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Use is made of the duality property of random walks to develop a numerical method for the valuation of
discrete-time lookback options. This method leads to a recursive numerical integration procedure which is fast,
accurate and easy to implement.
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1. Introduction

Lookback options are popular in OTC markets for currency hedging. The payoff of a lookback option
depends on the minimum or maximum price of the underlying asset over the life of the contract. When
the extreme values are continuously monitored, these options can be valued analytically (Conze and
Viswanathan, 1991; Goldman et al., 1979a,b). On the other hand, when the maximum or the minimum
is only monitored at specific (discrete) dates, mispricing occurs if one uses continuous-time formulas, as
illustrated by Broadie et al. (1998) and Heynen and Kat (1995), but pricing these options via discrete-
time methods presents computational challenges in both speed and accuracy.

In this paper we introduce a new method for the valuation of lookback options where the
monitoring dates can be as frequent as daily fixings. This method, based on the duality property of
random walks, results in a fast and accurate recursive scheme which requires only univariate
numerical integration. The paper is organized as follows. We begin with a brief review of the
literature on numerical methods for pricing these options in Section 2. Section 3 provides the details
of the procedure. Section 4 illustrates the numerical integration algorithm with a few examples and
Section 5 gives some concluding remarks.

2. Literature review

Heynen and Kat (1995) derived pricing formulas for the valuation of discretely monitored lookbacks.
These formulas involve multivariate normal integrals. Specifically, if m is the number of price fixings,
then one has to evaluate (m + 1)-variate normal distribution functions in these formulas, and Monte
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Carlo or quasi-Monte Carlo methods are needed to tackle these integration problems when m is not
sufficiently small, say m = 8 (Heynen and Kat, 1995). An alternative approach is to circumvent the
integration task by using a binominal tree to approximate the geometric Brownian motion associated
with the underlying security. To implement this approach, Hull and White (1993) proposed a method to
keep track of both the asset value and the maximum (minimum) price over the monitoring dates up to
the current period. Babbs (1992) and Cheuk and Vorst (1997) developed an alternative backward
induction algorithm that involves a time variable and a one-dimensional state variable which is the ratio
of the current maximum (minimum) to the current asset price. These binomial-tree-based methods are
compared in Kat (1995) with the Monte Carlo method.

Recently, Broadie et al. (1998) developed an alternative method in which the discrete-time
option price is approximated by the corresponding continuous-time value that is modified by
certain correction terms. In order to assess the accuracy of their approximation, they also
introduced a trinomial-tree variant of the algorithm proposed by Babbs and by Cheuk and Vorst,
and used it as a benchmark to show that their approximation provides accurate results in a number
of test cases.

3. Closed-form valuation

Consider the standard Black—Scholes environment where there are two securities: a zero-coupon bond
maturing at the expiration date T of the lookback option with a flat term-structure 7, and a risky security
whose price S, at time ¢ follows a geometric Brownian motion under the risk-neutral probability
measure. Formally,

S, = Spe’ =0

where B, = (r — 62 /2) + o W,, o represents the volatility of the return of the underlying security, and
{W,} is a standard Brownian motion initialized at 0. When the underlying security of the contract is
monitored only at the m dates At, ..., mAt, with At = T/m, the corresponding discrete-time price
model is

S, =SpeV" n=0,1,..., m (1)

where Uy =0, U, = X; + X, + - + X, for n =1 and the X; are independent N(u, %) random
variables, with u = (r — 6% /2)At, G = oVAL.

3.1 Duality theory and extrema of random walks

Let X, X, ... be independent, identically distributed random variables. Consider the random walk
U,=X{+ -+ X, Let Uy = 0 and

My =max{U,: 0 < n<m} 2
7 = inf{n: U, < 0} T = inf{n: U, >0}

Since the X; are independent and have the same distribution, it follows that for x > 0,
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P{My €dc} =P{U€dx}P{X, <0, X+ X3=<0,..., X+ + X, <0} (3)

+ 3 P{U,> Uy, i <v; Uy € dx}P{X,1 <0, Xy + Xop <0, .,
y=2
Xy1 + -+ 4 X < 0}

By the duality of random walks (cf. Equation 2.1 on p. 394 of Feller, 1971), for x >0,

