to boundary of canonical
problem for American put with no dividend.

p #(—.3) #(—.15) Z(—.1) Z(—.05)  Z(—.025  Z—.005)

.01 —1.530588  —1.120455 —0.932000 —0.683088 —0.498143  —0.237556
.05 —1.197890  —0.891489 —0.749844 —0.557773 —0.411207 —0.205308
10 —1.028656  —0.777312  —0.659271 —0.496108 —0.369880 —0.185140
20 —0.835710  —0.647515 —0.556691 —0.426663 —0.325206 —0.166178
30 —0.706895  —0.562916  —0.489372 —0.383111 —0.295858 —0.156741
40 —0.606378  —0.496936  —0.438313  —0.348249 —0.272120 —0.146239
50 —0.521933  —0.442398  —0.395862  —0.321070 —0.255259  —0.141607
.60 —0.447562  —0.394697 —0.358964 —0.296966 —0.239270 -0.135396
70 —0.380792  —0.352156  —0.326139  —0.275899  —0.225348  —0.127679
.80 —0.319320  —0.313554 —0.296563  —0.256741 —0.212299  —0.127439
90 —0.262027  —0.277920 —0.269074 —0.239304 —0.202086 —0.121504
1 —0.208140  —0.244669 —0.244050 —0.223446  —0.190718 —0.117144
1.1 —0.157054  —0.213016 —0.220032 —0.207763  —0.181983  —0.111053
1.2 —0.108068  —0.183354 —0.197486 —0.193618 —0.172080 —0.108349
1.3 —0.060998  —0.155070 —0.176090 —0.180465 —0.164665 —0.106093
1.4 —0.015861 —0.127575  —0.155609 —0.167414 —0.156013  —0.105708
1.5 0.028401 —0.101236  —0.135910  —0.155427 —0.147847 —0.101974
1.6 0.071100  —0.076061 —0.116882  —0.143741  —0.141021  —0.098839
1.7 0.112693  —0.051142  —0.098457  —0.132057 —-0.133406  —0.096296
1.8 0.153390  —0.027388 —0.080619 —0.121446 —0.126707 —0.091879
1.9 0.193317  —0.004191 —0.063458 —0.110661 —0.120510  —0.089812
2 0.232566 0.018789  —0.046685 —0.100645 —0.113679  —0.087918
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FIGURE 1. Optimal stopping boundaries: put (no dividend) with p <0.5.
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FIGURE 2. Optimal stopping boundaries: put (no dividend) with 0.6 < p<1.2.

Journal of Computational Finance



A canonical optimal stopping problem

p=20
02 Fp=19 —— Spline approximation
-------- Bernoulli method
p=18
p=17
0.1
p=16
8
g p=15
=
o 0.0 To=14
p=13
01 TR TN
-0.2 =1 | | | I 1 |
-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.0

Canonical time

FIGURE 3. Optimal stopping boundaries: put (no dividend) with 1.3 < p < 2.

5. EFFICIENT APPROXIMATIONS TO OPTION PRICES AND
HEDGE PARAMETERS

The results in Section 4 show that early exercise boundaries for non-dividend-
paying American puts are well approximated, in the canonical scale, by linear
splines with a few knots. In this section, we show how such approximation to the
early exercise boundary can be used to develop fast and accurate approximations
to option prices and hedge parameters. Two different approximations are given,
and they are both based on this piecewise linear approximation of the early
exercise boundary and the decomposition of the American put price U(t, P) due
to Kim (1990), Jacka (1991), and Carr, Jarrow, and Myneni (1992):

U(t, P) = Ug(t, P) + JT rke " IN(—dy(P, P(v), T — t)) dr,

t

where N(-) is the standard normal distribution function, Uy the Black—Scholes
formula for the corresponding European put, and

dy(x, y,7) = [In(x/y) + (r — $0)t]/o/7.

