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Appendix B: Analytic Definition and Application of Curvature to Lead-Lag Determination  

Consider a parametric curve X(t) = (x(t), y(t)),  t defined on the real interval [a, b].  X is a 

vector that traces the curve.  Define the tangent vector T(t) as X΄ (t) and the curvature vector κ(t) 

as T΄(t) = X΄΄(t) = ( d2 x /dt2 , d2 y /dt2 ).  Note that T is orthogonal to κ, which points towards 

the center of curvature.  Figure A5 illustrates this vector system. 

==== Place Figures A5 about here ==== 

Now define a moving coordinate system with unit orthogonal vectors e1, e2 with respect 

to the curve.  The system origin is at X and e1 = T / |T|.  Define e2 such that the orientation is the 

same as the fixed system x, y.  That is, if x, y is a right-handed coordinate system, so is e1, e2.  

We can specify e2 as Je1  where the operator J is a rotation by π/2, or similarly, if e1  = (v1, v2), 

then e2 = (-v2 , v1).  When the parameterization of the curve is with respect to the arc length s 

(i.e., t = s), this system is known as a Frenet frame1.  For our purposes the parameter t need not 

be arc length.2 

Define the signed curvature as the scalar κ(t)  s.t. κ(t) = κ(t)e2.  In a right-handed 

coordinate system as above, when κ >0, the curvature is counterclockwise, and when κ <0, the 

curvature is clockwise. 

We next develop an analytic example following the examples in the text that relates the 

lag between two functions and the curvature of the associated state space plot.  Consider a 

sinusoid defined on [0, π], specifically x(t) = a cos(t), and a second function that is x(t) lagged, 

specifically y(t) = x(t- π/2).  This example is chosen because it is easy to illustrate graphically, 

and to calculate the Frenet frame and curvature.  In more complex cases the analysis can become 

intractable, and with non-analytic discrete time series the analytics cannot be done.  In these 

cases the graphic interpretation of clockwise and counterclockwise can be much easier.  Figure 

A6 illustrates the graphical patterns in the time domain and the corresponding state space. 

                                                 
1 Talman, Richard (2000), Geometric Mechanics, New York, NY: John Wiley and Sons, pp 240-243. 
2 For an example of a moving Frenet frame, see http://www.stedwards.edu/science/kelm/multi/frenet.html. 
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To determine the sign of scalar κ(t), we use the following deductions: 

X(t) = (a cos(t), a cos(t- π/2)) = (a cos(t), a sin (t)), 

T(t) = X΄ (t) = (-a sin(t), a cos(t)), 

κ(t)  = T΄(t) = X΄΄(t) = (-a cos(t), -a sin(t)), 

e1(t) = T / |T| = (-a sin(t), a cos(t)) / |T|, 

e2(t) = Je1(t) = (-a cos(t), -a sin(t)) / |T|, 

κ(t) = 1/|T| e2(t), and therefore κ(t)  >0  for all t in [0, π] 

In this example, the curvature of X(t) is analytically positive and graphically counterclockwise 

for all t.  If one reverses the lag and makes y lead x, i.e., y = x(t + π/2), and repeats the 

calculations, the result will be κ(t) = - 1/|T| < 0.  The curvature is clockwise.  The diagrams in 

Figure A7 show the curvature vector and the Frenet frames for the two cases. 

==== Place Figures A6 and A7 about here ==== 
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Figure A5.  The Vector System Used to Define Trajectory Directions 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A6.  An Example of Lead-lag in the Time Domain and the State Space Domain 
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Figure A7.  The Curvature Vector and the Frenet Frames for Different Curvatures 
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