P{U,> U, i<v; U, € dx} = P{U, — U,_1 >0, ..., U, — U >0; U, € dx}

- P{UI >O, ceay Uv—l >O, Uy € dx}

= P{t_>v; U, € dx} “4)
On the other hand, .
P{Xy1 <0, X, 1+ X2 <0,..., Xy +---+ X,, <0}
=P{U;1<0,U,<0,...,Up, <0} =Pty >m—v} %)

Putting Equations 4 and 5 into Equation 3 yields

P{M,, € dx} = P{Uy € dx}P{r.>m—1}+ > P{r_>v; U, € dc}P{r, >m —v}, x>0

v=2
(6)
Moreover,
P{M,, =0} = P{ty > m} @)

Thus the distribution of the maximum can be expressed in terms of the so-called ‘ladder epochs’ 7. and
7_. This is particularly useful for pricing discretely monitored options because the quantities in
Equations 6 and 7 can be computed recursively, as we shall show in Section 4.

Replacing U, by —U, in the preceding argument leads to an analogous representation of the
distribution of the minimum

Ay =min{U,: 0 < n<m} (= —max{-U,: 0 < n=<m}) )

of the random walk { U, }. For x <0,

m
P{A, € dx} = P{U € dx}P{r_>m—1} + > P{r,>v; U, € dx}P{z->m—v} (9)
=2
in analogy with Equation 6.

For the particular case where X; are independent N(u, 6%) random variables so that U, is the
normal random walk in the discrete-time price model (1), the following result (Siegmund, 1985, p.
49) can be used to determine the density function f, of the measure P{r.>v; U, € dx} by
recursive numerical integration.

Proposition 1. Let J be either (0,00) or (—o0,0], and 7 =inf{n: U, ¢ J}. For x € J, let
fa(x)dx = P{t>n; U, € dx}. Let ¢ denote the density function of the standard normal distribution
and let Y(x) = 6 ~'¢((x — u)/5). Then for x € J :
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£ = p)
fo) = ijn—x(y)w(x )y for2<n<m o)

3.2 Fixed strike options

A fixed strike (hindsight) call gives its holder the right to buy the underlying security at a fixed strike
price K and to sell it at the maximum price achieved during the life of the option. Correspondingly, a
hindsight put grants the right to purchase the underlying security at the minimum price and to sell it at a
fixed strike. We shall concentrate on the hindsight call, since the arguments and results for the hindsight
put are similar. Define M, by Equation 2 with the same U, as in Equation 1. Then the payoff is

e "TE(SpeM — K)*

where K is the strike price of the call. The main quantity to evaluate, E(Soe™» — K)*, can be expressed
in terms of the density functions f, in Proposition 1.

Proposition 2. The value of a hindsight lookback call at inception is
e TE(SoeMm — Ky = e Ta,(So — Ky +e~'T 21 am_,,J:o(Soe" — K)* £, (x)dx (11)
v=
where f,(x) is defined recursively for x > 0 by Equation 10 with J = (0, c0),
ag =1 ap = JO gr(x)dx for k=1

in which gx(x) is the same as the f;(x) defined for x = 0 by Equation 10 with J = (—o0, 0].

Proof. First note that

E(SgeMn — k)T = J (Soe” — K)* P{M,, € dx}
0

o0
= (So — K)t P{M,, = 0} +J (Soe* — KY'P{M,, € &} (12)
0+
Define 7, as in Equation 2. For n = 1 and x <0, since g,(x)dx = P{7, > n; U, € dx}, it follows that

0
an:J gn(x)dx = P{t, >n} = P{U, <0, ..., U, <0} (13)
By Equations 6 and 13, P{M, € dx} = o, P{U; € dx} + > " ya@m_yfr(x)dx for x>0, yielding
Equation 11 in view of Equations 12 and 7.