In the canonical scale, this decomposition of the American option value can be
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expressed as

U, P) =
ke[ N(— 2} b A5 )+ J" N QAW
=S =S S,O Ju—s)"]
(16)
where s and z are defined by (6) and z(-) is the optimal stopping boundary for

the canonical problem associated with p.
To evaluate the integral in (16), we first note that

pesz —puN(Z(u)_ S) du—l—c”_ L—S pe..ptN<¢\/tz+s)) . (17)

Suppose that s =s,, < --- < 5o = 0 divide the interval [s, 0] into m subintervals
such that

zZw)=pu+y fors;<u<sy (I1<i<m). (18)

Lett; =s; —s,,. Then, for 1 <i<m, z(t +s,) —z=—(bt+c¢;)for; <t < 7y,
where b, = —B; and ¢; =z —y; — B;s,,, noting that t;+s, =s;. Let q; =

V/b? +2p. Then, for 1 <i<m,

Tiet N Z—Z(t—i—sm)) dt
(e ( Ji

i

= e_""'N(biril/2 +c; 1,'_1/2) e PIN(b; 11/2 +¢1; 1/2)

b. _
+%(j+1> @b N(q, 11/%+cr l/2) N(at + ¢ ~172y]
1

+%<ﬁ 1) e @t N(g, 7} — et ) = N(a,t)? = ci5 /7)),
(19)

which corresponds to equation (5) of Ju (1998). We can still apply (19) when
7; = 0 by replacing t; with t > 0 and taking the limit as t — 0, which amounts to
setting Ci‘L’i_l/2 =0, or 0o, or —oo according as ¢; =0, or ¢; > 0, or ¢; < 0. Since
Jo" =2 J7, the right-hand side integral of (17) can be computed as a sum
of terms of the form (19).

To price an American option after the change of variables (6), a simple
approximate method is to use Table 2 together with linear interpolation to
determine the boundary z(-) when p belongs to the grid of values in Table 2.
Recall that z(0) = 0. We then use (17) and (19) to compute (16). When p falls
between two consecutive values p; and p, in the grid, we can apply linear
interpolation to z, (-) and z, (- ) to approximate Z,( -). Our choice of p = r/o®
in Table 2 is based on the range of interest rates .01 <r <.l and of volatilities
.1 <o < .4 commonly encountered in practice.
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Table 3 contains results from using this approach, labeled SA (spline
approximations) to refer to the interpolation spline derived from Table 2, to
determine the prices (scaled by K) of puts on non-dividend-paying stocks. The
prices in the columns labeled BM (Bernoulli method) result from the application
of the dynamic programming algorithm (11) with § = 10™*. Our results of using
this approximation method are within 1% (with an overwhelming majority less
than 0.5%) of those obtained by the Bernoulli method.

Formula (16) also leads to explicit expressions for the hedge parameters
through differentiation. For example, the parameter delta can be expressed in the
canonical scale (6) as

U _ z (oD 0 P~ ) —z
-E—)——P;(P, t)_—N(—\/__S—«/:E> — peF ¥ L mn<m) du, (20)

2
where n(x) = e * / ~/27 is the standard normal density function.

TABLE 3. Values of standard American put options (no dividend): BM = Bernoulli
method, SA = spline approximation.

