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This article develops two fast and accurate methods to compute boundaries,
prices and hedge parameters of American barrier options. An extensive num-
erical study that compares these approximations with benchmark values and
other methods shows that they are highly accurate and improve the currently
available approximations in both speed and accuracy.

1 Introduction

The explosive growth in the use of derivatives by investors and institutions has
fueled the need for fast and accurate valuation. In the past two decades substan-
tial progress has been made in this direction for standard American options.
Geske and Johnson (1984) characterized American options as compound
European options and then used the Richardson extrapolation (with three or four
points typically) to approximate the option price. MacMillan (1986) and Barone-
Adesi and Whaley (1987) approximated the partial differential equation (PDE)
for the difference between American and European option prices by an ordinary
differential equation (ODE) and thereby derived an approximate valuation for-
mula. Broadie and Detemple (1996) developed upper and lower bounds for an
American option and used a convex combination of these bounds with empiri-
cally determined weights to approximate the -option price. Carr (1998)
discretized the time dimension of the PDE with a few points and used a ran-
domization method to approximate the option price. Huang et al (1996), Ju
(1998) and AitSahlia and Lai (1999) developed approximations to the early exer-
cise boundary and used them to derive approximations to American option prices
and hedge parameters.

We thank Bin Gao for providing us with the code to implement the procedure proposed in Gao
et al (2000), and acknowledge stimulating comments from participants of the Annual Risk
Derivatives Conferences in Paris (April, 2001) and Boston (June, 2001), and Taipei
International Conference on Quantitative Finance (July, 2001), in which some of these results
were presented. We also thank Nengjiu Ju for providing us with the code he wrote to imple-
ment his method.
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In particular, Huang et al (1996) approximated the early exercise boundary by
a step function while Ju used a piecewise exponential function to approximate
the boundary. Ju (1998) reported numerical studies showing that his method with
n = 3 pieces substantially improves earlier approximations in the literature in
speed and accuracy. AitSahlia and Lai (1999) carried out extensive computations
of early exercise boundaries for a wide range of maturities, interest rates, divi-
dend rates, volatilities and strike prices via reparametrization to reduce American
option valuation to a single optimal stopping problem for standard Brownian
motion, indexed by one parameter in the absence of dividends and by two
parameters otherwise. Their results show that the early exercise boundary is well
approximated by a piecewise exponential boundary which uses a small number
of pieces, and explain why Ju’s method has superior performance over previous
approximation approaches.

The past decade also witnessed important developments in the valuation of
American barrier options. Barrier options are widely used by institutional inves-
tors, banks and corporations in their risk management, and American-style
options give their holders the additional flexibility of early exercise. Boyle and
Lau (1994) pointed out that naive application of the Cox—Ross—Rubinstein bino-
mial tree method can result in significant errors even when a large number of
time steps is used because the barrier typically lies between two adjacent layers
of nodes in the lattice. They proposed to reduce the size of errors by refining the
partition so that the resulting lattice has layers as close as possible to the barrier.
Ritchken (1995) introduced a trinomial tree method, Cheuk and Vorst (1996)
used a time-dependent shift of the trinomial tree, while Figlewski and Gao
(1999) developed an “adaptive mesh model” to address difficulties with lattice
methods for barrier options. By using piecewise constant or piecewise exponen-
tial functions to approximate the early exercise boundaries, Gao et al (2000)
derived approximations to the values and hedge parameters for American barrier
options, similar to those for standard options. They measured the accuracy of
these approximations by the differences from corresponding values computed by
Ritchken’s method with a large number (between 10,027 and 21,385) of time
steps. Because of the computational task involved, they conducted numerical
studies on two relatively small samples of 48 contracts each. Moreover, in the
absence of known convergence results for Ritchken’s method, the adequacy of
these “benchmark values” may be questionable.

In this article we use an alternative approach to compute more efficiently
benchmark values that are accurate up to an O (n™Y) error, where 7 is the number
of time steps. It is based on a modification of the corrected Bernoulli walk
method of Chernoff and Petkau (1986) to solve a canonical form of optimal
stopping problems for American barrier options. This modification, given in
Section 2, addresses the difficulties with lattice methods in the presence of a bar-
rier and computes not only the option prices but also the entire exercise
boundary. Using this approach, we carry out extensive computations, which
show that the exercise boundaries of American barrier options are well approxi-
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mated by piecewise exponential functions with a small number of pieces. Using
this result, we develop in Sections 3 and 4 two fast and accurate approximations
to the option prices and hedge parameters, which are compared in Section 5 with
that of Gao et al (2000) and with other approximations in terms of speed and
accuracy (using benchmark values computed by both our and Ritchken’s
methods that are in close agreement, but with ours much faster than Ritchken’s
method). In this connection, we also extend in Section 4 the approximation of
MacMillan (1986) and Barone-Adesi and Whaley (1987) to American barrier
options. Section 6 summarizes and concludes the article.