With A, defined by Equation 8, the price of a fixed strike put is e '7 E(K — Spe*»)*, which can
be evaluated by an obvious modification of Proposition 2.
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3.3 Floating strike options

The holder of a floating strike (or standard) lookback put has the right to purchase the underlying
security at its price on the exercise date, and to sell it at the maximum price it achieved during the life of
the option. Correspondingly, a floating strike call is exercised by purchasing the underlying security at
the minimum price it achieved during the life of the option, and selling it at the price on the exercise
date. In the Black—Scholes environment, the discrete-time price of a floating strike option at time 0 is
e "TE(SpeMn — S,,), which can be evaluated by making use of the following proposition.

Proposition 3. The value of a standard (floating strike) lookback put at inception is

m—1

e TESoeMr = Su) =TS > Burly (14)
v=0

where

0
mw=j (1—e")gmoy(x)dx for0<v<m-—1

m:Lh:j&ﬁww:Mvzl
0

and f, and g, are the same as in Proposition 2.

Proof. We can express E(e™n — eUn) as the sum

U, U,
+ Y B = V) {02 Ut < U U < Unly > UsironUy > Un) . (15)
. v=2

where the first and second terms and the vth summand correspond to the cases M, = 0, M,, = U; and
M,, = U,, respectively, noting that P{U; = U;} = 0 for i # j. Define 7, and 7_ as in Equation 2. Since
P{U, =0} =0 forall n,t, = inf{n: U, = 0} with probability 1, and therefore

The second term in sum (15) can also be written as

m
19 U+) X;
E(e™ —e 2o Yiu 0,0, v, <0,..,U,—U, <0}

oo 0
— J J (ex _ ex+y)
x=0dJ y=—00
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P{Ul € dr, X, <0, X+ X3<0, ..., Xo+ X3 + - + X, <0, ZX,»E dy}
i=2
00
- J ¢ P{U, € dr}
0
0 m
U (1 - ey)P{X2<O, Xo+X3<0, ..., X+ X3+ 4+ Xn<0, in € dyH
—o0 : i=2
where the last step follows from the independence of U; and (X3, ..., X},). Therefore the second term

of sum (15) reduces to

00 0
J e"zp(x)dx“_ (l—ey)gm_l(y)dy}

0

Similarly, the last term in sum (15) can be written as

m—1
=2

m—1 poo 0
= Z J (e —e"NP{UI<U,, ..., U1 <U,; U, € dx}

y=2 Jx=0J y=—0c0

P{Xv+1<09--':Xv+1 +"'+Xm<0;Xv+1 +"'+Xm€dy}

m—1

00 0
- . eva(x)deA (1—ey)gm_v(y)dy}

v=2 0

With A, defined as in Equation 8, the price of a floating strike lookback call is
e "TE(S,, — Soe’*), which can be evaluated by an obvious modification of Proposition 3.

3.4 Lookbacks with pre-determined extrema and partial lookbacks

The option given in Proposition 2 or 3 is valued at inception. As time evolves, we can also consider the
maximum security price to date in order to value the option for the remainder of its life. If we define
S (f) = maxg<,<;S,, then by the usual risk-neutral argument the continuous-time value of a floating

strike lookback put is

v(t, S, S4) = e "9 Elmax{S,, max,=,=7S,}|S; = S, S () =S,]- S
Under the discrete-time price model (1) the corresponding option value is

Vi(n, S, Sy) = e "2 Elmax {S,, max,<j<nSj}Sy = S, S+(n) = S:]— S

where S (n) = max{S;: 0 < j < n}

Proposition 4. Let a = S, /S. Then
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v=1

m' 00
Vi(n, S, 84) = e"’”'A’<S+am' + SZam’—”J max(a, ex)fv(x)dx) - S
0

where m' = m — n, and a; and f,(x) are the same as in Proposition 2.

Proof. Note that
Vi(n, S, S3) = e """ MA Elmax{S,, SeM~}] - §

= e MAISE {max{%ﬁ, eM'”'H ) (16)

where M, is defined in Equation 2. With a = S /S,

00

E[max{a, eM"}] = aP{M, =0} —I—J max(a, e*)P{M,, € dx}
0+

= ad, + Z am’——vJ max(a, ex)f,,(x)dx
v=1 0

where the last expression follows from Equations 6, 7 and 13, with m replaced by m'.
Straightforward modifications of the preceding argument yield obvious analogues of Proposition 4
for

S — e "mA EImin{S_, min,<;<nS;}|S, = S, S_(n) = S_]
e WA EIK — min{S_, min,=;<,S;HF|S, =S, S_(n) = S_]
e "M R (max{ Sy, max,=j<mS;} — K)'|S, = S, Sy(n) = S,]

which correspond to a discretely monitored floating strike lookback put, hindsight put and hindsight
call, respectively, at the nth fixing date, where S_(n) = min{S;: 0 < j < n}.