P/K = .80 P/K = 90 P/K =1 P/K=12
o —s BM SA BM SA BM SA BM SA

0.125 0.0800 0.22494 0.22503 0.15858 0.15863 0.10777 0.10780 0.04557 0.04558
0.250 0.0133 0.20008 0.19975 0.10870 0.10882 0.04535 0.04458 0.00287 0.00288
0.296 0.1012 0.22492 0.22514 0.16147 0.16164 0.11308 0.11326 0.05243 0.05253
0.305 0.0133 0.19998 0.19959 0.10835 0.10845 0.04424 0.04429 0.00283 0.00284
0.305 0.0533 0.20989 0.21017 0.13762 0.13779 0.08464 0.08483 0.02728 0.02734
0.305 0.0933 0.22224 0.22243 0.15773 0.15787 0.10883 0.10895 0.04852 0.04858
0.305 0.2000 0.24864 0.24878 0.19381 0.19395 0.15033 0.15049 0.08978 0.08988
0.375 0.0133 0.20030 0.19944 0.10785 0.10800 0.04385 0.04393 0.00278 0.00279
0.375 0.0267 0.20152 0.20192 0.11874 0.11907 0.06075 0.06088 0.01055 0.01057
0.375 0.0400 0.20473 0.20495 0.12799 0.12821 0.07310 0.07327 0.01873 0.01880
0.490 0.0612 0.20835 0.20855 0.13714 0.13741 0.08572 0.08598 0.02947 0.02958
0.540 0.0075 0.19996 0.19965 0.10241 0.10266 0.03288 0.03301 0.00053 0.00054
0.540 0.0300 0.20100 0.20128 0.11895 0.11932 0.06208 0.06235 0.01195 0.01197
0.540 0.0525 0.20543 0.20584 0.13174 0.13204 0.07933 0.07954 0.02446 0.02454
0.667 0.0450 0.20245 0.20279 0.12546 0.12591 0.07215 0.07244 0.01951 0.01959
0.800 0.1500 0.21498 0.21551 0.15351 0.15392 0.10914 0.10946 0.05468 0.05486
1.220 0.0033 0.20002 0.20000 0.10000 0.10017 0.02138 0.02151 0.00001 0.00001
1.220 0.0133 0.20002 0.20002 0.10354 0.10377 0.03942 0.03992 0.00219 0.00226
1.220 0.0233 0.20002 0.20075 0.10842 0.10934 0.04979 0.05028 0.00651 0.00660
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TABLE 4. Deltas of standard American put options (no dividend): BM = Bernoulli
method, SA = spline approximation.

P/K=08 P/K =1 P/K=12
p —s BM SA BM SA BM SA

0.250 0.0133 —0.98959 —0.98162 —0.46786 —0.46918 —0.04782  —0.04810
0.375 0.0400 —0.87069 —0.86796 —0.44089 —0.44191 —0.14048 —0.14112
0.490 0.0612 —0.81549 —0.81257 —0.42492 —0.42366 —0.16798 —0.16864
0.540 0.0525 —0.84709 —0.84688 —0.43546 —0.42676 —0.15500 —0.15576
0.667 0.0450 —0.89094 —0.88775 —0.42593 —0.42709 —0.13863 —0.13968
0.800 0.1500 —0.71955 —0.72074 —0.38209 —0.37518 —0.19014  —0.19067
1.220 0.0033 —1.00000 —0.99993 —0.46780 —0.47496 —0.00053  —0.00054
1.220 0.0233  —0.99907 —0.99362 —0.42887 —0.43235 —0.07527 —0.07649

Suppose z( - ) can be approximated by a piecewise linear function of the form
(18) with s = 5,, < - -+ < 59 = 0. Then, analogous to (19), the integral in (20) can
be evaluated as a sum of m terms:

T e (7 — F(t+s,,)
[ (=)

=a; Lelai=bie; [N(aitilﬁ + Cifi:ll/z) - N(aifil/z + Ci'f‘—m)]

+ a7 e @N(a TS — et D) = N(ayt!? — ¢t )], (21)
with 1 <i < m, as shown in AitSahlia and Lai (1999). Using linear interpolation
to determine the linear spline approximation to z(-) from Table 2, we can
compute the hedge parameter delta via (20) and (21). As shown in Table 4, this
approximate method to compute delta yields results that are overwhelmingly
within 1% of the benchmark values of the Bernoulli method. The latter are
obtained by using in (20) and (21) the optimal stopping boundary z(-) that is
computed directly by the Bernoulli walk algorithm of Section 3 with § = 107°.