2 Benchmark values and exercise boundary

Under the usual assumptions of a riskless interest rate r and an underlying asset
which follows a geometric Brownian motion (GBM) with volatility ¢ and which
pays dividend at rate 1, the price of an American knock-out option at time # < T
(= expiration date) that entails no arbitrage opportunities before exercise is given
by

P(t,S) = sup E{e“r(T_t)g(ST)l{KTH}ISt =S} 1)

el s

where S, = S,e ("~ 1~ o2t +0W: with initial price S, {W,} is standard Brownian
motion, Ty is the first time that S, crosses the barrier (to be defined precisely
below), and ’J; » 18 the set of stopping times taking values between a and b with
b>a; g(S) = (S—K)* for a call, or (K—S)* for a put. Here Ty = inf{t<T: S,>H}
for an “up-and-out” barrier, and Ty = inf{t<T: S,<H} for a “down-and-out”
barrier.

It is widely recognized that the usual binomial tree method to compute P(0,.5)
has difficulties because the barrier H typically lies between two adjacent layers
of nodes in the tree. To circumvent these difficulties, we fix H as a node in the
tree at the expense of giving up the initial stock price S as the root node. In fact,
following the previous work for standard American options in AitSahlia and Lai
(1999), a Bernoulli random walk with absorbing barrier y = In (H/K) can be used
to approximate a Wiener process with the same absorbing barrier . Specifically,
using the change of variables

A U
v=1n(%), z:m(—;—), u=c2(t~T) )
they expressed (1) as KeP*w(u,z), where
w(u,z) = sup E{e"’”(1—6Z*)+1{z<z(y)}‘zu :Z} 4
TETu,O
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in the case of puts, with (1 —eZ7)* replaced by (et — 1)* for calls, Z, = As + W,
5 <0, is a Wiener process with drift A and T = 1(y) = inf{s < 0: Z_ = v}. The
approximating Bernoulli random walk has absorbing barrier v, time increment &
> 0 and space increment X; such that

o1 A5
PLX, =+/6(1+802)° =—(li-——) (5)
{ } 20 A1+

Note that X, has mean A8 = E(Z, 5— Z,) and variance 8 = var(Z,, 5 — Z,).

We shall focus on up-and-out puts with H > K in the sequel. Let Lg= {y -
\/S(l + 87@)1/2j :j=0,1,2,...}, uy=0and u, = u,_; — 6 for k 2 1. Approximate
(4) by the backward recursion

Wty 41,2) = max{e_pu’”'1 (1-e%)*, Ew(u,,z +Xn)} (6)

with boundary condition w(u;,y) = 0 for all i. Since (6) only computes w(u;,2)
for z € L, the value of w(u;,z) at z & Lg can be computed by interpolation, eg, by
using linear interpolation, or Lagrange’s interpolation formula with a quadratic
interpolation polynomial (see Press et al, 1992). Similarly the value of w(u, z)
for u & {uy,uy,...} can also be obtained by interpolation. The stopping boundary
of the discrete-time optimal stopping problem for the approximating Bernoulli
walk is given by

Zs (1) :max{ze Ly:w(u;,z)=¢ P (l—ez)+} @)

In addition to the Bernoulli walk approximation, we also use the following
decomposition formula for P(z,S) (= eP“w (u,z) in the case K=1):

P w(u,z) = f(u,z)— CZX(Y_Z)f(u,ZY -2)

0
+ pje_ p(s_”){N(d(l,s,u, 2) - ezx(y_Z)N(d(k,s, u,2Y - 7))
u

~aef [N(d(x +1,8,u,2)) —e PO IN(A(N +1,5,u,27 - z))] }ds (8)
where d(&,s,u,y) = {2(s)-y—-E(s—u)} /s —uand

flu,z)= ep“N(— %J _ ez+ocpuN(_ %})_u)

(see Gao et al, 2000), with z(s) being the optimal stopping boundary for the
continuous-time problem (4). In the transformed coordinates (3), f(u,z) and
f(u,z) — e2M¥=f(u, 2y ~z) are, respectively, the European standard and barrier
option prices. Let y(u,z) denote the RHS of (8). Setting z = z(«) in (8) yields the
following integral equation for the exercise boundary:
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1=e*™) =y (u,7(u)) ©)

Instead of initializing the recursion (6) at n = 0 with w(ug, z) = (1-e?)*, we pro-
pose to initialize (6) at n, and determine w (ung, z) via (8), in which the integral
can be expressed in closed form when z(u) for u; Su<u;_ ; is obtained by
linearly interpolating z(u;) and z(x;_,). Using this closed form to compute the
integral in (8), z(u;) can be determined recursively from (9) for 0<i < ng, with
2(0) = —(loga)*. The details are given in Section 3. For i > ng, z (u;) is obtained
from the Bernoulli optimal stopping boundary (7) via the Chernoff-Petkau
(1986) correction as follows:

28 () = Z5 (u) + 08, 2h () = Z5 () + 243,
D; (u;) =e P {l—exp(zg(ul-))}+ —w(ui,zg(ui)) for j=0,1,
2u) = 2§ () + 8| Dy () {2D () ~ 4D ()}

This “hybrid” method thus combines the decomposition approach for u near 0
with the Bernoulli walk method for u < ung. Theoretical analysis similar to that
used in AitSahlia and Lai (2001) shows that the hybrid method yields option val-
ues with O(0) error and the optimal stopping boundary 7 (-) with 0(/5) error.