The basic idea behind Proposition 4 can also be applied to the problem of pricing partial
lookback options recently studied by Heynen and Kat (1995). Instead of covering the full lifetime of
the option, the lookback period is often limited to only part of the option’s lifetime. As does discrete
monitoring, partial monitoring causes lookback options to become less expensive. In particular, for a
discretely monitored floating strike call with a lookback period starting at the inception of the option
but ending at time kAt before the expiration date T so that k < m, Heynen and Kat (1995) derived a
formula for pricing the option at the nth fixing date given the underlying price .S, and the monitored
minimum price S_(n) at that date. The formula expresses

E[(Sy — min{S_(n), min,=;j=¢S; 7Sy = S, S_(n) =51 (17)

in terms of (k — n + 1)-variate normal integrals. The arguments leading to Propositions 3 and 4 also
provide an alternative representation which does not involve multivariate normal integrals for Expres-
sion 17. For ease of comparison with Propositions 3 and 4, we consider a floating strike lookback put
instead of the lookback call in Expression 17. We prove the following analogue of Proposition 4 for a
partial lookback put. Let S (n) = maxXo<j<,S;, as in Proposition 4.



234 Aitsahlia and Lai

Proposition 5. Let ¢ = 0. Let f, and g, be the same as in Proposition 2 and define g(x) for x < ¢
recursively as follows:

do=1w  gw=| daome-ny  frv=2 (18)

Let @ be the standard normal distribution function (i.e. @(y) = [ v o« P(x)dx), and define for j = 1 the
functions

W () = O((—y — jw)/(/j5)) — exp{y + j(u + 7V /25 *)} D (—y — j(u + 5°))/(\/j6))
Wy 0) = |
e“®((c — y — jw)/ (/7)) — exp{y + j(u + 57V /26 )} P((c — y — j(u + 7))/ (1/6))
Let m> k> n. Then

E[(max{S;(n), max,<;<¢S;} — Sn)t|Sy = S, S1(n) = e°S]

{o¢]

= Sj )Y (3 c)dy+swm_k<0>j e fi_n(x)dx

—00 ¢

k—n—1 ) 0
+ 8 Z {J eva(x)dx}{J gkAnAv(y)‘Pm_k(y)dy}
v=1 —o

c
Proof: Let k' = k — n, m" = m — n. Analogous to Equation 16, we can write
E[(max{S.(n), max,<;<iS;} — Sw)[Sy = S, Sy (n) = e°S]
= SE[(max{e®, eMr} —eUn)t] (19)

Note that U, = Uy + Z, where Z = Z;”:I,c,+1Xi is normal with mean (m — k)u and variance
(m — k)62 and is independent of (M, Uy). Let h(z) denote the density function of Z. Let
7. = inf{n: U, > c} and note that { M < ¢} = {r.> k'}. Analogous to Proposition 1,

Plt,>n, U, € dx} = g’:(x)dx for x<c
where the g are defined recursively by Equation 18. Therefore
Ef(max{e’, "} — eV)*] = E[(e™ — eU*2) 113y, o ]+ El(e® — e U5 11y 2]
Iy

=> B[ —e" ) 1 ymu,5 0]

v=1

+j EI(e® — " )14y, ey 15 () dy (20)

Since h(z) = (m — k)26 ' ¢p([z — (m — k)ul/[(m — k)/?>G]), a standard completing-the-squares
argument yields
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ey
Bl = e Dl ze] = | =i
—00

c—y c—y
= e”J h(z)dz — eyJ e?h(z)dz

—00 —00

=W, (%0 1)
An argument similar to that in the proof of Proposition 3 can be used to show that for | <v < k’ — 1,