The preceding approximation is based on tabulation of the early exercise
boundary at a few points that are used as knots for the linear spline
approximation to the boundary. If p and o’T fall outside the range given in
Table 2, then we have to use extrapolation, which may be unreliable. An
alternative approximation, considered in AitSahlia and Lai (1999), is to set
P=P(t) (= KeZOH—s ") in (16) and to assume that z(s) is a linear spline in the
resultant integral equation for z(s), so that z(s;) (i =1,...,n) can be solved
recursively, with n <6, z2(0) =0, and 0 = sy > 51 > --- > 5,. Specifically, since
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U(t, P(t)) = K — P(t), (16) yields the integral equation
1 — D = P [N(=2(s)//=5 ) — @O EN(=Z(s)//=5 — ~/=5)]
+ pepSJ “’”N(Z(u) Z(S)> du. (22)

S —s
Letting s, = —o’T, we suppose Z(u) = Bju+y; for s;<u o (1<j<gn).
Assume Z(sp) = 0, Z(s1), . .., Z(s,,_;) have been determined. Then bi=—B; =

[2(51) - —Z-(Sz 1)]/(.8‘, 1= S) Vi= Z(sl 1) ﬁz Si—15 and ¢ = Z(S) Z(sl 1) +ﬂzrz 1
for1 <i<m—1,where t; =5; — s, for j <m (<n < 6). To determine z(s,,), let
z be a candidate value and let b(z) = [z — z(8,,_1)]/(Sm—1 — $,,) and a(z) =

[(bX(z) + 2p0]"/*. Noting that ¢(z) =2z — Z(Sp_1) — (Sw_1 — Sm)b(z) =0 and
17,, = 0, we obtain from (17), (19), and (22) the following equation defining z(s,,):

1 b e [N (2 ) — & HN(—2/ o — /)]
+1—e” + e N(b(2)V/Tn1)

-1 @N(a(z)\/— % Z Ai(2), (23)

where A;(z) is given by the right-hand side of (19) with ¢; =z — y; — B;s,, and b;
and a; independent of z for 1<i<m — 1. Details of solving the nonlinear
equation (23) are given in AitSahlia and Lai (1999), whose numerical results
show that this approach is indeed accurate and fast.

6. EXTENSION TO DIVIDEND CASE FOR CALLS AND PUTS

The method in the previous section can be extended to the case where the
underlying security pays a dividend at a continuous rate u > 0. For a put, the
integral representation formula generalizing the no-dividend case (16) is

U(t, P) = Ke”[N(=2/v/=5) — € *N(—z/v/=5 — +/=5)]

+ pKe” Jj [e_p”N(E(L;)\/T_SZ) — qe N (%t—:_;{- —Ju - s)] du, (24)

where z and s are defined by (6) and Z(-) is the optimal stopping boundary for
the canonical optimal stopping boundary associated with the pair (p, ).
Similarly, the integral representation formula for the value of a call is

U(t, P) = Ke”[e ¥ N(z/v/=5 + v/=5) = N(z//=5)]

+ pKe®” f [ae““”“‘%ﬁLZN(z;\/ius) + Ju — s) - e"‘"‘N(%)] du. (25)
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a=0.25

BM state

—— Spline approximation
-------- Bernoulli method

0.0
I 1 1 |
-0.20 —0.15 —0.10 —-0.05

Canonical time

-0.30 -0.25 0.0

FIGURE 4. Optimal stopping boundaries: call with p = .3 and 0.25 <o < 1.75.

—— Spline approximation
-------- Bernoulli method

BM state

| | | 1

1 1 1
-0.15 -0.10 —0.05 0.0

-0.30 -0.25 -0.20

Canonical time

FIGURE 5. Optimal stopping boundaries: call with p = 1.0 and 0.25 < a < 1.75.
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TABLE 5. Stopping points for linear spline approximation to boundary of canonical
problem for American put with dividend.

o a -3 #(—.15) (1) (=05  Z(—.025)  (—.005)

30 .1 —0.731000 —0.579156 —0.565583 —0.391131 —0.302592 —0.159695
.5 —0.833955  —0.650903 —0.635428 —0.433340 —0.330881 —0.169023