Differentiating the decomposition (8) for P(,S) (= ePw(u,z)) with respect to
S (= e%), we can express the hedge ratio in the canonical scale (3) as

0P _ _ o N(_Z_‘M)ﬂ) _ 204 2)(y-2) N(_EX;Z:MJ

as u u

0
+ 22 @M Dz ey oy oy pje" pls=u) {e_z [— O\, 5,u,7)

_ ezx(y—z)(q)(;L +1,5,u,27 = 2) = 2AN(d(M+1,5,1,27 - z)))J

- ocl:(l—6(2“2)(7"1)N(d(k+1,s,u,2'y -2))- (l+e(27‘+2)(7‘2)))
x (¢(l+l,s,u,ZY—z)~(2k+2)N(d(k+1,s,u,27—z)))”d& (10)

where 0 (&, s,u,y) = n(d(E,s,u,y))/. ﬂ with n(-) being the standard normal
density function. Since z(-) can be computed with 0(\/5) error, we can also com-
pute (10) with 0(‘/3) error by using the closed-form integration formula in
Section 3 that linearly interpolates between z(u;) and z(u;_;). Other hedge
parameters such as gamma, vega and rho can be computed similarly.
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3 An efficient approximation

In this section we first consider the computation of the early exercise premium
and solution of the integral equation (9). Our numerical results show that z() is
well approximated by a linear spline with a few knots. We then make use of such
approximations to develop a fast method to compute option values, hedge
parameters and z (-) approximately.

To evaluate the integral in (8), we use Ju’s (1998) closed-form expression for
the integral when z(-) is piecewise linear. Note that in view of the transformation
(3), a piecewise linear z(-) corresponds to the piecewise exponential B, used by
Ju to approximate the exercise boundaries of standard American options.
Specifically, assuming that u=u, <...<u,=0, partition [u,0] into m sub-
intervals (not necessarily of equal width) such that

Z(S)ZbiS‘f‘ai for MiSSSl/li_l(lsism) (11)

and letting

T =u— U, g =1/bl~2 +2p, ¢; =0 +bu—z+M\u

Ju showed that for 1<i<m,

Ti-1

Ti-1
_ Z(t+u)—z+Au —nt Cj
I (=T Iy A
T; ﬁ T; \/;

— 0T, _ —07T;_ _
= PN (el ) PN (bal 1)

ivi i

i

1{b; b, - -
+5(a_t+1]e(a, bi)e; {N(aﬂ}/j +CiTi—1{2)_N<aiT}/2 fe; 1/2)}

_— ) _
. % [_,_1)6 (ar+b)e; {N(M;g et )= Nl 2 )} (12)

i

In the case t;=0, we replace T, by t>0 and take the limit as t—0, which
amounts to setting clfcl.“‘/2 =0, or e, or — e according as ¢; =0, or ¢; > 0, or ¢; < 0.
The other integrands in (8) can be treated similarly.

To solve the integral equation (9) numerically, let Z; = z(u)). Suppose Zy, ...,
Z,,_1 have already been determined. Let z be a candidate value for z,, and let b(z)
=(z =2, /u,, —u,_,), uz) = z - b(x)u,, Linearly interpolating zZ(-) between
u;and u;_y for 1 <j<m gives the piecewise linear function (11) with b, = b(z)
and o, = o(z). In view of (9), using the preceding closed-form expression to
evaluate the integral in (8) leads to the following nonlinear equation for Z,, (= z):

1-e? =y(u,,z2) (13)
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FIGURE 1 Optimal stopping boundaries: up-and-out put.
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which can be solved by a Van Wijngaarden—Dekker-Brent-type method; see
Press et al (1992).

This method to compute z(u,) is fast when the number m of time steps is
small. However, because of the iterative procedure to solve (13) and the non-
recursive computations required to compute (u,, 7), it becomes computationally
expensive for large m. This is the rationale behind the hybrid method in Section
2, which only uses (9) to compute the early exercise boundary for u near 0
(where Z’(u) is large) and to initialize the recursive Bernoulli walk method at
Ung, Where u;_; —u; =6 with a small d.