U, Up+Z\+
El(e™ — e ") > 0,0 > UnUy > o} LKy <0, Xop bk X < 0}]

00 0
:j fv(x)L g OVELE" — )1 ooy ]y

c —00

00 0
= {J eva(X)dx}{J_ gk'—v(y)lym—k(y)dy} (22)

Similarly, in the case v = k',

. Jmeva(x)Jim il y)U_y h(z)dz — eyj::oezh(z)dz} dydx

oo}

E[(e% — e " Ly s v U > Ut > o)) = J Sr@E[(e” — e ) 7=0]dx

_ {fewx)dx}{ﬁw(l - e%(z)dz}

_ {Fe%(x)dx}wm_k<0> 23)

c

Expressions 21, 22 and 23 yields the desired conclusion in view of Equations 19 and 20.

4. Numerical implementation and examples

Propositions 2—5 express the values of the options considered here in terms of integrals of the form

c

0o 00 0
L [ H()dx [fn@c)H(x)dx J () Hx)dx J (0 Hd 24)

where f,(x) (for x > 0) and g,(x) (for x <0) are defined recursively via Equation 10, g% (for x < ¢) is
defined recursively by Equation 18 and H(x) is a function which is of the order O(e™) as |x| — co. In
this section we describe an algorithm to compute recursively the integrals in Expression 24. There are
two major issues concerning these integrals. The first is related to recursive updating of the density
functions f,,, g, and g*. The second is related to the unbounded range of integration. To deal with the
second issue, we adopt the following truncation. For B = 4, define 4, = max{(u + 6?)n+ BG+/n, 1}
and A, = min{un — B&+/n, —1}. The inclusion of 1 (resp. —1) is designed to address the case u <0
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(resp. u>0) for [° (resp. fgm). Since fu(x)dx = P{t_>n; U, € dx} < P{U, € dx} and U, is
normal with mean un and standard deviation 6+/n, f,(x) is negligibly small for x> 4, and
jjo e*fy(x)dx is also negligibly small, so we can regard f,(x) as 0 if x = 4,,. Indeed, simple algebra
shows

Joo ¢ P{U, € dx} = ™7 2(1 — ®(C,)) (25)
An

where C, = {4, — n(u+ 6?)}/(6/n). Note that A, = n(u +G2%) + BG+/n and therefore C, = B.
Hence

1= ®(C) <(C)/Cr < p(B)/B (26)

which is less than 3 X 1075 since B = 4. On the other hand, e"*"9’/2 = ¢mT/m < &7 and for
problems of practical interest (7, r) fall mostly in the set (0, 1] X [-0.2, 0.2] (with negative r, for
example, representing a negative difference between domestic and foreign riskless rates in the case of
currency lookback options). A similar argument shows that we can likewise treat g,(x) or g7 (x) as 0 if
x<A,.

For the recursive updating of f,(x), choose some small grid size 6 >0 and let %, be the smallest
integer = A4,/0. Let L be the smallest positive even integer such that L = max{1, (u + ¢%)/6}. Let

' Jjo forje{0,1,...,L}and j6 < y< (j+ 1)
V=V G+1/2)8 forj= L 1and jo=y< (j+1)0

Using Simpson’s rule for the integral _[0 and the mid-point rule for the integral jzg, we can compute
Snt1(x) via the sum

ky—1

6 Z WA ODWE = )40 3 Sl — ) @7

J=L+1

where (wo, wi, ..., wr) = (1/3,4/3,2/3,4/3,2/3,...,4/3,2/3,4/3, 1/3), with the pair (4/3, 2/3)

repeated (L/2 — 1) times, recalling that L is even. Note that in this recursive algorithm we need only

compute fyi(x) forx =y, (i=0,1, ..., ke — 1). Furthermore, after the nth iteration, we need only

store the k, values of y; and of f,,(y;) to be used for the next iteration. A similar recursive algorithm can

be used for the updating of g,(x) or gn(x) In particular, to compute g7, +1(x) j_ @y — y)dy,

let k* be the smallest integer = (c — 4,)/d and let L™ be the smallest even integer such that
—L* <min{—1, u/6}. Let

x _Jc—jo for j€{0,1,..., L andc—(j+1)d<y<c—jo
VI T Ve—(j+1/2)0 forj=L*+landc—(j+1d<y<c—jd
Thus g%, (x) is computed via the sum
L* k-1
Y wgh DG —yH+0 > groHve -y (28)
Jj=0 Jj=L*+1