.8 —0.918409 —0.713246 —0.695835 —0.473179 —0.363400 —0.186073

1.0 —0.978708 —0.760057 —0.741265 —0.506429 —0.388270 —0.209430

1.2 —1.042723 —0.811043 —0.791360 —0.546945 —0.426109 —0.245122

2.0 —1.332568 —1.083219 —1.063941 —0.872099 —0.812273 —0.742838

2.5 —1.532323 —1.289682 —1.272500 —1.099409 —1.037210 —0.965732

5 1 —0.553328 —0.462951 —0.453833 —0.331195 —0.262744 —0.145912
.5 —0.687433  —0.552544 —0.540576 —0.381880 —0.297015 —0.159165

.8 —0.798204 —0.630353 —0.615975 —0.428179 —0.330612 —0.176156

1.0 —0.877376 —0.688713 —0.672525 —0.467307 —0.364056 —0.195138

1.2 —=0.961071 —0.753562 —0.736039 —0.516600 —0.406123 —0.243607

2.0 —1.335194 —1.086222 —1.067231 —0.878256 —0.815256 —0.743548

2.5 —1.578618 —1.317442 —1.298522 —1.109808 —1.043276 —0.966268

1.0 .1 —0.255380  —0.273320 —0.272733 —0.237179 —0.200717 —0.121113
S5 —0.456121  —0.399623 —0.393531 —0.301762 —0.244413 —0.138202

.8 —0.622223 —0.508884 —0.498825 —0.362933 —0.286410 —0.158025

1.0 —0.740979 —0.591157 —0.578330 —0.412720 —0.325584 —0.180600

1.2 —0.866251 —0.682619 —0.666754 —0.476824 —0.381536 —0.237855

2.0 —1.407083 —1.124522 —1.103532 —0.895477 —0.824650 —0.746271

2.5 —1.735322 —1.396338 —1.372557 —1.136365 —1.055949 —0.969154

Closed-form expressions for the integrals in (24) and (25) are also available
when z(-) is piecewise linear; see Ju (1998) and AitSahlia and Lai (1999).
Similarly to the no-dividend case, the optimal stopping boundaries in the
present situation are also well approximated by linear splines, as illustrated in
Figures 4 and 5. Tables 5 and 6 provide analogues of Table 2 for the American
put and call, respectively, with « = u/r > 0. We take the dividend rate x to be
between 0.1 and 2.5 times the riskless interest rate. To save space, only excerpts
of the tables with p = .3, .5, and 1 (instead of the full range in Table 2) and
seven values of « are provided. Note that z(0) need not be 0; its value depends
on « and is given by (8) for a put and (9) for a call. Taking the put as an
example, Table 7 shows our simple method to yield results that are within 1%
(with the majority less than 0.5%) of those obtained by the Bernoulli walk
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TABLE 6. Stopping points for linear spline approximation to boundary of canonical
problem for American call with dividend.

0 o zZ(—.3) z(—.15) z(—.1) z(—.05) z(—.025) z(—.005)

300 1 2.556111 2.504333 2481250  2.431250  2.405000  2.355000
.5 1.069128 0.949343 0.938257  0.817987  0.785000  0.736500

8 0.794713 0.700041 0.688615  0.523224  0.423128  0.268158

1.0 0.678919 0.609775 0.601512  0.457010  0.366590  0.201523

1.2 0.587162 0.543009 0.535774  0.412975  0.329906  0.182954

2.0 0.330963 0.365567 0.364680  0.311210  0.258844  0.146745

2.5 0.214049 0.287582 0.289864  0.270149  0.230020  0.137590

5 1 2.594286 2.520862 2.485455  2.435667  2.399000  2.348333
.5 1.038548 0.935418 0.925427  0.820772  0.785706  0.735811