Figure 1 plots the graphs of z(«) for —0.3<u <0, y= 1.2, o. = 0 and different
values of p, computed by the hybrid method with & = 10, It shows that () is
well approximated in each case by a linear spline with six knots. The approxi-
mate piecewise linearity of z(-) suggests that we can in fact use a small number n
of time steps in the preceding procedure to solve (9) for zZ(-). It often suffices to
choose n as small as 4, with unevenly spaced knots at —o27, (-0.4) 62T,
(~0.08) 62T and (-0.005) 62T Figure 2 plots such an approximation to Z(-) in
the case y=1.1, o = 1/3, p = 1.5 and 62T = 0.12, showing that the approxima-
tion is quite good. Doubling the number of time steps, with eight unevenly
spaced knots at -1, —0.8, -0.6, -0.4, 0.2, 0.1, —-0.05 and —0.005 multiplied by
62T, gives a closer approximation.
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FIGURE 2 Optimal stopping boundaries: up-and-out put.
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Once the linear spline approximation to zZ(-) is determined, we can use (8) and
(12) to compute option values. The hedge ratio can be computed via (10), (12)
and the following analogue of (12):

T e_ptn(Z(H”)"Z”“”]dz:Tif ﬂn(b.ﬁ+ﬁi)dz
L Vi L A

Tim1
2 2 -1
- (Zn)—l/z o bici J‘t—l/ze—(a,. eI g,

T

i

i

= g; te( 4 b {N(ai'cl./fl + ci‘ci—_l{z) - N(ai'cl/2 +ct 2 )}

i i

+q; e (@b {N(aﬂl/_%—ci’ci__liz)—N(aﬂ}m—cm—m)} (14

4 l

The last equality above can be derived by using the change of variables

~1/2
il

1/ 172

x=a;t 2+cit" , yzaitm—c

so that

1 — - 1 — —
dx= Har ™ ) ar, dy= Hag " 4 e )
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and by the identity

-2 _

a;t ;

-1/2 _ ( i —3/2)

+ (ait“m + c,-fm)

2a:

1

t

4 Extensions of MacMillan, Barone-Adesi and Whaley, and Ju

When there is no barrier, Ju (1998) used the following method to determine a
piecewise exponential approximation to the original early exercise boundary B,.
The interval [0, T7 is divided into a small number (three or four) of evenly spaced
pieces, and on the ith piece B, is approximated by an exponential function
Q,ed". Although piecewise exponential B, is equivalent to piecewise linear 7(u),
Ju’s method is different from that in Section 3 because unlike the linear spline,
the piecewise exponential approximation is not assumed to be continuous, result-
ing in 2n parameters ¢{”, Q",..., ¢, Q™ for an n-piece exponential
approximation instead of the n parameters z(u)),..., Z(u,) for the n-piece linear
spline. The (¢, Q) are determined recursively by solving two nonlinear
equations f(g¥, QM) = 0 and f,(¢{", QM) = ~1, where f, comes directly from
the integral equation (9) which can be expressed in the original variables as

, :
K-B,=p(t,B)+ | e " rK| N(~dy (B, B, 1—1)
t t 2 t>=T

t

- (H/B,)" N(-dy(H*/B,. B, 7~ z))}

~ UB, [N(—dl(Bt,BT,T—t))

B (H/B,)27”+2N(_dl(HZ/Bf’BT’T_tD:I dt  (15)
in which p(z, ) is the European barrier put price and

1n(x/y)+(r— },L+62/2)’c
ot

dy (x,3,7) = d; (x,y,0) — 6T (16)

di(x,y,7) =

Differentiating both sides of (15) with respect to the critical price B, yields the
equation f, = —1.

Good starting values are needed to solve the nonlinear simultaneous equations
fi =0, f,=-1for (g, 0M)) by Newton’s method. When there is no barrier, Ju
(1998) uses (g7~ ", Q=) to initialize (1), Q{7) for 2 < j < n and (¢,
0%)) to initialize (g™, QM) for 2 <i<n. To initialize (g,D, Q) for the
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one-piece approximation, he uses (0, B*) with B* given by the approximation to
B, due to MacMillan (1986) and Barone-Adesi and Whaley (1987). To extend
; his approach to American barrier options, we shall develop the corresponding
h approximation B* when there is a barrier. After computing such B*, we can also
follow his procedure of replacing the n-piece exponential function by a step
i function (ie, ¢,V = 0 for all i) if |B*~B,|/B;< 0.05 (with B, = min{Kr/,K})
to avoid nonconvergence of Newton’s method when the n-piece exponential
function is relatively flat.