Such a hybrid Simpson—midpoint rule is convenient not only for updating f,,, g, and g* but also for
computing the integrals in Expressions 24.
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Tables 1-4 display numerical results on the above recursive integration algorithm giving an
indication of their convergence and accuracy as compared to alternative methods. In Tables 1 and 2,
the results in the column labelled ‘Monte Carlo’ are taken from Kat (1995). Each Monte Carlo
estimate is based on 10000 simulation runs, and the ‘width’ given in parentheses refers to half the
length of the 95% confidence interval centred at the Monte Carlo estimate. Table | also includes
Kat’s results on the binomial method of Cheuk and Vorst (1997) with 5200 time steps, while Table 2
also includes his results on Babbs’ (1992) method. In Tables 3 and 4, the results on continuity
correction methods are taken from Broadie et al. (1998), and the column labelled ‘Trinomial

Table 1.- Fixed strike (hindsight) lookbacks.

Cheuk Monte Recursive Recursive Recursive Recursive Recursive
Option  and Carlo integration integration integration integration integration
(K) Vorst (width) (0 = 0.02) (6 = 0.01) (6 = 0.005) (5 = 0.0025) (6 = 0.001)
Put 4.04 4.25 4.2379 4.2227 4.2272 4.2267 4.2266
(95) 0.11)
Put 7.65 7.65 7.6588 7.6486 7.6480 7.6480 7.6480
(100) (0.14)
Put 12.52 12.52 12.5426 12.5255 12.5246 12.5246 12.5246
(105) (0.14)
Call 15.55 15.55 15.5739 15.5537 15.5526 15.5526 15.5526
(95) (0.20)
Call 10.67 10.67 10.6900 10.6768 10.6761 10.6760 10.6760
(100) (0.20)
Call 6.83 6.99 6.9946 6.9725 6.9772 6.9767 6.9765
(105) (0.18)

So =100, 0 =0.20, » =0.05, T =0.5
m = 13 (bi-weekly observations)

Table 2. Floating strike lookbacks

Monte Recursive Recursive Recursive Recursive Recursive
Option Carlo integration integration integration integration integration
(m) Babbs (width) (6 = 0.02) © = 0.01) (6 = 0.005) (6 = 0.0025) (5 = 0.001)

Put 8.81 8.82 8.8884 8.8197 8.8171 8.8170 8.8170
(26) (0.14)

Put 8.21 8.21 8.2181 8.2076 8.2071 8.2070 8.2070
(13) (0.14)

Call  10.62 10.61 10.7018 10.6209 10.6179 10.6177 10.6177
(26) (0.19) :

Call  10.12 10.11 10.1300 10.1177 10.1171 10.1170 10.1170
(13) (0.19)

Sp = 100, 0 = 020, r = 0.05, T = 0.5
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Table 3. Floating strike lookback put price at inception

Recursive Recursive Recursive Recursive
Ist-order 2nd order-  integration integration integration integration Trinomial
m correction  correction (0 = 0.01) (6 = 0.005) (6 = 0.0025) (6 = 0.001) method

5 9.1500 10.1820 10.0642 10.0642 10.0642 10.0642 10.0642
10 10.9313 11.4469 11.3978 11.3977 11.3977 11.3977 11.3977
20 12.2084 12.4660 12.4450 12.4446 12.4446 12.4445 12.4446
40 13.1203 13.2491 13.2411 13.2394 13.2393 13.2393 13.2394
80 13.7696 13.8340 13.8370 13.8298 13.8294 13.8294 13.8295

160 14.2310 14.2632 14.2972 14.2626 14.2610 14.2609 14.2610

So = 100, 0 = 030, r = 0.10, T = 0.5

Table 4. Floating strike lookback put price with predetermined maximum

Recursive Recursive Recursive Recursive
Trinomial Continuity integration integration integration integration
m method correction (6 = 0.01) (6 = 0.005) (6 = 0.0025) (6 = 0.001)