8 0.715086 0.644851 0.635491  0.492619  0.405493  0.267299

1.0 0.577493 0.539177 0.532664  0.417986  0.338350  0.187024

1.2 0.467880 0.460164 0.456153  0.367941  0.300845  0.166725

2.0 0.156299 0.249565 0.253545  0.251257  0.218828  0.130240

2.5 0.009822 0.156367 0.164430  0.204331  0.186563  0.121275

1.0 1 2.690977 2.569615 2.559717  2.452241  2.406905  2.348333
5 1.035177 0.936388 0.927297  0.828374  0.790151  0.737500

8 0.622535 0.575816 0.569046  0.456432  0.381583  0.266987

1.0 0.441086 0.441611 0.438475  0.364053  0.301460  0.175511

1.2 0.294396 0.339615 0.340138  0.302897  0.255737  0.148322

2.0 —0.139072 0.061579 0.073650  0.157069  0.156724  0.107843

2.5 —0.353026 —0.067098 —0.049049  0.095960  0.117490  0.095186

TABLE 7 Values of standard American put options (with dividend): BM = Bernoulli
method, SA = spline approximation.

P/K = .90 P/K=1 P/K=12
p o« —s BM SA BM SA BA SA

03 0.1 0.0133 0.10852 0.10866  0.04444  0.04446  0.00286  0.00286
1.0 0.1 0.0133 0.10486 0.10501  0.04103  0.04130  0.00239  0.00244
1.0 0.1 0.0533 0.12470  0.12525 0.07299  0.07334  0.02151  0.02164
1.0 0.1 02000 0.15575 0.15629  0.11329  0.11368  0.06079  0.06100
1.0 0.5 0.0133 0.10681 0.10689  0.04296  0.04309  0.00267  0.00269
1.0 0.5 0.0533 0.13127 0.13160  0.07927 0.07951  0.02476  0.02483
1.0 0.5 02000 0.17192 0.17208  0.12973  0.12996  0.07417  0.07433
1.0 1.0 0.0133 0.10970  0.10978  0.04547  0.04549  0.00302  0.00303
1.0 1.0 0.0533 0.14097 0.14112  0.08822  0.08828  0.02945  0.02947
1.0 1.0 02000 0.19653  0.19663  0.15424  0.15438  0.09457  0.09465
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method, indicating that the quality of our present approximation is similar to
that in the no-dividend case.

7. CONCLUSIONS

This paper describes a Bernoulli walk method for computing bozh the value and
the early exercise boundary of an American option. The Bernoulli walk is a
natural alternative to the binomial tree after we use a change of variables to
reduce the optimal stopping problem to its canonical form indexed by only one
parameter in the absence of dividends and by two parameters when there is an
additional dividend rate. The time horizon in the canonical scale is considerably
smaller than in the calendar time scale. The Bernoulli walk method also
incorporates a continuity correction to compute the early exercise boundary,
which is shown by numerical results obtained using this method to be well
approximated by a linear spline with a few knots. This approximately piecewise
linear shape of the early exercise boundary in the canonical scale suggests two
fast and accurate approximate methods for computing the values and hedge
parameters of standard American options. The first, studied in detail here, is
based on tabulation of the exercise boundary at a few prespecified knots and for
a grid of parameter values. The second, treated in detail in AitSahlia and Lai
(1999), is based on solving the integral equation for the boundary, assuming that
it is a linear spline with these knots. Both methods then use the closed-form
expressions (16)—(21) (or their extensions when there are dividends) to compute
the option values and hedge parameters once this linear spline approximation is
determined. They are particularly useful for the practical management of option
books, as the implementation of dynamic hedging strategies rests on rapid
computation of a multitude of option prices and hedge parameters daily.

Recently Joubert and Rogers (1997) also proposed a tabulation-interpolation
approach to approximate the American option values. However, instead of our
tabulation of the early exercise boundaries at a few canonical time points, they
tabulate options prices and therefore require much larger tables that have to be
stored in a computer as a dictionary. In contrast, our tabulation can be stored in
a hand-held calculator which can be used to evaluate the closed-form expres-
sions (16)—=(21) and similar expressions when there are dividends.
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