4.1 Extension of MacMillan, Barone-Adesi and Whaley

Let p(z,S) and P(t,S) denote, respectively, the price of a European and an
American barrier put when the underlying security has price S at time ¢. Define p
and o by (2) and let p* =2 p, a* =2 p(1 - ), T = T—¢. In the continuation
region, the early exercise premium 7(7,.S5), defined as P(T-1,S) — p(T—7,S), sat-
isfies the Black—Scholes PDE

1 ,09°n on I

-0 S —5+(r-WS——-—=rmn

2 052 (r=1 aS 91
Following MacMillan (1986) and Barone-Adesi and Whaley (1987), we first
seek solutions of the form

(7, 5) = g(Vh(g(1),9) a7

where g(t) = 1 —e~"". In other words, 4 must satisfy the PDE

?h .. on P . Oh
2ot — - h—(1- —=0
352 eSS (I-g)p P (18)

We next drop the term (1 — g) p* dh/dg in (18) to obtain the ODE

2 9h ’21 rors2t Py
0l aS aS g

‘ a general solution of which is

h(t,8) = a;(1)SH ™ + a, (1) 572 (19)

where

— (@ =D =y(a* 1)+ 4p*/5(1)

b1(’c)= 5
(@ =0t D2+ 4p*/e(D)
by (1) = 3
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To fully specify A in (17) we rely on the barrier and optimal exercise con-
ditions to determine a,(t) and a,(1). Clearly A(t,H)=0 and thus a,(1) =
—a;(DHP1® =52 Let S be the critical price at £ = T— 1. Then the optimal exer-
cise conditions at (¢, 5) can be expressed as

K-5=p(T-v5)+ag[s" ~a" (5/n)"]. (20)
1= g_l;(T_ T,g)mlg[blgbrl —szb‘“1(§/H)b2_1] (21)

where to simplify notation we omit T from (1), a,(7), b,(T), b,(1) and g(1).
From (21) we obtain

1+(dp/aSHT ~1,5)

ap=- — — — (22)
Combining (22) with (20) yields
ob b (o by .
_ _ J _ S —~H"(S/H
as bS" = by (5 /1)

where (dp/0S)(T —1,S) is the hedge ratio for the corresponding European
barrier put at r=T-1 and S=8, while p(T-1,5) is given by fu,z)—
e2MY=f(y,2y~z) in (8) after the change of variables (3). We can solve the
nonlinear equation (23) for § by a Van Wijngaarden—Dekker—Brent-type method.
In particular, S determined in this way at £ =0 (or equivalently T = T') gives the
value of B* for initializing the one-piece exponential approximation to the exer-
cise boundary in Ju’s approach.

4.2 Implementation issues

As indicated above, Ju’s approach requires solving two simultaneous nonlinear
equations for the parameters g;, Q; of each of the n exponential functions Q,e4i’
that are pieced together to approximate the exercise boundary. These equations
are solved by Newton’s method that uses an elaborate initializing scheme, begin-
ning with a one-piece, followed by a two- (and then three-, etc.) piece
approximation. For standard American options, Ju recommends choosing n =3
and his computer program that implements this approach only uses three itera-
tions in Newton’s method to solve for each (g;, Q,) plus six iterations to solve for
the B* that initializes the one-piece approximation. This ensures a fast procedure.
Moreover, since the one- and two-piece approximations have to be computed
before the three-piece approximation, it takes little extra work to compute the
option price (or hedge ratio) by using a three-point Richardson extrapolation
scheme to combine the prices. (or hedge ratios) computed from the one-, two-
and three-piece approximations to the exercise boundary.
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The same implementation can be applied to American knock-out options, to
which we have extended the method of MacMillan, Barone-Adesi and Whaley.
However, there are many more terms to compute, especially in the dividend-pay-
ing case. Solving two simultaneous equations f;(¢™, Q") = 0, f,(¢/™,0,™) =
—1 by Newton’s method requires computation of many terms that appear in the
first and second partial derivatives of the right hand side of (15) with respect to
the critical price, and this makes Ju’s method for up-and-out puts substantially
slower in the presence than in the absence of dividends.

In their extension of Ju’s approximation to barrier options, Gao et al (2000)
bypass the preceding extension of MacMillan, Barone-Adesi and Whaley to
initialize the one-piece exponential approximation. Instead of following Ju to
initialize the solution for (¢{",Q{"), they initialize at B,(= K min{1,r/pu}).
Their procedure, which we denote by GFXP, will be compared in the next section
with the preceding extension of Ju’s procedure.

5 Numerical results

In this section we demonstrate, through a large sample study, the accuracy and
speed of the spline approximation to Z(u) in Section 3 based only on a few knots,
0 and of our extension of Ju’s method in Section 4 using a three-piece exponential
l approximation to B,. We also include in the study our extension of MacMillan,
Barone-Adesi and Whaley, which is used to initialize Ju’s method. Also included
in the study is GEXF, which is the procedure of Gao et al (2000) to approximate
B, with a three-piece exponential function and which we implemented by using a
computer program supplied by Gao. Besides the piecewise exponential approxi-
mation, Gao et al (2000) have also proposed to approximate B, by a piecewise
constant function (step function), which we denote by GSTEP in our numerical
study. These approximations are compared with benchmark values computed by
using the hybrid method in Section 2 with & = 10-4. Also included for compari-
son with benchmark values is Ritchken’s (1995) method with 10,000 and 800
time steps. All computations were performed on a shared Silicon Graphics
L. Challenge workstation with four 64-bit Mips processors.
0 Table 1 reports the results from 1200 American up-and-out options where
the parameters are independently drawn from the following distributions: time
to maturity 7"is uniform between 1/24 and three years, the barrier H has prob-
ability 1/3 of assuming each value in {110, 150, 200}, the current stock price
S is uniform between 0.9 x H and 80, the volatility ¢ is uniformly distributed
on [0.1, 0.6] and the riskless interest rate r is uniformly distributed on [0.02,
0.15]. In addition, K = 100 and p = 0. The prices are in dollars and the entries
of Table 1 represent the differences in cents between the prices generated by the
hybrid method of Section 2 (benchmark) and the alternative methods.