5 13.2995 12.7909 13.3010 13.2985 13.2995 13.2994
10 14.1228 13.8557 14.1244 14.1210 14.1220 14.1219
20 14.8060 14.6688 14.8105 14.8042 14.8050 14.8049
40 15.3446 15.2747 15.3609 15.3434 15.3436 15.3434
80 15.7545 15.7190 15.8180 15.7556 15.7533 15.7530
160 16.0591 16.0412 16.3521 16.0704 16.0583 16.0574

Sp = 100, Sy = 110, 0 = 030, » = 0.10, "= 0.5

method” refers to their trinomial-tree adaptation of the methods of Babbs and of Cheuk and Vorst
who used binomial trees instead.

Tables 1 and 2 give five choices for the value of ¢ in the recursive integration algorithm with o
ranging from 0.02 to 0.001. They show that this simple algorithm with 6 = 0.01 already gives
results differing by no more than 0.004 from those with ¢ = 0.001. These results all lie within the
95% confidence limits of the Monte Carlo estimates. The binomial/trinomial tree method also gives
similar results, but its first entry in Table 1 falls outside the Monte Carlo confidence interval while
its last entry in Table 1 is near the left end-point of the confidence interval. In Tables 3 and 4, the
results given by the recursive integration algorithm with 6 < 0.005 are in close agreement with each
other and with those obtained by Broadie ef al. (1998) using the trinomial tree method. The results
based on continuity correction are close to those of the recursive integration or trinomial tree
method for m = 80, but do not have comparable accuracy for m < 20.

Because its complexity increases linearly with m, the recursive integration method becomes less
attractive for large m. However, the number m of monitoring dates of a lookback option is typically
less than 80, for which the recursive integration method is relatively fast. Moreover, for large values
of m, one can switch to the continuity correction formulas of Broadie et al. (1998) which are
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reasonably accurate for m = 80, as demonstrated by Tables 3 and 4. Therefore, we recommend a
combined recursive integration/continuity correction approach in practice, using the former for
m =< 80 and switching to the latter for larger values of m.

From Relations 25 and 26, it follows that fjj e*P{U, € dx} = o(9) if we choose B ~ 2|logd|"/2.
With this choice of B and noting that (u+62%/2)n<rT and 6/n < o+/T, it follows from
Expressions 27 and 28, that, for fixed m, the computational complexity of our recursive integration
method is OO~ '|log d|'/?) to give results accurate to within O(d). No comparable accuracy results
have been established for the binomial/trinomial tree method, which is based on weak convergence
of the tree to geometric Brownian motion as n, the number of steps, approaches co. The best one
can expect is that the results are accurate to within O(n~'), but the convergence rate results for
Donsker’s invariance principle established by Sawyer (1968) and others only yield the order
O(n~'*(log n)?) for every £ > 0. As noted by Kat (1995), the number of calculations required by a
standard binomial tree with n steps is of the order n?/2, which is a lower bound for the complexity
of the Babbs/Cheuk—Vorst method. Hence if one wants the binomial/trinomial tree method to yield
results accurate to within O(J), then the number of time steps needed is at least some constant times
61, resulting in a complexity of at least some constant times 62 for the tree method, in contrast
with the O(6~!|log8|'/?) complexity for the recursive integration method that is accurate to within
O(9). Although Breen (1991) has made use of Richardson extrapolation to develop an accelerated
binomial tree method for standard options such that the number of calculations increases linearly
with n, the convergence rate of this method may be slow and its extension to lookback options is
unresolved.

5. Conclusion

In this paper we make use of the duality theory of random walks to derive simple recursive formulas for
the valuation of several types of lookback options, in which monitoring occurs at equally spaced times.
We also provide an efficient algorithm to evaluate the univariate integrals in these formulas. Beginning
with the seminal work of Armitage et al. (1969), recursive integration has been used successfully in
group sequential testing in clinical trials, where a trial is terminated early if some test statistic crosses a
prespecified boundary at the time of an interim data analysis. This recursive integration approach was
recently extended to the pricing of barrier options in AitSahlia and Lai (1997), and the present paper
further extends the methodology to the pricing of lookback options.
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