In Table 1, the columns labeled R10000 and R800 represent Ritchken’s
! method with the number of time steps fixed at 10,000 and 800, respectively.
The columns labeled SP4 and SP8 correspond to the linear spline approximation
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TABLE | Summary of price deviation (in cents) from benchmark values (defined in
Section 2) for 1,200 randomly generated puts in no-dividend case

R10000 R800 SP4  SP8 MBW Ju GSTEP GEXP

Max abs. error (cents) 046 115 484 221 2763 08l 638 625
Max rel. error (%) 0.12 028 265 071 1521 059 043  0.53*
RMSE (cents) 007 0.3 066 0.18 6.18 0.16 156  0.48"
RMSRE (%) 00l 003 013 007 1.99 004 0.3 005
#abs.err.> | cent 0 I 143 6 882 0 409 21"
# relerr.> 1% 0 0 2 0 249 0 0 0*
CPU time (sec) 15799 118 1.81 6.8l 068 730 160 37.67

Starting with R10000, the columns represent, respectively, from left to right the method of Ritchken with
10,000 steps and 800 steps, spline approximations with four and eight pieces, our extensions of MBW
(MacMillan, Barone-Adesi and Whaley) and of Ju (three-piece exponential approximation), and the piece-
wise constant and exponential approximations of Gao et al. The asterisk indicates that the entries apply
to only 849 out of the original 1200 puts; see text. The CPU time for generating the benchmark option
prices by the hybrid method was 504.5 seconds, much faster than R10000.

in Section 3, where z(-) is approximated by, respectively, four- and eight-point
splines at —1, — 0.4, —0.08, —0.005 (x 627T), and at -1, —0.8, = 0.6, —0.4, — 0.2,
~0.1, -0.05, -~ 0.005 (x 62T). The column labeled Ju corresponds to our exten-
sion of Ju’s method in Section 4 using a three-piece approximation to B,. The
column labeled MBW corresponds to our extension of the method of MacMillan
(1986) and Barone-Adesi and Whaley (1987) in Section 4.1. The columns
labeled GEXP and GSTEP  correspond to the methods of Gao et al (2000) that
approximate B, with a three-piece exponential and with a step function, respec-
tively. Table 1 shows that both SP8 and Ju have the best performance in terms
of accuracy and speed, and Ju has smaller maximum error. SP4 and GSTEP are
faster but less accurate procedures, with SP4 having a smaller root mean squared
error (RMSE) than GSTEP, The GEXP method only converged in 851 out of the
1,200 cases; the entries marked by asterisks (*) in Table 1 are actually for 849 of
these 851 contracts. The inclusion of the remaining two contracts for which there
was convergence would have raised the maximum absolute error and the RMSE
considerably (to 378 and 13 cents, and to 102 and 3.5 cents if only the largest is
excluded).

Although both Ju and GEXP  are based on piecewise exponential approxima-
tions to B, with three evenly spaced pieces, they differ in their choice of starting
values for solving the simultaneous nonlinear equations defining the parameters
of the exponential functions, as explained in Section 4.2. It is well known that
two-dimensional root finding algorithms are sensitive to starting values; see
Press et al (1992). Somehow the meticulous initialization scheme used in Ju has
resulted in a numerically stable solution, while the simpler and more direct ini-
tialization scheme used in GEXP has resulted in nonconvergence for about 30%
of the cases in Table 1. In fact Newton’s procedure to solve the simultaneous
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TABLE 2 Option prices for American up-and-out puts (r=0.04, 6 =0.2, T=3,
K=100,u = 0)
S H Benchmark RI0000 R800 SP4 SP8  MBW Ju GSTEP GEXP
80 101 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
85 101 I5.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000 15.0000
90 101 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 [0.0000
95 101 5.1604 51608 51600 5.1615 51608 5.1495 5.1608 5.1608 5.1608
100 101 08166 0.8l161 NA 08163 08161 0.8133 0.8l61 0.8l61 08l6]
80 105 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
85 105 15.0384 15.0392 15.0371 150366 15.0421 15.0280 15.0391 15.0401 15.0392
90 105 10.5791  10.5793 10.5793 10.5731 10.5854 10.5551 10.5787 10.5813 10.5788
| 95 105 6.6511 6.6512 66497  6.6457 6.6565 6.6316 6.6506 6.6531 6.6506
‘ 100 105 3.1516  3.1513 31511 3.1483  3.1542 3.1413 3.1509 3.1524 3.I1510
: 80 110 20.0128 20.0137 20.0139 20.0133 20.0158 20.0066 20.0139 20.0160 20.0138
85 110 155123 155131 155129 155104 155199 154875 155129 15.5221 15.5129
90 110 I1.6162 11.6161 11.6155 11.6128 11.6232 11.5948 11.6157 11.6271 11.6157
95 110 82000 81998 81993 81969 82054 8.1870 8.1995 82098 8.1995
100 110 5.1709  5.1706 ~ 5.1705 5.1686 5.1743 5.1644 5.1703 5.1778 5.1704
105 110 24563 24562 24560 24552 24579 24539 24560 2.4598 2.456l|
80 120 20.3520 20.3514 20.3508 20.3638 20.3598 20.2912 20.3524 20.3669 20.3524
ti 85 120 16.4154 164146 164141 164294 16.4257 16.3445 16.4166 16.4400 16.4166
90 120 13.0507 13.0504 13.0507 13.0634 13.0605 12.9945 13.0527 13.0778 13.0526
i 95 120 10.1485 10.1480 10.1483 10.1582 10.1561 10.1108 10.1500 10.1722 10.1499
100 120 7.6192 76190 76192 7.6264 7.6250 7.5975 7.6204 7.6378 7.6204
105 120 53926  5.3921 53924 53972 53963 53812 53930 54051 53929
110 120 34100 34096 34099 34127 34122 3.4048 34100 3.4175 3.4100 x
115 120 1.6251 1.6247 1.6248 1.6262  1.6259 1.6231 1.6249 1.6284 1.6249 7

Benchmark values are generated by the method described in Section 2 with & = 10, Starting with
R10000, the columns represent, respectively, from left to right the method of Ritchken with 10,000 steps
and 800 steps, spline approximations with four and eight pieces, our extensions of MBW (MacMillan,
Barone-Adesi and Whaley) and of Ju (three-piece exponential approximation), and the piecewise constant
and exponential approximations of Gao et al. For the entry NA, see text.

equations was terminated in each of these cases because of a singular (or nearly
singular) Jacobian matrix.

In situations where GFXP gives numerically stable results, the prices computed
by GFXP and Ju are typically close to each other. This is illustrated on a set of 24
contracts in Table 2, where benchmark values computed by the hybrid method in
I Section 2 are also given, together with the option prices (in dollars) obtained by
?;f} other methods. Ritchken’s method with 800 time steps, R800, cannot be imple-
mented when the current stock price S is too close to the barrier H (S = 100,
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TABLE 3 Hedge ratios for American up-and-out puts (r=0.04, 6 =02, T=3,
K=100,n =0)

S H  Benchmark RI10000 R800 SP4 sP8 Ju GSTEP GEXP
80 10l —-1.0000 —1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
85 10l —-1.0000 —1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
90 10l —1.0000 —1.0000. —1.0000 = —1.0000. —1.0000 —1.0000 —1.0000 -1.0000
95 101 -0.9167 -09167 -09167 -09167 -09167 -09167 -09167 -09167

100 101 -0.8244 -0.8243 NA -0.8245 -0.8244 -0.8244 -0.8243 -0.8243
80 105 —-1.0000 —1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -I.0000
85 105 —0.9541 -0.9536 -0.9537 -0.9559 -0.9529 -0.9538 -0.9533 -0.9538
90 105 -0.8354 -0.8349 -0.8350 -0.8361 -0.8353 -0.8349 -0.8348 -0.8349
95 105 -0.7403 -0.7398 -0.7397 -0.7406 -0.7408 -0.7398 -0.7399 -0.7398

100 105 —0.6633 -0.6628 -0.6629 -0.6634 -0.6640 -0.6627 -0.6630 -0.6627
80 110 -09711 -0.9706 -0.9708 -0.9717 -0.9692 -0.9707 -0.9687 -0.9707
85 110 -0.8357 -0.8351 -0.8352 -0.8361 -0.8352 -0.8351 -0.8342 -0.8351
9 110 -0.7284 -0.7278 -0.7278 -0.7288 -0.7286 -0.7278 -0.7277 -0.7278
95 110 © —0.6425 —0.6418 -0.6419 -0.6429 -0.6429 -0.6418 -0.6423 -0.6418

100 110 -0.5729 -0.5723 -0.5723 -0.5733 -0.5734 -0.5722 -0.5729 -0.5722

105 110 -0.5161 -0.5154 -0.5155 -0.5165 -05165 -0.5154 -0.5161 -0.5154
80 120 —-0.8537 -0.8534 -0.8536 -0.8522 -0.8522 -0.8532 -0.8506 —0.8532
85 120 -0.7264 -0.7260 -0.7260 -0.7265 -0.7262 -0.7258 -0.7248 -0.7258
90 120 -0.6240 -0.6234 —0.6235 -0.6247 -0.6242 -0.6234 -0.6236 -0.6234
95 120 —0.5412 -0.5405 -0.5406 -0.5421 -0.5415 -0.5406 -0.5414 -0.5406

100 120 —0.4742 —0.4735 -0.4735 -0.4752 -0.4745 -0.4736 -0.4746 -0.4736

105 120 -0.4200 -0.4192 -0.4193 -0.4210 -0.4203 -0.4193 -0.4203 -0.4193

110 120 -0.3761 -0.3753 -0.3754 -0.3771 -0.3764 -0.3754 -0.3763 -0.3754

115 120 —0.3406 -0.3398 -0.3399 -0.3415 -0.3409 -0.3399 -0.3406 -0.3399

Benchmark values are generated by the method described in Section 2 with § = 10~ Starting with
R10000, the columns represent, respectively, from left to right the method of Ritchken with 10,000 steps
and 800 steps, spline approximations with four and eight pieces, our extensions of Ju (three-piece expo-
nential approximation), and the piecewise constant and exponential approximations of Gao et al. For the
entry NA, see text.

H = 101 in Table 2); in this case a larger number of steps is needed. Note that
R 10000 is within 0.09 cents of the benchmark values for all 24 contracts, con-
sistent with the results of the large sample study in Table 1.

Table 3 gives the values of the hedge ratios of these 24 contracts computed by
different methods. The benchmark values are computed via (10), (12) and (14),
in which the boundary Z(-) is determined by the hybrid method of Section 2
with & = 104, The approximations SP4, SP8, Ju, GEXP and GSTEP also compute
the hedge ratios via (10), (12) and (14), but use linear spline approximations
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with four or eight knots to approximate Z(-) or piecewise exponential/constant
functions to approximate B, with three evenly spaced pieces. The tree methods
R10000 and R800 use numerical differentiation to determine the hedge ratios.

6 Summary and discussion

By using the hybrid method of Section 2 and the reparametrization (2)-(3) to
perform extensive computations of the exercise boundaries over a wide range of
maturities, interest rates, dividend rates, volatilities and barrier/strike prices, we
have found that the exercise boundaries of American knock-out options can be
well approximated by continuous piecewise exponential functions that use a
small number of pieces, or equivalently for the transformed coordinates (3), by
linear splines with a few knots. Note in this connection that the time horizon
62T under the transformation (3) is only a small fraction of the maturity 7.
These findings have led us to two approximations of the option prices and hedge
parameters, whose accuracy and speed relative to the benchmark values derived
from the hybrid method and also to other competing methods have been assessed
in a large sample study.

The first approximation, considered in Section 3, uses a linear spline with
a few unevenly spaced knots to approximate the exercise boundary Z(-) in the
coordinate system (3). The uneven spacing of the knots has the advantage of
following the actual boundary more closely. A simple rule is devised for knot
placement in the four-knot and eight-knot schemes of Sections 3 and 5. The
slope of each linear piece of the spline can be found by solving a one-dimen-
sional nonlinear equation, as the intercept is fixed by continuity of the spline. An
important advantage of this piecewise linear approximation (or piecewise expo-
nential approximation in the original coordinates), first noted by Ju (1998), is
that it leads to a closed-form expression for the integral defining the early exer-
cise premium; moreover, there are similar closed-form expressions for the hedge
parameters, as shown in Section 3.

The second approximation, considered in Section 4, removes the continuity
requirement in the piecewise exponential function that approximates B,. This
1 has the advantage that each piece is approximated separately, without rely-
‘ ing on the previously fitted pieces. Of course the previously fitted pieces still
| have an impact on the accuracy of the current piece since they appear in the
integral defining the early exercise premium, but they are not used directly as
parameter(s) (such as the intercept of Z(-) in the spline approximation) of the cur-
rent piece. It is, therefore, less important to choose the endpoints of each piece
to match closely the actual boundary, and the simple choice of evenly spaced
endpoints proposed by Ju (1998) has been found to perform well. The disadvan-
tage of this flexibility is that we now have two (instead of one) parameters to
determine for each piece of B, resulting in a system of two nonlinear equations
that require good starting values, and our numerical study has demonstrated
the sensitivity of two-dimensional root-finding algorithms to starting values. Ju
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(1998) has developed an elaborate scheme to initialize Newton’s method for
solving these equations and has found that it works well in the case of standard
American options. In the course of generalizing it to barrier options, we have
also extended the classical method of MacMillan (1986) and Barone-Adesi and
Whaley (1987). As shown in Table 1 and also noted in AitSahlia and Lai (2001)
for standard American options, other equally plausible starting values to initial-
. ize Newton’s method for solving the nonlinear equations in Ju’s approximation
can result in singular or ill-conditioned matrices in the Newton-type iterations.
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